Inwieweit können anhand der standardisierten Bedingungen des Bonner Universitätsklinikums Determinanten zur Diagnostik und Therapie der Ureterabgangsstenosen festgelegt werden?

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Hohen Medizinischen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität
Bonn

Isabelle Osberghaus
aus Bamberg
2015
Angefertigt mit Genehmigung der
Medizinischen Fakultät der Universität Bonn

1. Gutachter: Prof. Dr. Rainer Ganschow
2. Gutachter: Prof. Dr. Dr. S. C. Müller

Tag der Mündlichen Prüfung: 12.08.2015

Aus dem Zentrum für Kinderheilkunde des Universitätsklinikums Bonn
Geschäftsführender Direktor: Prof. Dr. Dr. med. Peter Bartmann
Inhaltsverzeichnis

Abkürzungsverzeichnis .. 6

1. Einleitung .. 7
 1.1 Wissenschaftliche Problemstellung und Zielsetzung .. 8
 1.2 CAKUT – Congenital Anomalies of the Kidney and Urinary Tract 8
 1.3 Ätiologie sowie Formen der Ureterabgangsstenose .. 9
 1.4 Inzidenz der Ureterabgangsstenose ... 10
 1.5 Pathologie und Pathophysiologie .. 11
 1.6 Befundspektrum der Ureterabgangsstenose ... 12

2. Patienten und Methoden .. 13
 2.1 Rekrutierung der Patienten ... 13
 2.1.1 Kinderklinik ... 13
 2.1.2 Nuklearmedizin ... 13
 2.1.3 Urologie .. 14
 2.1.4 Vorläufiges Patientenkollektiv ... 15
 2.2 Untersuchungsmethoden ... 16
 2.2.1 Sonographie ... 16
 2.2.2 Nierenfunktionsszintigraphie .. 18
 2.2.3 Miktionszystourethrogramm ... 22
 2.3 Dynamischer Nierenindex ... 22
 2.4 Therapie .. 23
 2.4.1 Operative Korrektur nach Anderson-Hynes ... 23
 2.4.2 Konservative Therapie ... 24
 2.5 Statistische Auswertung .. 25

3. Ergebnisse .. 26
 3.1 Patientenkollektiv .. 26
 3.2 Ausgeschlossene Patienten ... 26
 3.3 In die Auswertung eingeschlossene Patienten ... 27
 3.3.1 Niereneinheit ... 28
 3.3.2 Sonographische Befunde ... 29
3.3.3 Szintigraphische Befunde .. 32
3.3.4 Therapieform ... 32
3.3.5 Gruppeneinteilung ... 33
3.3.6 Verlaufsbeobachtung .. 34
3.4 Befunde in Abhängigkeit von der Therapieform ... 35
3.4.1 Primär operierte Gruppe – Gruppe 1 .. 35
3.4.1.1 Sonographische Befunde – Gruppe 1 .. 36
3.4.1.2 Szintigraphische Befunde – Gruppe 1 .. 42
3.4.2 Sekundär operierte Gruppe – Gruppe 2 ... 51
3.4.2.1 Sonographische Befunde – Gruppe 2 .. 52
3.4.2.2 Szintigraphische Befunde – Gruppe 2 .. 56
3.4.3 Konservative behandelte Gruppe – Gruppe 3 ... 61
3.4.3.1 Sonographische Befunde – Gruppe 3 .. 62
3.4.3.2 Szintigraphische Befunde – Gruppe 3 .. 67
3.5 Vergleiche zwischen den Gruppen .. 71
3.5.1 Klinische Daten .. 71
3.5.2 Sonographische Befunde – im Gruppenvergleich ... 74
3.5.3 Nierenquotient und dynamischer Nierenindex – im Gruppenvergleich 78
3.5.3 Szintigraphische Befunde – im Gruppenvergleich ... 83
3.6 Niereneinheiten mit Verringerung der Nierenpartialfunktion im Therapieverlauf .. 89
4. Diskussion ... 95
4.1 Methodenkritik ... 95
4.1.1 Sonographie .. 95
4.1.2 Miktionszystourethrogramm ... 97
4.1.3 99mTc-MAG3-Nierenfunktionsszintigraphie .. 100
4.2 Indikation zur Nierenfunktionsszintigraphie ... 103
4.3 Einfluss der Nierenbeckenweite auf die OP-Indikation .. 106
4.4 Nierenpartialfunktion – Entscheidungsgrundlage funktionelle vs. operative Therapie? .. 109
4.5 Determinanten für die Notwendigkeit der chirurgischen Intervention 111
4.6 Nierenquotient – Abschätzung der urodynamischen Relevanz? 116
4.7 Postoperative Ergebnisse ... 119
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>Abschn.</td>
<td>Abschnitt</td>
</tr>
<tr>
<td>AHP</td>
<td>Anderson-Hynes Pyeloplastik</td>
</tr>
<tr>
<td>AWMF</td>
<td>Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften</td>
</tr>
<tr>
<td>CAKUT</td>
<td>Congenital Anomalies of the Kidney and Urinary Tract</td>
</tr>
<tr>
<td>Cys C</td>
<td>Cystatin C</td>
</tr>
<tr>
<td>Dia.</td>
<td>Diastole</td>
</tr>
<tr>
<td>dl</td>
<td>Deziliter</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomeruläre Filtrationsrate</td>
</tr>
<tr>
<td>HWZ</td>
<td>Halbwertszeit</td>
</tr>
<tr>
<td>i.S.</td>
<td>im Serum</td>
</tr>
<tr>
<td>J.</td>
<td>Jahre</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>KG</td>
<td>Körpergewicht</td>
</tr>
<tr>
<td>Krea</td>
<td>Kreatinin</td>
</tr>
<tr>
<td>li.</td>
<td>links</td>
</tr>
<tr>
<td>Max.</td>
<td>Maximum</td>
</tr>
<tr>
<td>MBq</td>
<td>Megabecquerel</td>
</tr>
<tr>
<td>MCU</td>
<td>Miktionszystourethrogramm</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>Min.</td>
<td>Minimum</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>Mon.</td>
<td>Monate</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl</td>
</tr>
<tr>
<td>NBW</td>
<td>Nierenbeckenweite</td>
</tr>
<tr>
<td>NE</td>
<td>Niereneinheit</td>
</tr>
<tr>
<td>n.F.</td>
<td>nach Furosemid</td>
</tr>
<tr>
<td>NPF</td>
<td>Nierenpartialfunktion</td>
</tr>
</tbody>
</table>
OP Operation
SD Standardabweichung
Sono Sonographie
Sys. Systole
re. rechts
ROI Region of Interest
T. Tage
Tab. Tabelle
99mTc-MAG3 99m-Technetium-Mercaptoacetyltriglycin
UAS Ureterabgangsstenose
UKB Universitätsklinikum Bonn
UMS Uretermündungsstenose
1. Einleitung

1.1 Wissenschaftliche Problemstellung und Zielsetzung

Als primäres Ziel dieser Arbeit wurde die Festlegung von unabhängigen Determinanten in der Diagnostik und Therapie der Ureterabgangsstenose definiert. Darüber hinaus wurde ein besonderes Augenmerk auf die Indikationsstellung zur Nierenfunktionsszintigraphie gelegt. Ebenso sollten die gewählten Behandlungsprinzipien und deren Ergebnisse kritisch ausgewertet, hinterfragt und unter Berücksichtigung aktueller Leitlinien und Studien evaluiert werden.

1.2 CAKUT – Congenital Anomalies of the Kidney and Urinary Tract

Rund 20 – 50 % aller angeborenen Malformationen betreffen die Niere und ableitenden Harnwege (Gokce et al., 2012; McIntosh et al., 1954). Die im Rahmen routinemäßiger, pränataler Ultraschalldiagnostik erkannten Fehlbildungen können in ca. 30 % CAKUT zugeordnet werden. Hierbei umfasst CAKUT ein breites Spektrum an Fehlbildungen des Harntraktes, die das Resultat einer gestörten bzw. unzureichenden Entwicklung darstellen (Bartram et al., 2013).
Zu den angeborenen Anomalien der Niere und des Harntraktes zählen die Aplasie, die Hypoplasie, die multizystische dysplastische Niere sowie Anomalien des Ureters. Dazu gehören der Megaureter, die Ureterabgangsstenose, die Uretermündungsstenose ebenso wie Anomalien der Harnblase und Harnröhre wie beispielsweise Urethralklappen (Hahn, 2010). Diese Fehlbildungen können unter dem Überbegriff CAKUT zusammengefasst werden. Die Inzidenz liegt bei ca. 1 %, das heißt, jedes 100. Kind ist betroffen (Caiulo et al., 2012). Bei positiver Familienanamnese konnte ein vermehrtes Auftreten beobachtet werden.

Bei den Ursachen für CAKUT wird eine genetische Komponente stark angenommen. So unterschiedlich die Ausprägungen der Fehlbildungen auch sein mögen, bei allen Formen zeigt sich eine gestörte pränatale Entwicklung (Woolf, 2000).

1.3 Ätiologie sowie Formen der Ureterabgangsstenose
Unter einer Ureterabgangsstenose versteht man eine proximale Obstruktion zwischen Nierenbecken und Harnleiter.

Bei den Ursachen muss zwischen intrinsischer und extrinsischer Stenose differenziert werden (Tawfiek et al., 1998). Die intrinsische Stenose ist die häufigste Form (90 %) und wird durch einen veränderten Aufbau der regionalen Wandschichten verursacht. Es finden sich aperistaltische Segmente mit einer abnormalen Ablagerung von Muskel- und Kollagenfasern. Statt der regelrecht vorliegenden, spiralförmig angeordneten Muskelstränge, liegen meist atrophische, longitudinale Muskelbündel
vor. In einigen Fällen fällt histologisch eine verringerte neuronale Innervation auf (Koleda et al., 2012). Des Weiteren lässt sich oftmals eine vermehrte Kollageneinlagerung nachweisen, die in einer verminderten Elastizität der Wandschichten resultiert (Yiee et al., 2010).

Des Weiteren kann ein ausgeprägter vesikoureteraler Reflux bei sogenanntem „Kinking“, das heißt einem Abknicken des Ureters, sekundär eine Ureterabgangsstenose bedingen.

1.4 Inzidenz der Ureterabgangsstenose

Die Inzidenz der pränatal nachgewiesenen fetalen Fehlbildungen beträgt etwa 1 – 2 %, wovon rund 50 % den Urogenitaltrakt betreffen (Helin, 1986). Die Beurteilung des Urogenitaltraktes ist Teil der routinemäßig durchgeführten pränatalen Diagnostik und findet im zweiten und dritten Trimenon der Schwangerschaft statt.

Der vesikoureterale Reflux stellt die häufigste, die Ureterabgangsstenose die zweithäufigste renale Anomalie dar (Caiulo et al., 2012).

Eine Aufweitung des Nierenbeckenkelchsystems kann bei bis zu 1 % aller Neugeborenen sonographisch nachgewiesen werden (Masson et al., 2009), in 80 % wird diese durch das Vorliegen einer Ureterabgangsstenose verursacht. In etwa 20 % ist die Nierenbeckenektasie durch einen vesikoureteralen Reflux, einen primär obstruktiven
Megaureter oder aufgrund von Urethralklappen (sehr selten, nur Jungen betroffen) bedingt.
Beim Vorliegen einer sogenannten Nierenektopie, das heißt einer abnormalen Nierenposition aufgrund eines unvollständigen Nierenabszensus (Hautmann, 2006), wird die Inzidenz der Ureterabgangsstenose sogar mit 22 – 37 % beschrieben (Cerasaro et al., 1986).

1.5 Pathologie und Pathophysiologie

Bei Beurteilung der Hydronephrose muss zwischen fetaler und postnataler Niere differenziert werden, weil ungleiche Umgebungsbedingungen, wie Sauerstoffgehalt, Säure-Basen-Haushalt sowie renaler Blutfluss vorliegen. Im fetalen Modell ist das Alter des Feten sowie die Konstitution und Funktion der kontralateralen Niere
entscheidend für die Kompensationsmechanismen in Bezug auf die Nierenbeckenekstasie (Peters, 1995).

1.6 Befundspektrum der Ureterabgangsstenose

Insgesamt jedoch handelt es sich meist um Zufallsbefunde, bei einer Beschwerdesymptomatik werden überwiegend Schmerzen, gefolgt von Harnwegsinfektionen und Hämaturie genannt (Castillejos-Molina et al., 2006).

Rezidivierende Flankenschmerzen stehen häufig im Zusammenhang mit einer erhöhten Flüssigkeitszufuhr, welche zu einer temporären Volumenbelastung des Nierenbeckenkelchsystems führt (Smith et al., 2012).

Chronische Pyelonephritiden sowie rezidivierende Nierensteine können ebenfalls einen Hinweis auf das Vorliegen eines Abflusshindernisses in Form einer Ureterabgangsstenose darstellen.
2. Patienten und Methoden

2.1 Rekrutierung der Patienten

2.1.1 Kinderklinik

Jede Akte wurde auf ihre Haupt- sowie Nebendiagnosen überprüft und jedes Kind erfasst, welches als Diagnose eine Ureterabgangs- oder Uretermündungsstenose aufwies. Insgesamt traf dies auf 194 Patienten (8 % aller Patienten) zu (s. Abb. 1).

2.1.2 Nuklearmedizin

Des Weiteren wurde die Anzahl der durchgeführten Nierenfunktionsszintigraphien (99mTc-MAG3) ermittelt. Berücksichtigt wurden nur die in der Nuklearmedizin der Universitätsklinik Bonn bis Dezember 2009 durchgeführten Untersuchungen, bei denen die Kinder maximal 18 Jahre alt waren.

Es wurden zwei unterschiedliche Kameras verwendet:

1. Kamera E-CAM (Siemens): 48 Nierenfunktionsszintigraphien (01/04 - 12/09) bei Patienten < 18 J.
2. Kamera ELSCINT (Siemens): 220 Nierenfunktionsszintigraphien (5/03 - 12/09) bei Patienten < 18 J.

Insgesamt wurden 268 Nierenfunktionsszintigraphien durchgeführt (s. Abb. 1). Auf diesem Wege konnten 13 bislang unbekannte Patienten mit passender Diagnose aufgefunden werden. Die geringe Anzahl erklärt sich dadurch, dass der Großteil der Nierenfunktionsszintigraphien bereits erfassten Patientendaten zugeordnet werden konnte. Darüber hinaus gab es einige Kinder, die lediglich zur Durchführung der
Nierenfunktionsszintigraphie stationär aufgenommen wurden. Die Überweisung hierzu erfolgte jeweils durch ein externes Krankenhaus.

2.1.3 Urologie

![Diagramm](image)

2.1.4 Vorläufiges Patientenkollektiv

Abb. 2: Zusammensetzung des vorläufigen Patientenkollektivs. Darstellung des Rekrutierungsvorgangs

Um ein homogenes Patientenkollektiv zu gewährleisten, erfolgte die Definition von Ein- und Ausschlusskriterien sowie deren Anwendung wie folgt:

Einschlusskriterien:
- Erstvorstellung des Patienten in der Kinderklinik des UKB (1985 - 2010)
- Sonographisch diagnostizierte extrarenale Nierenbeckenweite > 12 mm
- Vorhandensein mindestens einer 99mTc-MAG3-Nierenfunktionsszintigraphie pro Patient, erstmalig durchgeführt bis zum 10. Lebensjahr

Ausschlusskriterien:
- Zusätzliche Anomalien des unteren Harntraktes (Doppelanlage, Hufeisenniere)
- Vesikoureteraler Reflux
- Subvesikale Obstruktion
- Uretermündungsstenose
- Nierendysplasie/-agenesie
- Nephrektomie
2.2 Untersuchungsmethoden

2.2.1 Sonographie

Im sogenannten B-Bild (B = Brightness; Helligkeit) wird die gemessene Echointensität in Form von verschiedenen Graustufen wiedergegeben (Wetzke et al., 2013) und die Darstellung von Bewegungen, wie zum Beispiel der Ureterperistaltik ermöglicht. Aufgrund der geringen Kosten, der einfachen und schnellen Durchführbarkeit sowie der fehlenden Strahlenbelastung, wird der Ultraschall routinemäßig in der pränatalen Diagnostik zur Erkennung von fetalen Malformationen angewendet (Helin, 1986) und grundsätzlich empfohlen (Zhang et al., 2011). Den Symptomenkomplex CAKUT betreffende Fehlbildungen können deswegen häufig bereits pränatal erkannt und falls erforderlich, weitere Diagnostik sowie operative Korrekturmaßnahmen frühzeitig geplant werden.

Durchführung:
Die morphologische Beurteilung der Niere und des Harntraktes erfolgte in Bauch- und Rückenlage des Patienten. Daraus resultierten unterschiedliche Angaben bezüglich der erfassten Parameter, weswegen in diesen Fällen der Mittelwert dokumentiert wurde.

Zunächst wurde die Niere aufgesucht und ihre Lage, Form und Größe (Länge, Breite, Tiefe; jeweils in cm) bestimmt. Des Weiteren wurde ein besonderes Augenmerk auf

Bei der statistischen Auswertung wurde neben den Größenmaßen der Niere jedoch ausschließlich der anterior-posterior Diameter berücksichtigt.

Abb. 3: Erfasste statistische Parameter im Rahmen der sonographischen Untersuchung (aus: AMWF (2002) Leitlinien: Diagnostik bei konnatalen Dilatationen der Harnwege.)
2.2.2 Nierenfunktionsszintigraphie

Die häufigste Indikationsstellung besteht bei Verdacht auf obstruktive Uropathien, einhergehend mit einem potenziell progressiven Verlust der Nierenfunktion (Russell et al., 1996).

Die Nierenfunktionsszintigraphie ermöglicht die Differenzierung zwischen einer funktionellen und einer obstruktiven Abflussstörung und ist wegweisend für die weitere Therapieplanung (Rogenhofer und Müller, 2011).

99mTc-MAG3-Nierenfunktionsszintigraphie

Seit 1990 wird in der nuklearmedizinischen Abteilung des Universitätsklinikums Bonn das Radiopharmakon 99mTc-MAG3 eingesetzt, welches 1986 an der Universität von Utah entwickelt worden ist. Zu den Vorteilen des Tracers, verglichen mit dem zuvor verwendeten J-123 OJH (Orthojodhippursäure), zählen neben der verminderten Strahlenbelastung bedingt durch eine kürzere Halbwertszeit, die bessere Bioverfügbarkeit und gesteigerte Bildqualität (Fritzberg et al., 1986).

Des Weiteren ermöglicht der Tracer auch eine kombinierte Durchführung einer Nierenperfusions- und Nierenfunktionsdiagnostik.

Indikation und Durchführung

Die Indikation zur Durchführung einer 99mTc-MAG3-Nierenfunktionsszintigraphie bestand bei einer sonographisch im Querschnitt erstmalig nachgewiesenen extrarenalen Nierenbeckenektasie von mindestens 12 mm. Grundsätzlich sollte die Indikation zur Nierenfunktionsszintigraphie nicht innerhalb des ersten Lebensmonats gestellt werden, da bei Neugeborenen die Nierenfunktion sowie das Tubulussystem noch nicht ausgereift sind und folglich ein vermindertes Ansprechen auf Furosemid vorliegen könnte (Piepsz, 2011).
Am Universitätsklinikum Bonn wird das F+30 Protokoll angewendet, das heißt, das harntreibende Furosemid wird 30 min nach Untersuchungsbeginn injiziert. Eine gewichtsadaptierte Flüssigkeitsgabe (10 ml/kg KG) 120 min vor Untersuchungsbeginn sowie während der Nierenfunktionsszintigraphie, gewährleistete eine ausreichende Hydratation. Kinder, die bereits ihr Miktionsverhalten kontrollieren konnten, wurden um die Entleerung ihrer Harnblase gebeten. Die Patienten wurden in eine liegende Position gebracht, sodass die Aufnahmen von dorsal getätigt wurden. Es folgte die intravenöse Injektion des Tracers (15 – 70 MBq, gewichtsadaptiert) als Bolus. Die verabreichte Dosis ist abhängig vom Alter des Patienten. Kinder unter einem Jahr erhalten 1 mg/kg KG, ältere Kinder 0,5 mg/kg KG. Gleichzeitig ereignete sich der Aufnahmestart. Innerhalb der ersten Minute wurde die Perfusionsphase dargestellt (1 Bild/s) und im Anschluss die Sequenzaufnahmen für weitere 29 min (1 Bild/10 s, entspricht 174 Bildern) aufgezeichnet. Bei nachgewiesener, verzögerter Exkretionsphase wurde Furosemid zur Differenzierung zwischen obstruktiver und funktioneller Abflussstörung injiziert. Es folgte die Bildakquisition für weitere 20 min (1 Bild/15 s, entspricht 80 Bildern). Die Auswertung wurde automatisch vorgenommen und seitentrennte Funktionskurven erstellt, anhand derer die Beurteilung der einzelnen Phasen (Perfusions-, Sekretions- und Exkretionsphase) durchgeführt wurde. Abbildung 4 zeigt eine Funktionskurve mit Normalbefund.
Kurvenverläufe

Abbildung 5 veranschaulicht die unterschiedlichen Kurvenverläufe der durchgeführten Nierenfunktionsszintigraphie. Sofern die detaillierten Informationen bezüglich des Ablusses vorlagen, wurde jede Nierenfunktionsszintigraphie anhand dieses Schemas einem Kurvenverlauf zugeordnet und analysiert.
Typ A: Prompte Elimination des Isotops innerhalb von 30 min. nach Applikation.
Typ B: Anstieg der Nuklidaktivität unbeeinflusst von der Furosemidapplikation.
Typ C: Prompte, weitgehende Elimination des Isotops unmittelbar nach Furosemidapplikation.
Typ D: Mäßiggradiger Nuklidabfluss nach Furosemidapplikation.

Laborwerte
Im Rahmen der Nierenfunktionsszintigraphie wurde bei jedem Patienten Blut entnommen und verschiedene Parameter, wie beispielsweise Kreatinin und Cystatin C im Serum bestimmt. Zur Beurteilung der Nierenfunktion gilt Cystatin C als wesentlich empfindlicherer Parameter als Kreatinin, besonders im sogenannten „kreatininblinden Bereich“ (GFR 40 – 80 ml/min), da es unabhängig von der Muskelmasse von allen kernhaltigen Zellen mit einer konstanten Rate produziert wird (Urbschat, 2011). So kann bereits eine leichte Verringerung der glomerulären Filtrationsrate nachgewiesen werden (Filler et al., 2002). Als Referenzwert für Kreatinin im Serum wurde
altersunabhängig 0,2 - 0,8 mg/dl verwendet. Bei Cystatin C muss der unzureichende Reifungsprozess der Nieren bei Säuglingen (< 1 J.) berücksichtigt werden (Finney et al., 2000; Randers und Erlandsen, 1999), welcher häufig mit höheren Werten im Serum einhergeht. Deswegen wird für die Nierenfunktionsszintigraphie bei Säuglingen für Cystatin C der Referenzbereich von 0,5 - 1,6 mg/dl verwendet. Für Kinder über einem Jahr gilt als Referenzbereich 0,5 - 0,96 mg/dl.

2.2.3 Miktionszystourethrogramm
Beim Miktionszystourethrogramm handelt es sich um ein radiologisches, kontrastmittelgestütztes Verfahren, welches dem Nachweis eines vesikoureteralen Refluxes dient.
Hierbei wird Kontrastmittel über einen Katheter in die Harnblase eingebracht und mittels Durchleuchtung der regelrechte Harnabfluss überprüft.
Zu den Indikationen zählen neben symptomatischen Harnwegsinfektionen, dem Verdacht auf eine infravesikale Obstruktion, auch die geplante Nierenbeckenplastik (AMWF: Leitlinien der Arbeitsgemeinschaft für Pädiatrische Nephrologie, 2002). Klinisch können die Patienten durch rezidivierende Harnwegsinfektionen auffallen, bei geringer Ausprägung liegt oftmals ein asymptomaticer Verlauf vor (Smellie, 1980).
Routinemäßig wurde bei allen Patienten ein Miktionszytoureterogramm durchgeführt. Ein positiver Refluxnachweis führte zum Ausschluss aus der Studie.

2.3 Dynamischer Nierenindex
\[
\text{Dynamischer Nierenindex} = \frac{\text{max. Nierenlänge}}{\text{max. NBW}} / \frac{\text{letzte Nierenlänge}}{\text{letzte NBW}}
\]

2.4 Therapie

2.4.1 Operative Korrektur nach Anderson-Hynes

Durchführung
2.4.2 Konservative Therapie

Ein konservativer Therapieversuch wurde eingeleitet, wenn in der Nierenfunktions-
szintigraphie der Nachweis einer funktionellen Ureterabgangsstenose, das heißt ein
Gesamtabfluss von mindestens 50 % nach Furosemidbelastung, erbracht werden
konnte.

Neben engmaschigen sonographischen Kontrollen wurden stets auch Urinuntersu-
chungen (Urinstatus und Urinkultur) veranlasst, um mögliche Harnwegsinfectionen
rasch erkennen und behandeln zu können.

Die Frequenz der durchgeführten Sonographien richtete sich nach dem individuellen
Verlauf. Die Patienten stellten sich jedoch mindestens einmal pro Jahr vor.

Bei Zunahme der Nierenbeckenektasie oder Persistenz einer ausgeprägten Dilatati-
on wurden die Untersuchungen in kürzeren Zeitintervallen durchgeführt und die Indi-
kation für eine erneute Nierenfunktionsszintigraphie zur Evaluation der Nieren-
funktion gestellt. Anhand dieser wurde der bisherige Therapieverlauf kritisch beurteilt
und interdisziplinär die Entscheidung für das weitere Vorgehen getroffen.
2.5 Statistische Auswertung

Die Daten wurden mittels SPSS Statistics 20 von der Firma IBM erfasst und zunächst deskriptiv ausgewertet. Es wurden jeweils Minimum, Maximum, Median, Mittelwert, Spannweite und Standardabweichung berechnet.

Zur Anonymisierung der Daten wurde zu Beginn jeder Niereneinheit ein numerischer Code zugewiesen, um dennoch Rückschlüsse auf Einzelfälle zu ermöglichen.

Für Vergleiche zwischen den einzelnen Gruppen wurde der t-Test für unabhängige Stichproben durchgeführt.

Für die Beurteilung des Therapieverlaufs innerhalb einer Gruppe, wie zum Beispiel der Nierenbeckentiefe sowie der Auswertung aufeinander folgender Nierenfunktionszintigraphien, wurde der t-Test für verbundene Stichproben angewendet.

Der Korrelationsnachweis zwischen präoperativer Nierenbeckentiefe und präoperativer Nierenpartialfunktion wurde anhand des Korrelationskoeffizienten nach Pearson erbracht.
3. Ergebnisse

3.1 Patientenkollektiv
Das durch die Rekrutierung gewonnene Patientenkollektiv, das heißt die erfassten Patienten vor Anwendung der Ein- und Ausschlusskriterien, bestand aus 225 Patienten. Hierbei konnten die erforderlichen Daten bei 194 Patienten aus der Kinderklinik, bei 13 Kindern aus der Nuklearmedizin und bei 18 Kindern aus der Urologie erhoben werden (s. Abschn. 2.1.4, Abb. 2).

3.2 Ausgeschlossene Patienten
Das vorläufige Patientenkollektiv wurde auf die Ein- sowie Ausschlusskriterien überprüft, was zu einer starken Dezimierung der Kohorte führte.

Abb. 7: Gründe für den Ausschluss der Patienten (n = 142) aus der Studie (in %)

Von den ursprünglich 225 Patienten wurden 142 (63 %) von der Studie ausgeschlossen. Abbildung 7 veranschaulicht die Gründe für den jeweiligen Ausschluss. Bei 45 Kindern (32 %) war die Nierenbeckenektasie geringer als 12 mm und demnach stand keine Indikation zur Durchführung einer Nierenfunktionsszintigraphie, welche als Einschlusskriterium festgelegt worden war. Es wurden nur die am Universitätskli-
nikum Bonn unter standardisierten Untersuchungsbedingungen durchgeführten Nierenfunktionsszintigraphien mit vollständigen Dokumentationsprotokollen berücksichtigt, weswegen weitere 28 Kinder (20 %) nicht an der Studie teilnehmen konnten. Bei diesen hatte die Untersuchung an externen Krankenhäusern stattgefunden oder es lag eine Abweichung im Untersuchungsvorgang bzw. dessen Auswertung vor. Beispielsweise konnte bei fünf Kindern die Nierenfunktionsszintigraphie aufgrund von frühzeitiger Furosemidgabe nicht ausgewertet werden. Bei 14 Kindern (10 %) bestand ein vesikoureteraler Reflux. Bei elf Kindern (8 %) lag eine Nierendysplasie/-agenesie vor, bei weiteren elf Kindern (8 %) wurde eine Doppelanlage bzw. Hufeisenniere nachgewiesen. Eine Nephrektomie wurde bei acht Kindern (6 %) im Behandlungsverlauf durchgeführt. Sieben Kinder (5 %) wurden am Universitätsklinikum Bonn lediglich zur Durchführung der Nierenplastik vorstellig, die Nachsorge erfolgte in einer externen Klinik. Weitere sechs Kinder (4 %) wurden ausschließlich postoperativ betreut, was ebenfalls zu einem Ausschluss aus der Kohorte führte.
Von den insgesamt 142 ausgeschlossenen Patienten wurde die Ureterabgangsstenose bei 45 Kindern (32 %) mittels Pyeloplastik nach Anderson-Hynes therapiert.

3.3 In die Auswertung eingeschlossene Patienten
Die festgelegten Ein- sowie Ausschlusskriterien bedingen eine Kohorte aus 83 Kindern mit diagnostizierter Ureterabgangsstenose, welche in 47 Fällen operativ und in 36 Fällen konservativ therapiert wurde.
Beis diesen 83 Patienten wurde zwischen 1990 und 2010 aufgrund einer sonographisch nachgewiesenen Nierenbeckenkelchsystemerweiterung von mindestens 12 mm eine Nierenfunktionsszintigraphie an der Universitätsklinik Bonn durchgeführt. Die Patienten waren zum Zeitpunkt der ersten Nierenfunktionsszintigraphie maximal zehn Jahre alt.
Tab. 1: Klinische Daten der in die Auswertung eingeschlossenen Patienten (n = 83) bei Erstvorstellung

<table>
<thead>
<tr>
<th>Alter</th>
<th>[Monate]</th>
<th>12,5 ± 29 (Median 1,5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td>Männl./Weibl.</td>
<td>59/24</td>
</tr>
<tr>
<td>Körpergröße</td>
<td>[cm]</td>
<td>63,2 ± 22,7 (Median 54)</td>
</tr>
<tr>
<td>Körpergewicht</td>
<td>[kg]</td>
<td>7,2 ± 7,4 (Median 4,6)</td>
</tr>
<tr>
<td>Blutdruck Sys.</td>
<td>[mmHg]</td>
<td>98,1 ± 13,5 (Median 97,5)</td>
</tr>
<tr>
<td>Blutdruck Dia.</td>
<td>[mmHg]</td>
<td>57,6 ± 12,3 (Median 58)</td>
</tr>
</tbody>
</table>

Tabelle 1 zeigt neben der Geschlechterverteilung die metrischen Daten des Patientenkollektivs. Jungen sind 2,5 Mal häufiger vertreten als Mädchen. Die Erstvorstellung fand im Mittel im Alter von 1,5 Monaten statt.

Tab. 2: Klinische Daten der in die Auswertung eingeschlossenen Patienten (n = 83) bei der letzten Sonographie

<table>
<thead>
<tr>
<th>Alter</th>
<th>[Jahre]</th>
<th>7,2 ± 4,8 (Median 6,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td>Männl./Weibl.</td>
<td>59/24</td>
</tr>
<tr>
<td>Körpergröße</td>
<td>[cm]</td>
<td>118,7 ± 31,1 (Median 117)</td>
</tr>
<tr>
<td>Körpergewicht</td>
<td>[kg]</td>
<td>26,6 ± 18,3 (Median 21,2)</td>
</tr>
<tr>
<td>Blutdruck Sys.</td>
<td>[mmHg]</td>
<td>109,6 ± 13,9 (Median 109)</td>
</tr>
<tr>
<td>Blutdruck Dia.</td>
<td>[mmHg]</td>
<td>64 ± 8,7 (Median 65)</td>
</tr>
</tbody>
</table>

Die metrischen Daten zum Zeitpunkt bei der letzten Sonographie finden sich in Tabelle 2. Hier waren die Patienten im Mittel 6,1 Jahre alt.

3.3.1 Niereneinheit

Bei sieben (8 %) der 83 Patienten lag eine beidseitige Anomalie vor. Vier Patienten zeigten eine beidseitige Ureterabgangsstenose, die in allen Fällen konservativ therapiert wurde. Bei einem Patienten war die operative Intervention beider Niereneinheiten und bei zwei Patient jeweils einseitig indiziert. In der weiteren Arbeit wird jede Niere mit Ureterabgangsstenose als eigenständige Niereneinheit betrachtet. Folglich resultiert eine Kohorte aus insgesamt 90 Niereneinheiten (s. Tab. 3).
Tab. 3: Betrachtung jeder Ureterabgangstenose als eigenständige Niereneinheit

<table>
<thead>
<tr>
<th>76 Pat. mit einseitiger UAS</th>
<th>76 NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Pat. mit beidseitiger UAS, konservativ</td>
<td>8 NE</td>
</tr>
<tr>
<td>1 Pat. mit beidseitiger UAS, auf beiden Seiten operative Korrektur</td>
<td>2 NE</td>
</tr>
<tr>
<td>2 Pat. mit beidseitiger UAS, auf einer Seite operative Korrektur</td>
<td>4 NE</td>
</tr>
</tbody>
</table>

| 83 Patienten | 90 Niereneinheiten |

3.3.2 Sonographische Befunde

Mittels Sonographie wurde für jede Niereneinheit (n = 90) die Nierenlänge und die extrarenale Nierenbeckenweite im Querschnitt bestimmt. In der Auswertung wurden jeweils die erste Untersuchung, der maximale erreichte Wert der Nierenbeckenweite sowie die Ergebnisse der letzten Sonographie berücksichtigt. Bei Vorhandensein mehrerer Aufnahmen wurde der metrische Mittelwert gebildet. Die Anzahl der tatsächlich ausgewerteten Sonographien ist um ein Vielfaches höher.
Abbildung 8 zeigt die Nierenlänge in Abhängigkeit vom Zeitpunkt der Sonographie. Bei Erstuntersuchung war jede Niere durchschnittlich 6,6 cm (Median: 6,2 cm) lang. Bei einer Niere konnte die Länge nicht ermittelt werden. Zum Zeitpunkt der maximalen Ausprägung lag mit durchschnittlich 9,1 cm (Median: 9 cm) eine signifikant (p < 0,001) größere Niere als bei Erstuntersuchung vor. Bei der zuletzt durchgeführten Sonographie hatte jede Niere mit durchschnittlich 9 cm (Median: 8,9 cm) eine nahezu identische Länge wie zum Zeitpunkt der maximalen Ausprägung.

Abb. 8: Übersicht über die Nierenlänge im Verlauf. ★★★ zeigt, dass zum Zeitpunkt der maximalen Ausprägung sowie bei der letzten Sonographie eine hoch signifikante (p < 0,001) größere Niere vorlag als bei der Erstuntersuchung.
Nierenbeckenkelchsystemektasie

Bei Erstuntersuchung lag bei jeder Niereneinheit durchschnittlich eine Dilatation des extrarenalen Nierenbeckens von 15,5 mm (Median 13 mm) vor. Die Spannweite der Ektasie reicht von 1 mm bis 50 mm. Eine signifikante Zunahme (p < 0,001) findet sich zum Zeitpunkt der maximalen Nierenbeckenektasie. Durchschnittlich fand sich eine extrarenale Nierenbeckenweite von 22 mm (Median 20 mm), bei jeder Niereneinheit von mindestens 12 mm. Bei der letzten Sonographie bestand durchschnittlich noch eine Aufweitung des extrarenalen Nierenbeckens von 9,5 mm (Median: 9 mm) und damit signifikant weniger (p < 0,001) als bei Erstuntersuchung und zum Zeitpunkt der maximalen Ausprägung (s. Abb. 9).

Abb. 9: Übersicht über die extrarenale Nierenbeckenweite während des Therapieverlaufs. *** zeigt, dass zum Zeitpunkt der maximalen Ektasie sowie bei der letzten Sonographie eine hoch signifikant kleinere (p < 0,001) extrarenale Nierenbeckenweite vorlag als bei der Erstuntersuchung.
3.3.3 Szintigraphische Befunde

Insgesamt wurden 155 Nierenfunktionsszintigraphien ausgewertet, davon 66 Nierenfunktionsszintigraphien in der primär operierten Gruppe, 33 in der sekundär operierten Gruppe und 56 Nierenfunktionsszintigraphien in der konservativen Gruppe. In 16 Fällen (10 %) konnte auf eine Furosemidgabe verzichtet werden, da am Ende des Nativszintigramms, das heißt 30 min nach Untersuchungsbeginn, durchschnittlich bereits 70,1 % des Tracers eliminiert worden war.

Tab. 4: Auswertung der ersten Nierenfunktionsszintigraphie für das gesamte Patientenkollektiv (n = 90)

<table>
<thead>
<tr>
<th></th>
<th>Mittelwert ± SD</th>
<th>Spannweite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abfluss im Nativszintigramm (in %)</td>
<td>17,8 ± 23,8</td>
<td>(0 – 87)</td>
</tr>
<tr>
<td>Abfluss 20 min nach Furosemid (in %)</td>
<td>47,8 ± 26,9</td>
<td>(0 – 91,2)</td>
</tr>
<tr>
<td>Gesamtabfluss (in %)</td>
<td>53,5 ± 59,5</td>
<td>(0 – 93)</td>
</tr>
<tr>
<td>Nierenpartialfunktion (in %)</td>
<td>45,4 ± 11,3</td>
<td>(0 – 71)</td>
</tr>
</tbody>
</table>

Tabelle 4 veranschaulicht, dass bei der ersten Nierenfunktionsszintigraphie am Ende des Nativszintigramms, das heißt vor Injektion des harntreibenden Furosemids, durchschnittlich 17,8 % des Tracers abgeflossen sind. 20 min nach Furosemidapplikation waren es durchschnittlich etwas weniger als 50 %, was als Schwellenwert zur Differenzierung zwischen funktioneller und obstruktiver Stenose gilt. Der Gesamtabfluss gibt den absoluten prozentualen Abfluss bei Untersuchungsende an. Es handelt sich hier um den kumulativen Wert aus dem jeweils prozentualen Abfluss im Nativszintigramm und nach Furosemidinjektion (s. Tab. 4).

Gesamtabfluss (in %) = %-Abfluss im Nativszintigramm + (1 - %-Abfluss im Nativszintigramm) x %-Abfluss nach Furosemidbelastung

3.3.4 Therapieform

Von 90 Niereneinheiten war bei 48 Niereneinheiten (53 %) eine operative Therapie indiziert. Als OP-Indikation galt ein szintigraphisch nachgewiesener, unzureichender Harnabfluss von weniger als 50 % 20 min nach intravenöser Furosemidapplikation.
3.3.5 Gruppeneinteilung

Die im Behandlungsverlauf durchgeführten Interventionen führten zu einer Einteilung der Patienten in drei verschiedene Gruppen:

1. Primär operierte Gruppe, das heißt, die OP-Indikation wurde nach der ersten 99mTc-MAG3 Nierenfunktionsszintigraphie gestellt.
2. Sekundär operierte Gruppe, das heißt, die OP-Indikation wurde nach Durchführung von mindestens zwei Nierenfunktionsszintigraphien gestellt.
3. Konservative Gruppe, das heißt, eine operative Intervention ist nicht erfolgt.

Bei 37 Niereneinheiten (41 %) wurde die OP-Indikation bereits nach der ersten Nierenfunktionsszintigraphie gestellt, bei den übrigen elf Niereneinheiten (12 %) wurde zunächst ein konservativer Therapieversuch eingeleitet. Im Therapieverlauf wurde aufgrund von einer persistierenden Nierenbeckenerweiterung erneute Nierenfunktionsszintigraphien durchgeführt und darauffolgend eine operative Korrektur in weiteren elf Fällen eingeleitet. 42 Niereneinheiten wurden bei nachgewiesenen, suffizienten Abflussverhältnissen konservativ behandelt (s. Abb. 10).
3.3.6 Verlaufsbeobachtung

Abb. 11: Übersicht über die Dauer der Verlaufsbeobachtung der einzelnen Gruppen

Abbildung 11 veranschaulicht die gruppenspezifischen Medianwerte der Therapedauer. Durchschnittlich wurde die Entwicklung der Niereneinheiten in der primär operierten Gruppe 6,6 J. (± 0,82 J.; Median 5,8 J.), die der sekundär operierten Niereneinheiten 6,8 J. (± 1,1 J., Median 5,8 J.) und die der konservativ behandelten Niereneinheiten 5,3 J. (± 0,6 J., Median 4,8 J.) lang evaluiert.

Ein signifikanter Unterschied zwischen den Gruppen bestand nicht (p > 0,05). Bei vier primär operierten Niereneinheiten (4 %) wurde die postoperative Nachbehandlung aufgrund von individuellen sowie logistischen Gründen durch externe Krankenhäuser fortgeführt. In der Gruppe der Konservativen wurde die Therapie von fünf Niereneinheiten (6 %) nach einer Therapiedauer von weniger als einem Jahr auswärtsig fortgesetzt. Die Entwicklung der übrigen 81 Niereneinheiten (90 %) blieb mindestens ein Jahr unter weiterer Beobachtung.
3.4 Befunde in Abhängigkeit von der Therapieform

3.4.1 Primär operierte Gruppe – Gruppe 1

Bei 37 Niereneinheiten wurde die erste Nierenfunktionsszintigraphie im Mittel mit 1,5 Jahren (18,2 Mon.) durchgeführt. Im Alter von 1,7 Jahren, das heißt durchschnittlich 2,1 Monate (Median: 1,4 Mon.) nach Auswertung der ersten Nierenfunktionsszintigraphie, folgte die operative Korrektur mittels Pyeoplastik nach Anderson-Hynes (s. Tab. 5).

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>Männl./Weibl.</th>
<th>14/23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokalisation der UAS</td>
<td>re./li.</td>
<td>20/17</td>
</tr>
<tr>
<td>Alter bei Erstvorstellung</td>
<td>[Monate]</td>
<td>16,1 ± 35</td>
</tr>
<tr>
<td>Alter bei 1. MAG3</td>
<td>[Monate]</td>
<td>18,2 ± 35,3</td>
</tr>
<tr>
<td>Alter bei OP</td>
<td>[Monate]</td>
<td>20,2 ± 35</td>
</tr>
<tr>
<td>Alter bei letztem Sono</td>
<td>[Monate]</td>
<td>94,8 ± 61,2</td>
</tr>
<tr>
<td>Dauer: MAG3 bis OP</td>
<td>[Monate]</td>
<td>2,1 ± 2,7</td>
</tr>
</tbody>
</table>

Tabelle 6 zeigt die metrischen Daten der primär operierten Niereneinheiten (n = 37).

<table>
<thead>
<tr>
<th>Körpergröße</th>
<th>[cm]</th>
<th>65,8 ± 27</th>
<th>124,5 ± 32,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Körpergewicht</td>
<td>[kg]</td>
<td>7,7 ± 8,6</td>
<td>30,4 ± 22,5</td>
</tr>
<tr>
<td>Blutdruck Sys.</td>
<td>[mmHg]</td>
<td>99,3 ± 12,5</td>
<td>113,8 ± 16,5</td>
</tr>
<tr>
<td>Blutdruck Dia.</td>
<td>[mmHg]</td>
<td>58,4 ± 12,8</td>
<td>64,8 ± 8,6</td>
</tr>
</tbody>
</table>
3.4.1.1 Sonographische Befunde – Gruppe 1

Entwicklung der Nierenbeckenweite während des Therapieverlaufs

Abb. 12: Übersicht über die gemessenen Nierenbeckenweite der Gruppe 1. ★★★ zeigt eine hoch signifikante Veränderung mit p < 0,001

In der primär operierten Gruppe wurden ebenfalls die Mittel- und Medianwerte der unterschiedlichen Messungen verglichen (s. Abb. 12). Zum Zeitpunkt der ersten Untersuchung bestand durchschnittlich eine Ektasie des extrarenalen Nierenbeckens von 20,1 mm (Median 19 mm) mit einer Spannweite von 5 - 50 mm. Im weiteren Verlauf kam es zu einer hoch signifikanten Zunahme der Nierenbeckenweite (p < 0,001). Hierbei betrug der Mittelwert 26,1 mm (Median 23 mm) bei einer Spannweite von 12,5 - 50,2 mm. Anschließend erfolgte die operative Korrektur der Ureterabgangsstenose.
In der letzten Untersuchung bestand noch eine Restekstasie von durchschnittlich 9,5 mm (Median 9,5 mm) mit einer Spannweite von 1 - 22 mm. Verglichen mit der maximal gemessenen Nierenbeckenweite kam es zu einer hoch signifikanten (p < 0,001) Abnahme der Nierenbeckenweite um 65 %.

Darüber hinaus bestand zum Zeitpunkt der letzten Untersuchung eine signifikant (p < 0,001) geringere Nierenbeckenekstasie als bei der ersten Untersuchung. In nur zwei Fällen bestand zum Zeitpunkt der letzten Messung eine minimal größere Nierenbeckenweite als bei der ersten Untersuchung. Hier wurde bei der ersten Sonographie eine milde Nierenbeckenekstasie von 5 bzw. 6 mm erfasst. Auch präoperativ zeigte sich mit 13 bzw. 12,5 mm eine eher milde Dilatation des Nierenbeckens, wohingegen sich in der Nierenfunktionsszintigraphie eine signifikante Abflussstörung zeigte (Gesamtabfluss von 41,4 % bzw. 44,4 %). In der letzten Nierenfunktionsszintigraphie wurde in beiden Fällen eine prompte Nuklidelimination bereits im Nativszintigramm, das heißt ohne Furosemidbelastung, nachgewiesen. Bei der abschließenden Sonographie bestand noch eine Restekstasie von 6 bzw. 7 mm.

Unterschiede zwischen Jungen (n = 23) und Mädchen (n = 14)

Zu jedem Messzeitpunkt bestand bei den Jungen eine durchschnittlich größere Ekstasie des Nierenbeckens als bei den Mädchen. Bei der ersten Untersuchung betrug diese 20,8 mm (Median 20 mm) bei den männlichen Patienten und 19 mm (Median 18 mm) bei den weiblichen Patientinnen.

Ein signifikanter Unterschied zeigte sich bei der Erfassung der maximalen Nierenbeckenweite. Während bei den Mädchen im Mittel eine Nierenbeckenweite von 21,6 mm (Median 20,3 mm) nachgewiesen wurde, konnte bei den Jungen mit 28,8 mm (Median 25 mm) eine signifikant größere (p = 0,038) Nierenbeckenweite gefunden werden.

Mithilfe der letzten Sonographie konnte sowohl bei den Jungen (im Mittel 10,1 mm, Median 10 mm) als auch bei den Mädchen (im Mittel 8,4 mm, Median 9 mm) eine hoch signifikant kleinere Nierenbeckenweite (p < 0,001) als bei Therapiebeginn festgestellt werden, eine geschlechtsspezifische Signifikanz blieb aus (p > 0,05).
Veränderung der Nierenbeckenweite im Behandlungsverlauf – Gruppe 1

Abb. 13: Übersicht über die Veränderung der Nierenbeckenweite (jeweils n = 37) im Behandlungsverlauf

Das Balkendiagramm 13 spiegelt die Entwicklung der Nierenbeckenweite während der Therapie wider. Während zu Beginn der Therapie lediglich bei vier Niereneinheiten (11 %) eine Nierenbeckenweite von weniger als 12 mm bestand, war dies bei der letzten Untersuchung bei 88,4 % der Niereneinheiten der Fall. Dies bedeutet eine Steigerung von 11 % auf 88 %. Zum Zeitpunkt der maximalen Ektasie wurde bei 23 Niereneinheiten (62 %) eine Nierenbeckenweite größer als 20 mm diagnostiziert, eine solch starke Dilatation des Nierenbeckens kam bei der letzten Sonographie nur bei zwei Niereneinheiten (5 %) vor. Damit unterstreicht Abbildung 13 den progredienten Rückgang der Nierenbeckenektasie nach operativer Korrektur der Ureterabgangsstenose.
Abbildung 14 zeigt die Entwicklung der Nierenbeckenweite nach operativer Korrektur der Ureterabgangstenose. Es konnte ein hoch signikanter Rückgang ($p < 0,001$) der Nierenbeckenweite von durchschnittlich 24,8 mm (Median 23 mm) präoperativ auf 12,4 mm (Median: 12 mm) postoperativ erreicht werden. Folglich konnte die Nierenbeckenweite durch die Operation halbiert werden. Die Angabe der Untersuchungsposition wurde bei den prä- und postoperativen Aufnahmen notiert, ein Einfluss auf die erfassten Parameter fand sich nicht.

Auffallend war eine unterschiedliche Ausprägung der Nierenbeckenweite zwischen den Geschlechtern. Bei den Jungen ($n = 23$) betrug die durchschnittliche Nierenbeckenweite präoperativ 27 mm, bei den Mädchen ($n = 14$) 21,2 mm. Auch postope-
rativ war das Nierenbecken mit 13,6 mm bei den männlichen Patienten stärker dilatiert als bei den weiblichen mit 10,4 mm. Ein signifikanter Unterschied bestand nicht (p > 0,05).

In der obigen Abbildung 14 finden sich sowohl präoperativ (NE Nr. 2 und 22) als auch postoperativ (NE Nr. 7 und 22) jeweils zwei Fälle, die als Ausreißer gekennzeichnet sind.

Im Fall der Niereneinheit Nr. 2 bestand präoperativ ein massiv dilatiertes Nierenbecken mit einer extrarenalen Weite von 50 mm. In der ersten postoperativen sonographischen Kontrolle konnte kein erweitertes Nierenbecken mehr nachgewiesen werden (NBW = 1 mm). Auch im Fall der Niereneinheit Nr. 22 fand sich präoperativ ein sehr stark dilatiertes Nierenbecken (NBW = 46 mm), welches sich postoperativ auf 30 mm verkleinerte. Die Niereneinheit Nr. 7 weist mit 32 mm postoperativ die zunächst größte extrarenale Nierenbeckenweite auf, welche präoperativ 42 mm betragen hatte. Im weiteren Verlauf ereignete sich eine progrediente Befundverbesserung.

![Graphik]

Abb. 15: Übersicht über prä- sowie postoperativen extrarenalen Nierenbeckenweite (jeweils n = 37). ★★★ zeigt, dass postoperativ bei hoch signifikant (p < 0,001) weniger Niereneinheiten eine Nierenbeckenweite zwischen 21 und 30 mm vorlag.

Der hochsignifikante Rückgang der Nierenbeckenweite aufgrund der operativen Korrektur wurde bereits beschrieben. Abbildung 15 gibt weitere Einblicke, wie sich die Verteilung der Nierenbeckenweite verändert hat. Während präoperativ 14 Niereneinheiten (38 %) eine Nierenbeckenweite von 12 – 20 mm, 15 Niereneinheiten (41 %) größer als 31 mm aufwiesen, bestand postoperativ nur bei zwei Niereneinheiten
(6 %) noch eine Nierenbeckenweite von über 20 mm. Bei keiner Niereneinheit fand sich postoperativ eine massive Nierenbeckenektasie über 40 mm. Demnach wurde präoperativ bei jeder Niereneinheit eine Nierenbeckenweite von mindestens 12 mm diagnostiziert, postoperativ fand sich bei 18 Niereneinheiten (48 %) hingegen eine Nierenbeckenweite kleiner als 12 mm.

Nierenlänge – Gruppe 1
Neben der Nierenbeckenweite erfolgte stets auch die Erfassung der entsprechenden Nierenlänge, jeweils zum Zeitpunkt der ersten Sonographie, der maximalen Ausprägung und der letzten Untersuchung. Bei der ersten Sonographie war die Niere mit durchschnittlich 6,8 cm signifikant kleiner (p < 0,001) als zum Zeitpunkt der maximalen Ausprägung bzw. letzten Untersuchung (s. Abb. 16).

Abb. 16: Nierenlängen der primär operierten Gruppe (n = 37). ★★★ zeigt, dass bei der ersten Sonographie eine hoch signifikant (p < 0,001) geringere Nierenlänge erfasst wurde als zum Zeitpunkt der maximalen Ausprägung bzw. der letzten Sonographie

Dynamischer Nierenindex – Gruppe 1
Mit Hilfe der nachfolgenden Formel wurde der dynamische Nierenindex berechnet:

\[
\text{Dynamischer Nierenindex} = \frac{\text{max. Nierenlänge}}{\text{max. NBW}} / \frac{\text{letzte Nierenlänge}}{\text{letzte NBW}}
\]
Tab. 7: Übersicht über die Werte des dynamischen Nierenindexes der Gruppe 1 (n = 37)

<table>
<thead>
<tr>
<th>Mittelwert</th>
<th>0,40 ± 0,20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>0,37</td>
</tr>
<tr>
<td>Spannweite</td>
<td>0,05 – 0,79</td>
</tr>
</tbody>
</table>

Der Mittelwert des berechneten dynamischen Nierenindex beträgt 0,4 (Median 0,37), das heißt, unter Berücksichtigung des Nierenwachstums kam es zu einer durchschnittlichen Reduktion der Nierenbeckenektasie um 60 %. Die Spannweite reicht von 0,05 - 0,79 (s. Tab. 7). Daraus lässt sich ableiten, dass bei jeder Niereneinheit ein Rückgang des dynamischen Nierenindex um mindestens 21 % nachgewiesen werden konnte.

3.4.1.2 Szintigraphische Befunde – Gruppe 1

An der Bonner Universitätsklinik werden die Nierenfunktionsszintigraphien nach dem F+30 Protokoll durchgeführt. Das bedeutet, dass das Diuretikum Furosemid 30 min nach Untersuchungsbeginn intravenös injiziert und das Abflussverhalten des Isotops für weitere 20 min dynamisch erfasst wird.

Als szintigraphisch apparente Abflussstörung wurde eine Auswaschung des Isotops von weniger als 50 % 20 min nach Furosemidbelastung definiert.

Bei den primär operierten Niereneinheiten (n = 37) wurden 66 Szintigraphien, das heißt durchschnittlich 1,8 MAG3/NE, ausgewertet. Bei 14 Niereneinheiten lag nur eine Untersuchung zur Auswertung vor. Aufgrund der postoperativ deutlich regredienten Nierenbeckenweite konnte auf eine weitere Nierenfunktionsszintigraphie verzichtet werden.

Zum Zeitpunkt der ersten Nierenfunktionsszintigraphie waren die Kinder durchschnittlich 1,5 J. (Median 0,15 J.) alt.

Gesamtabfluss in der Nierenfunktionsszintigraphie – Gruppe 1

In der ersten Nierenfunktionsszintigraphie zeigte sich ein durchschnittlicher Gesamtabfluss von 28,1 ± 4% (Median: 31,5 %). Bei vier Niereneinheiten war die Untersuchung in einem externen Krankenhaus durchgeführt und dort die Indikation zur

Nierenpartialfunktion – Gruppe 1

Abb. 17: Veränderung der Nierenpartialfunktion durch operative Intervention (n = 23) der Gruppe 1. ★★ zeigt, dass postoperativ eine signifikant (p = 0,001) größere Nierenpartialfunktion vorlag

Bei 23 Niereneinheiten lag neben der obligaten präoperativen Nierenfunktionsszintigraphie ebenfalls eine postoperative Nierenfunktionsszintigraphie vor, welche es ermöglicht, die Veränderung der Nierenpartialfunktion zu beurteilen (s. Abb. 17). Während präoperativ im Mittel eine Nierenpartialfunktion von 34,6 % (± 2,6 %) und damit eine unterdurchschnittliche Nierenpartialfunktion vorlag, konnte postoperativ ein hoch signifikanter (p = 0,001) Anstieg der Nierenpartialfunktion um ca. 8,3 % (absolut) auf 42,9 % (± 1,8 %) nachgewiesen werden.

Tab. 8: Einzelwerte der Nierenpartialfunktion der primär operierten Gruppe (n = 23)

<table>
<thead>
<tr>
<th>Fallnummer</th>
<th>Jahr (prä)</th>
<th>NPF (prä)</th>
<th>Jahr (post)</th>
<th>NPF (letzte)</th>
<th>Veränderung (absolut)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2007</td>
<td>0</td>
<td>2011</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>8</td>
<td>1994</td>
<td>41</td>
<td>2000</td>
<td>45</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1998</td>
<td>18</td>
<td>1999</td>
<td>51</td>
<td>33</td>
</tr>
</tbody>
</table>
In Abbildung 17 wurde jeweils die erste postoperativ durchgeführte Nierenfunktions-
 szintigraphie berücksichtigt, wohingegen in Tabelle 8 die entsprechend aktuellste
 Szintigraphie ausgewertet wurde.

Zwischen der präoperativ und zuletzt angefertigten Nierenfunktionsszintigraphie sind
 im Mittel 3,5 J. (± 3,9 J.) vergangen. In diesem Zeitraum ist bei den 23 Niereneinhei-
 ten die Nierenpartialfunktion durchschnittlich von 34,6 % signifikant (p < 0,001) auf
 42,6 % angestiegen. Bei vier Niereneinheiten kam es postoperativ zu einer Abnahme
 der Nierenpartialfunktion, wobei bei Fallnummer 25 präoperativ eine supranormale
 Nierenpartialfunktion vorlag und somit die Abnahme der Nierenpartialfunktion eine
 Befundnormalisierung darstellt. Fallnummer 45 und 46 ermöglichen mit 17 bzw. 11 J.

In Abhängigkeit von der jeweiligen Patienten-ID und dem Jahr wurden die Nierenfunktions-
 szintigraphien ausgewertet. Die Tabelle beinhaltet die Indikationen, die Jahre der
 Untersuchungen und die beteiligten Niereneinheiten.
zwischen der ersten und letzten Nierenfunktionsszintigraphie eine sehr lange Verlaufsbeurteilung.

In Fall Nr. 45 handelt es sich um eine Niereneinheit, die bereits 1988 operativ versorgt wurde. Präoperativ lag hier eine szintigraphisch relevante Abflussstörung mit einer verminderten Nierenpartialfunktion von 39 % vor. Postoperativ wurde 1993 zunächst ein Anstieg der Nierenpartialfunktion auf 50 % ermittelt, eine erneute Kontrolle im Jahr 2005 zeigte jedoch eine verminderte Nierenpartialfunktion von 36 %.

Bei Niereneinheit Nr. 46 lag präoperativ eine mit 21 % stark verminderte Nierenpartialfunktion vor, welche sich postoperativ auf 18 % verringerte. Es wurde eine funktionslose Niere diagnostiziert.

Während präoperativ bei 13 Niereneinheiten (57 %) eine verminderte ipsilaterale Nierenfunktion (NPF < 40 %) vorlag, war dies zum Zeitpunkt der letzten Szintigraphie noch bei acht Niereneinheiten (35 %) der Fall. Lediglich vier Niereneinheiten wiesen zum Zeitpunkt der ersten Nierenfunktionsszintigraphie eine normale Nierenpartialfunktion über 45 % auf, in der letzten Untersuchung war dies bei elf Niereneinheiten (48 %) der Fall.

Korrelation zwischen präoperativer Nierenbeckenweite und Nierenpartialfunktion – Gruppe 1

In der Gruppe der primär Operierten (n = 37) ließ sich eine signifikante negative Korrelation (r = -0,49) zwischen präoperativer Nierenbeckenweite und Nierenpartialfunktion errechnen. Das bedeutet, je größer die präoperative Nierenbeckenweite, desto geringer die Nierenpartialfunktion der betroffenen Seite (s. Abb. 18). Das Ausmaß der Nierenbeckenektasie korrelierte demnach mit einer verminderten Nierenpartialfunktion.
Abb. 18: Signifikante Korrelation (p = 0,01) zwischen präoperativer Nierenbeckenweite und Nierenpartialfunktion der Gruppe 1. Es lässt sich r = -0,49 und damit ein signifikanter Zusammenhang errechnen, das Diagramm zeigt R^2

Korrelation zwischen Nierenpartialfunktion und dynamischem Nierenindex – Gruppe 1

Bei der Berechnung des dynamischen Nierenindexes wurde die Nierenlänge und die Nierenbeckenweite dynamisch, das heißt unter Berücksichtigung der sich während Therapieverlaufes verändernden Werte, miteinander verglichen. Um auch bei der Nierenfunktion eine sogenannte dynamische Nierenpartialfunktion zu ermöglichen, wurde hierbei die Differenz der post- und präoperativ ermittelten Nierenpartialfunktion verwendet. Es zeigt sich eine signifikante (p = 0,048), negative Korrelation (r = -0,419). Das bedeutet, je größer der postoperative Anstieg der Nierenpartialfunktion, desto kleiner der dynamische Nierenindex (s. Abb. 19). Der dynamische Nieren-
index repräsentiert den Rückgang der Nierenbeckenektasie unter Berücksichtigung des Nierenlängenwachstums.

Abb. 19: Signifikante Korrelation (p = 0.048) zwischen dynamischem Nierenindex und dynamischer Nierenpartialfunktion der Gruppe 1. Es lässt sich r = -0.419 und damit ein signifikanter Zusammenhang errechnen, das Diagramm zeigt R²
Analyse der Kurvenverläufe – Gruppe 1

Die Auswertung der Nierenfunktionsszintigraphien erfolgte nach O'Reilly (s. Abschn. 2.2.2).

Präoperativ lagen 34 Nierenfunktionsszintigraphien mit detailliertem Kurvenverlauf zur Auswertung vor (s. Abb. 20), bei den übrigen drei Niereneinheiten bestanden auswärtig durchgeführte Nierenfunktionsszintigraphien, welche eine szintigraphisch bestätigte, obstruktive Abflussstörung beschrieben. Postoperativ konnte bei 13 Niereneinheiten aufgrund von einer deutlich rückläufigen Nierenbeckenweite auf die Durchführung einer weiteren Szintigraphie verzichtet werden, um eine unnötige Strahlenbelastung des Kindes zu vermeiden.

Präoperativ (n = 34) wurde bei neun Niereneinheiten (27 %) trotz Furosemidgabe kein Abfluss (Typ B) und bei 22 Niereneinheiten (65 %) ein lediglich unzureichender Abfluss (Typ D, < 50 % 20 min nach Furosemidgabe) nachgewiesen. Des Weiteren fand sich bei zwei Niereneinheiten eine unmittelbare Elimination des Isotops nach Furosemidgabe (Typ C), die Indikation zur operativen Korrektur wurde in diesen Fällen aufgrund der stark reduzierten Nierenpartialfunktion (jeweils 29 %) gestellt. Die Halbwertszeit nach Furosemid betrug in diesen zwei Fällen < 10 min (s. Tab. 9). Aufgrund eines sehr unruhigen Kindes musste bei einer Niereneinheit die Szintigraphie vorzeitig abgebrochen werden, eine Elimination des Isotops erfolgte bis dahin nicht.

Abb. 20: Kurvenverläufe prä- und postoperativ der primär operierten Gruppe

Präoperativ lagen 34 Nierenfunktionsszintigraphien mit detailliertem Kurvenverlauf zur Auswertung vor (s. Abb. 20), bei den übrigen drei Niereneinheiten bestanden auswärtig durchgeführte Nierenfunktionsszintigraphien, welche eine szintigraphisch bestätigte, obstruktive Abflussstörung beschrieben. Postoperativ konnte bei 13 Niereneinheiten aufgrund von einer deutlich rückläufigen Nierenbeckenweite auf die Durchführung einer weiteren Szintigraphie verzichtet werden, um eine unnötige Strahlenbelastung des Kindes zu vermeiden.

Präoperativ (n = 34) wurde bei neun Niereneinheiten (27 %) trotz Furosemidgabe kein Abfluss (Typ B) und bei 22 Niereneinheiten (65 %) ein lediglich unzureichender Abfluss (Typ D, < 50 % 20 min nach Furosemidgabe) nachgewiesen. Des Weiteren fand sich bei zwei Niereneinheiten eine unmittelbare Elimination des Isotops nach Furosemidgabe (Typ C), die Indikation zur operativen Korrektur wurde in diesen Fällen aufgrund der stark reduzierten Nierenpartialfunktion (jeweils 29 %) gestellt. Die Halbwertszeit nach Furosemid betrug in diesen zwei Fällen < 10 min (s. Tab. 9). Aufgrund eines sehr unruhigen Kindes musste bei einer Niereneinheit die Szintigraphie vorzeitig abgebrochen werden, eine Elimination des Isotops erfolgte bis dahin nicht.
Aus Abbildung 21 geht hervor, dass präoperativ bei 31 Niereneinheiten eine szintigraphisch relevante Abflussstörung (HWZ n.F. > 20 min) vorlag.

Postoperativ wurde bei signifikant mehr (p < 0,001) Niereneinheiten (n = 10) ein unauflänglicher Befund mit einer HWZ nach Furosemid < 10min ermittelt (s. Abb. 21). Des Weiteren konnte bei sechs Niereneinheiten auf die Gabe von Furosemid verzichtet werden, da im Nativszintigramm bereits innerhalb von 30 min mehr als 50 % des Isotops eliminiert worden war. Folglich lag bei ca. 70 % der Niereneinheiten postoperativ eine unauffällige Isotopenauswaschung vor.

Zunächst persistierte bei zwei Niereneinheiten die Abflussstörung (postoperative HWZ n.F. > 20 min). Bei Niereneinheit Nr. 32 bestand präoperativ eine Nierenbeckenweite von 46 mm und eine Nierenpartialfunktion von 26 %. Postoperativ zeigte sich ein Rückgang der Nierenbeckenweite auf 30 mm, eine Nierenpartialfunktion

Abb. 21: Übersicht über die Halbwertszeit nach Gabe von Furosemid in der primär operierten Gruppe
von 32 % und im weiteren Verlauf sogar von 42 % mit einer HWZ nach Furosemidgabe zwischen 10 – 20 min (s. Tab. 8 Einzelwerte der Nierenpartialfunktion der primär operierten Gruppe).

Bei Niereneinheit Nr. 46 bestand präoperativ eine Nierenbeckenweite von 34 mm und eine deutlich verminderte Nierenpartialfunktion von 21 %. Postoperativ zeigte sich ein Rückgang der Nierenbeckenweite auf 17 mm, die Nierenpartialfunktion verringerte sich auf 18 %. Es wurde eine funktionslose Niere diagnostiziert.

Nierenfunktionswerte (Kreatinin + Cystatin C) – Gruppe 1

Von den 66 ausgewerteten Nierenfunktionsszintigraphien konnte in 68 % ein Kreatinin-Wert und in 39 % ein Cystatin C-Wert zugeordnet werden (s. Tab. 9). In einem Fall fand sich ein mit 0,86 mg/dl leicht erhöhter Kreatinin-Wert, Cystatin C mit 0,78 mg/dl im Normbereich, unauffälliges Abflussverhalten in der Nierenfunktionsszintigraphie (Gesamtabfluss 90 %). Erhöhte Cystatin C-Werte lagen in drei Fällen bei Säuglingen und bei einem Kind vor. Bei den Säuglingen fand sich in allen Fällen eine erniedrigte Nierenpartialfunktion (25 - 38,5 %), Kreatinin jeweils im Referenzbereich. Es folgte jeweils die operative Korrektur der Ureterabgangsstenose.

Bei einem Kind zeigte sich postoperativ ein mit 1,0 mg/dl erhöhtes Cystatin C bei einer Nierenpartialfunktion von 37 % und unauffälligem Abflussverhalten. Präoperativ hatte ein mit 1,7 mg/dl erhöhtes Cystatin C bei vermindelter Nierenpartialfunktion von 25 % und insuffizientem Abflussverhalten bestanden.

Tab. 9: Darstellung der ermittelten Laborparameter in Abhängigkeit vom Alter zum Zeitpunkt der Nierenfunktionsszintigraphie

<table>
<thead>
<tr>
<th></th>
<th>Säuglinge (< 1 J.)</th>
<th>Kinder (> 1 J.)</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krea i.S. [0,2 - 0,8 mg/dl]</td>
<td>22</td>
<td>21</td>
<td>44 (97,8 %)</td>
</tr>
<tr>
<td>Krea i.S. [> 0,8 mg/dl]</td>
<td>1</td>
<td>1</td>
<td>2 (2,2 %)</td>
</tr>
<tr>
<td>Cys C i.S. [0,5 - 1,6 mg/dl]</td>
<td>11</td>
<td>11</td>
<td>22 (84,6 %)</td>
</tr>
<tr>
<td>Cys C i.S. [0,5 - 0,96 mg/dl]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cys C i.S. [> 1,6 mg/dl]</td>
<td>3</td>
<td>1</td>
<td>4 (15,4 %)</td>
</tr>
<tr>
<td>Cys C i.S. [> 0,96 mg/dl]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.4.2 Sekundär operierte Gruppe – Gruppe 2

Bei 11 Niereneinheiten wurde die Ureterabgangsstenose erst im weiteren Verlauf, das heißt nach mindestens einer weiteren Nierenfunktionsszintigraphie, operativ mittels Pyeloplastik nach Anderson-Hynes korrigiert. Das Alter zum Zeitpunkt der einzelnen Untersuchungen findet sich in Tabelle 10. Zwischen erster Nierenfunktionsszintigraphie und Operation vergingen durchschnittlich 34,1 Monate (Median: 26,9 Mon.).

Tab. 10: Alter der sekundär operierten Gruppe (n = 11) bei verschiedenen Untersuchungen

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>Männl./Weibl.</th>
<th>8/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokalisation der UAS</td>
<td>re./li.</td>
<td>5/6</td>
</tr>
<tr>
<td>Alter bei Erstvorstellung</td>
<td>[Monate]</td>
<td>33,5 ± 48,8</td>
</tr>
<tr>
<td>Alter bei 1. MAG3</td>
<td>[Monate]</td>
<td>33,2 ± 48,7</td>
</tr>
<tr>
<td>Alter bei OP</td>
<td>[Monate]</td>
<td>67,3 ± 60,2</td>
</tr>
<tr>
<td>Alter bei letztem Sono</td>
<td>[Monate]</td>
<td>114,7 ± 58,4</td>
</tr>
<tr>
<td>Dauer: MAG3 bis OP</td>
<td>[Monate]</td>
<td>34,1 ± 7,1</td>
</tr>
</tbody>
</table>

Tabelle 11 zeigt die metrischen Daten der sekundär operierten Niereneinheiten (n = 11).

Tab. 11: Metrische Daten der Gruppe 2 (n = 11)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>bei Erstvorstellung</th>
<th>bei letzter Untersuchung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Körpergröße [cm]</td>
<td>78,5 ± 35,8</td>
<td>133,3 ± 27</td>
</tr>
<tr>
<td>Körpergewicht [kg]</td>
<td>12,5 ± 12,3</td>
<td>33,2 ± 17,9</td>
</tr>
<tr>
<td>Blutdruck Sys. [mmHg]</td>
<td>94,1 ± 13,7</td>
<td>108,3 ± 13,1</td>
</tr>
<tr>
<td>Blutdruck Dia. [mmHg]</td>
<td>56,3 ± 11,6</td>
<td>65,6 ± 7,1</td>
</tr>
</tbody>
</table>
3.4.2.1 Sonographische Befunde – Gruppe 2

Entwicklung der Nierenbeckenweite während des Therapieverlaufs

Abb. 22: Übersicht über die gemessenen Nierenbeckenweite (jeweils n = 11) im Behandlungsverlauf der Gruppe 2. ★★★ zeigt eine hoch signifikante Veränderung mit p < 0,001

Abbildung 22 zeigt die Entwicklung der Nierenbeckenweite in der Gruppe 2, das heißt, die operative Korrektur der Ureterabgangsstenose erfolgte nach Durchführung von mindestens zwei Diureseszintigraphien.

Bei Erstuntersuchung bestand eine durchschnittliche Ektasie des Nierenbeckens von 20,5 mm (Median 22 mm) mit einer Spannweite von 5 – 32 mm. Daraus geht hervor, dass trotz einer erheblichen Dilatation des extrarenalen Nierenbeckens von bis zu 32 mm zunächst ein konservatives Vorgehen eingeleitet wurde.
Die maximal gemessene Nierenbeckenweite betrug im Mittel 30,8 mm (Median 32 mm) und war damit signifikant größer ($p = 0,006$) als bei der ersten Messung. Hierbei wurden Werte zwischen 17 und 44 mm erreicht.

Bei der letzten Sonographie bestand im Mittel noch eine Restektasie von 6,7 mm (Median 6 mm). Damit kam es nicht nur zu einer hoch signifikanten ($p < 0,001$) Abnahme der Nierenbeckenweite in Bezug auf den Maximalwert, sondern auch in Bezug auf den ersten gemessenen Wert ($p < 0,001$). Darüber hinaus wies jede Nieren einheit bei der letzten Sonographie eine kleinere Nierenbeckenweite auf als bei der Erstuntersuchung.

Unterschiede zwischen Jungen ($n = 8$) und Mädchen ($n = 3$)

Signifikante Veränderungen zwischen Jungen und Mädchen konnten bei keiner Messung nachgewiesen werden.

Veränderung der Nierenbeckenweite im Behandlungsverlauf – Gruppe 2

Abb. 23: Übersicht über die Veränderung der Nierenbeckenweite (jeweils $n = 11$) im Behandlungsverlauf der Gruppe 2

Abbildung 23 veranschaulicht die Art der Veränderung der Nierenbeckenweite während der Therapie.

Bei der Erstuntersuchung lag nur bei einer Niereneinheit (9 %) eine Nierenbeckenweite kleiner als 5 mm vor, bei der Mehrheit (10 NE = 92 %) war die Nierenbecken-
weite größer als 12 mm. Eine Nierenbeckenweite über 40 mm trat zu diesem Zeitpunkt nicht auf.

Während des Therapieverlaufs wurde bei jeder Niereneinheit eine Nierenbeckenweite von mindestens 12 mm diagnostiziert, bei sechs Niereneinheiten (55 %) sogar eine Nierenbeckenweite von über 31 mm (s. Abb. 23).

In der abschließenden, postoperativen sonographischen Kontrolle trat bei nur zwei Niereneinheiten (18 %) eine Restekstasie von 12 mm bzw. 17 mm auf. Bei vier Niereneinheiten (36 %) wurde eine milde Dilatation in Höhe von 6 – 11 mm nachgewiesen, bei fünf Niereneinheiten (46 %) ein normalweites Nierenbecken (< 5 mm). Verglichen mit der ersten Messung, bei der lediglich eine Niereneinheit eine Nierenbeckenweite von unter 12 mm aufwies, fand sich bei der Abschlussuntersuchung bei neun Niereneinheiten (92 %) eine Nierenbeckenweite kleiner als 12 mm. Bei keiner Niereneinheit wurde bei der letzten Messung eine größere Nierenbeckenweite als bei der Erstuntersuchung nachgewiesen.

Veränderung der Nierenbeckenweite durch operative Intervention – Gruppe 2

Abb. 24: Veränderung der extrarenalen Nierenbeckenweite durch operative Intervention der Gruppe 2. ★★ zeigt, dass postoperativ eine signifikant (p = 0,004) kleinere Nierenbeckenweite bestand
Die extrarenale Nierenbeckenweite konnte durch operative Intervention von präoperativerweise 27,7 mm (Median: 26 mm) auf postoperativ 10,4 mm (Median: 9,8 mm) hoch signifikant (p = 0,004) reduziert werden (s. Abb. 24). Im Gegensatz zur Gruppe der primär Operierten ließen sich keine Unterschiede der Nierenbeckenweite zwischen Mädchen und Jungen nachweisen. Die Angabe der Untersuchungsposition wurde bei den prä- und postoperativen Aufnahmen notiert, ein Einfluss auf die erfassten Parameter fand sich nicht.

[Auswahl von Diagrammen]

Abb. 25: Übersicht über die prä- sowie postoperative extrarenalen Nierenbeckenweite (n = 11) von Gruppe 2

Auch in der Gruppe der sekundär operierten Niereneinheiten war präoperativ bei jeder Niereneinheit eine Nierenbeckenweite von mindestens 12 mm aufzufinden (s. Abb. 25). Bei acht Niereneinheiten (74 %) bestand eine Nierenbeckenweite über 20 mm und bei vier Niereneinheiten (36 %) war diese sogar größer als 31 mm. Postoperativ hingegen wurde sonographisch bei keiner Niereneinheit eine Nierenbeckenweite über 31 mm nachgewiesen. Eine Restektasie von weniger als 12 mm zeigte sich bei sieben Niereneinheiten (64 %).

Nierenlänge – Gruppe 2

Bei der ersten Untersuchung war jede Niere mit durchschnittlich 7,7 cm signifikant kleiner (p < 0,001) als zum Zeitpunkt der maximalen Ausprägung bzw. der letzten Sonographie (s. Abb. 26).
Abb. 26: Nierenlängen von Gruppe 2 (n = 11). ★★★ zeigt, dass bei der ersten Sonographie eine hoch signifikant (p < 0,001) kleinere Nierenlänge vorlag als zum Zeitpunkt der maximalen Ausprägung bzw. bei der letzten Sonographie.

Dynamischer Nierenindex – Gruppe 2

Mit Hilfe der nachfolgenden Formel wurde der dynamische Nierenindex berechnet:

\[
\text{Dynamischer Nierenindex} = \frac{\text{max. Nierenlänge}}{\text{max. NBW}} / \frac{\text{letzte Nierenlänge}}{\text{letzte NBW}}
\]

Tab. 12: Übersicht über die Werte des dynamischen Nierenindex der Gruppe 2 (n = 11)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,26 ± 0,22</td>
</tr>
<tr>
<td>Median</td>
<td>0,17</td>
</tr>
<tr>
<td>Spannweite</td>
<td>0,02 – 0,65</td>
</tr>
</tbody>
</table>

Mit einem Mittelwert von 0,26 (Median 0,17) des dynamischen Nierenindexes konnte eine Verkleinerung des Nierenquotienten von durchschnittlich 74 % erzielt werden. Es wurden Werte zwischen 0,02 - 0,65 ermittelt (s. Tab. 12), das heißt, bei jeder Niereneinheit kam es zu einem Rückgang des Nierenquotienten um mindestens 35 %.

3.4.2.2 Szintigraphische Befunde – Gruppe 2

Jede Niereneinheit (n = 11) wurde erst im weiteren Verlauf, das heißt nach Durchführung von mindestens zwei Nierenfunktionsszintigraphien operiert. Insgesamt wur-
den 33 Nierenfunktionsszintigraphien ausgewertet, das heißt im Durchschnitt drei pro Niereneinheit. Zum Zeitpunkt der ersten Nierenfunktionsszintigraphie waren die Kinder durchschnittlich 2,7 J. (Median 0,19 J., Spannweite 0,05 - 9,3 J.) alt.

Gesamtabfluss in der Nierenfunktionsszintigraphie – Gruppe 2

In der ersten Nierenfunktionsszintigraphie zeigte sich ein durchschnittlicher Gesamtabfluss (20 min nach Furosemid) von 66,7 ± 10,1 %. Daraus resultierte ein zunächst konservativer Therapieansatz. In der präoperativen Nierenfunktionsszintigraphie zeigte sich ein signifikant (p < 0,001) geringer Gesamtabfluss von 37,7 ± 10,7 %.

Nierenpartialfunktion – Gruppe 2

Tab. 13: Übersicht über die Nierenpartialfunktion (in %) im Therapieverlauf von Gruppe 2

<table>
<thead>
<tr>
<th>Fallnummer</th>
<th>NPF (1.MAG3)</th>
<th>NPF (präoperativ)</th>
<th>NPF (postoperativ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>57</td>
<td>55,5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>46</td>
<td>47,3</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>53</td>
<td>50</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>52</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>45</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>46</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>53</td>
<td>52,9</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>71</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>48</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>59</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>42</td>
<td>36</td>
<td>40</td>
</tr>
</tbody>
</table>

Nach der ersten Nierenfunktionsszintigraphie mit einer durchschnittlichen Nierenpartialfunktion von 52 % (± 8,3 %) wurde sich zunächst für einen konservativen Therapieversuch entschieden. Bei der präoperativen Szintigraphie bestand im Mittel eine Nierenpartialfunktion von 51,6 % (± 7,7 %) und damit, verglichen mit der Erstuntersu-
chung, ein nahezu identisches Ergebnis. In der Gruppe der primär operierten Nie-
reneneinheiten war die präoperative Nierenpartialfunktion mit 38 % (± 12,8 %, n = 37) hoch signifikant geringer (p = 0,002).
Beide lediglich einer Niereneinheit (Fallnummer 51) der sekundär operierten Gruppe lag
mit einer Nierenpartialfunktion von 36 % eine unterdurchschnittliche Nierenfunktion
vor (s. Tab. 13), bei allen anderen Fallnummern bestand hingegen eine normal bzw.
hochnormal ausgeprägte Nierenpartialfunktion. In zehn Fällen (91 %) bestand dem-
zufolge ein unzureichender Harnabfluss trotz adäquater Nierenpartialfunktion.
Im Gegensatz zu Gruppe 1 konnte in Gruppe 2 konnte kein signifikanter Zusammen-
hang zwischen der Ausprägung der Nierenbeckenweite und der Nierenpartialfunktion
nachgewiesen werden.

Korrelation zwischen präoperativer Nierenbeckenweite und Nierenpartialfunktion –
Gruppe 2
In der Gruppe der sekundär Operierten (n = 11) zeigte sich eine negative, jedoch
nicht signifikante Korrelation (r = -0,441) zwischen präoperativer Nierenbeckenweite
und Nierenpartialfunktion. Das bedeutet, je größer die präoperative Nierenbecken-
ektasie, desto kleiner die Nierenpartialfunktion der betroffenen Seite (s. Abb. 27).
Eine ausgeprägte Nierenbeckenektasie korrelierte demnach mit einer verminderten
Nierenfunktion. Ein signifikanter Zusammenhang lag nicht vor (p = 0,17).
Abb. 27: Korrelation zwischen präoperativer Nierenbeckenweite und Nierenpartialfunktion (n = 11) der Gruppe 2. Es lässt sich $r = -0,441$ errechnen, das Diagramm zeigt R^2.

Analyse der Kurvenverläufe – Gruppe 2

Abb. 28: Kurvenverläufe prä- sowie postoperativ der sekundär operierten Gruppe
Die Auswertung der Nierenfunktionsszintigraphien erfolgte nach O'Reilly (s. Abschn. 2.2.2).

Abb. 29: Darstellung der Halbwertszeit nach Gabe von Furosemid in der sekundär operierten Gruppe

Nierenfunktionswerte (Kreatinin + Cystatin C) – Gruppe 2

Von den 33 durchgeführten Nierenfunktionsszintigraphien, konnte in 52 % ein Kreatinin-Wert und in ca. 39 % ein Cystatin C-Wert zugeordnet werden. Alle Werte lagen innerhalb des Referenzbereiches (s. Tab. 14).

Tab. 14: Übersicht über die ermittelten Laborparameter in Abhängigkeit vom Alter zum Zeitpunkt der Nierenfunktionsszintigraphie der Gruppe 2

<table>
<thead>
<tr>
<th></th>
<th>Säuglinge (< 1 J.)</th>
<th>Kinder (> 1 J.)</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krea i.S. (0,2 - 0,8 mg/dl)</td>
<td>6</td>
<td>11</td>
<td>17 (100 %)</td>
</tr>
<tr>
<td>Krea i.S. (> 0,8 mg/dl)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cys. C i.S. (0,5 - 1,6 mg/dl)</td>
<td>4</td>
<td>9</td>
<td>13 (100 %)</td>
</tr>
<tr>
<td>Cys. C i.S. (0,5 - 0,96 mg/dl)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cys. C i.S. (> 1,6 mg/dl) bzw. Cys. C i.S. (> 0,96 mg/dl)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4.3 Konservative behandelte Gruppe – Gruppe 3

Bei 42 Niereneinheiten bestand keine Indikation zur operativen Korrektur der Ureterabgangsstenose. Tabelle 15 zeigt das Alter bei den jeweiligen Untersuchungen.

Tab. 15: Alter der konservativ behandelten Gruppe (n = 42) bei verschiedenen Untersuchungen

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>Männl./Weibl.</th>
<th>32/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokalisation der UAS</td>
<td>re./li.</td>
<td>10/32</td>
</tr>
<tr>
<td>Alter bei Erstvorstellung</td>
<td>[Monate]</td>
<td>4,9 ± 9,8</td>
</tr>
<tr>
<td>Alter bei 1. MAG3</td>
<td>[Monate]</td>
<td>25,4 ± 16</td>
</tr>
<tr>
<td>Alter bei letztem Sono</td>
<td>[Monate]</td>
<td>68,3 ± 47</td>
</tr>
</tbody>
</table>

Tabelle 16 zeigt die metrischen Daten der konservativ behandelten Niereneinheiten (n = 42).
Tab. 16: Metrische Daten der konservativ behandelten Niereneinheiten (n = 42)

<table>
<thead>
<tr>
<th></th>
<th>bei Erstvorstellung</th>
<th>bei letzter Untersuchung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Körpergröße [cm]</td>
<td>58 ± 10,6</td>
<td>107,2 ± 27,6</td>
</tr>
<tr>
<td>Körpergewicht [kg]</td>
<td>5,5 ± 2,5</td>
<td>20 ± 10,6</td>
</tr>
<tr>
<td>Blutdruck Sys. [mmHg]</td>
<td>97,8 ± 15,6</td>
<td>105,8 ± 9,8</td>
</tr>
<tr>
<td>Blutdruck Dia. [mmHg]</td>
<td>56,2 ± 11,6</td>
<td>62,6 ± 9</td>
</tr>
</tbody>
</table>

3.4.3.1 Sonographische Befunde – Gruppe 3

Entwicklung der Nierenbeckenweite während des Therapieverlaufs – Gruppe 3

Abb. 30: Übersicht über die gemessenen Nierenbeckenweite (n = 42) der konservativen Gruppe. *** zeigt, dass es zunächst zu einem hoch signifikanten (p < 0,001) Anstieg der Nierenbeckenweite und im weiteren Therapieverlauf zu einer hoch signifikanten Abnahme (p < 0,001) der ermittelten Nierenbeckenweite gekommen ist.
Abbildung 30 macht deutlich, welche Unterschiede zwischen den einzelnen Messungen festgestellt wurden.

Zum Zeitpunkt der ersten Messung betrug die mittlere Nierenbeckenweite 10,2 mm (Median 11 mm) mit Werten zwischen 1 mm und 25 mm. Dabei betrug der Mittelwert der maximal gemessenen Nierenbeckenweite 16,1 mm (Median 15 mm) mit einer Spannweite von 12 mm bis 25 mm. Dies bedeutet, dass es zunächst zu einer hoch signifikanten (p < 0,001) Zunahme der Nierenbeckenweite kam, was weitere diagnostische Schritte (Nierenfunktionsszintigraphie) zur Folge hatte.

In der letzten Sonographie wurde durchschnittlich noch eine Ektasie des Nierenbeckens in Höhe von 10,2 mm (Median 9,05 mm, Spannweite 1 – 22 mm) ermittelt. Verglichen mit der maximal erreichten Nierenbeckenweite kam es demnach im weiteren Therapieverlauf zu einer hoch signifikanten (p < 0,001) Abnahme der Nierenbeckenweite.

Insgesamt kam es zu einer tendenziellen Verkleinerung der extrarenalen Nierenbeckenweite. Eine signifikante Veränderung im Vergleich zur ersten Messung der Nierenbeckenweite konnte jedoch nicht nachgewiesen werden (p > 0,05).

Bei keiner Niereneinheit bestand jemals eine Nierenbeckenweite größer als 25 mm. Sieben konservativ behandelte Niereneinheiten (17 %) wiesen eine Nierenbeckenektasie zwischen 20 und 25 mm auf.

Bei den Niereneinheiten Nr. 85 und 56 betrug die maximale Nierenbeckenweite jeweils 25 mm. Bei der ersten sonographischen Untersuchung wies die Niereneinheit Nr. 85 bereits die größte Dilatation auf, die Niereneinheit Nr. 56 erst in späteren Untersuchungen. Eine szintigraphisch relevante Abflussstörung bestand in keinem Fall, sodass das eingeleitete konservative Therapieprozedere fortgeführt werden konnte.

Unterschiede zwischen Jungen (n = 32) und Mädchen (n = 10)

Bei der ersten gemessenen Nierenbeckenweite ließ sich kein signifikanter geschlechtsspezifischer Unterschied aufzeigen. Bei den Jungen bestand eine mittlere Nierenbeckenweite von 9,7 mm (Median 9 mm), bei den Mädchen eine Nierenbeckenweite von 12 mm (Median 13,5 mm).

Für die maximal erreichte extrarenale Nierenbeckenweite hingegen konnte ein signifikanter Unterschied nachgewiesen werden. Während bei den männlichen Patienten
eine maximale Nierenbeckenweite von 15,2 mm (Median 15 mm) vorlag, war die Nierenbeckenweite der Patientinnen mit 19 mm (Median 19 mm) signifikant größer (p < 0,001).
Zum Zeitpunkt der letzten Sonographie blieb dieser Unterschied in der Ausprägung der Nierenbeckenektasie weiterhin bestehen. Die Jungen wiesen eine Nierenbeckenweite von 8,4 mm (Median 8,8 mm) auf, die Mädchen eine signifikant größere Nierenbeckenweite (p < 0,001) von 15,7 mm (Median 15,5 mm).

Veränderung der Nierenbeckenweite unter konservativer Therapie – Gruppe 3

Abbildung 31: Übersicht über die Veränderung der Nierenbeckenweite (n = 42) im Behandlungsverlauf

Abbildung 31 spiegelt die absoluten Häufigkeiten der Nierenbeckenweite wider, welche im Therapieverlauf erfasst wurden. In der ersten sonographischen Untersuchung wurde bei sieben Niereneinheiten (17 %) eine Nierenbeckenweite kleiner als 5 mm, bei 24 Niereneinheiten (57 %) eine Nierenbeckenweite zwischen 6 und 11 mm, bei zehn Niereneinheiten (24 %) eine Nierenbeckenweite zwischen 13 und 20 mm, sowie bei einer Niereneinheit (2 %) eine Nierenbeckenweite zwischen 21 und 30 mm nachgewiesen. Demnach war die Nierenbeckenweite bei insgesamt 31 Niereneinheiten (74 %) geringer als 12 mm.

Des Weiteren erfolgte eine Erfassung der stärksten Ektasie des extrarenalen Nierenbeckens. Hierbei wurde eine extrarenale Nierenbeckenweite von mindestens 12 mm bei jeder Niereneinheit (n = 42) bestimmt. Bei 35 Niereneinheiten (83 %) betrug die
maximale Dilatation zwischen 12 - 20 mm, bei sieben Niereneinheiten (17 %) war die Nierenbeckenweite dagegen mit 21 – 30 mm noch etwas ausgeprägter. Zum Zeitpunkt der letzten Sonographie lag bei 31 Niereneinheiten (74 %) eine Nierenbeckenweite von weniger als 12 mm vor. Weiterhin bestand bei neun Niereneinheiten (21 %) ein erweitertes extrarenales Nierenbecken mit einer Weite zwischen 12 - 20 mm, bei zwei Niereneinheiten (5 %) sogar zwischen 21 – 30 mm.

Nierenlänge – Gruppe 3

Bei der ersten Untersuchung war jede Niere mit durchschnittlich 6,3 cm signifikant kleiner (p < 0,001) als zum Zeitpunkt der maximalen Ausprägung bzw. der letzten Sonographie (s. Abb. 32).

![Diagramm der Nierenlängen der konservativen Gruppe (n = 42).](image)

Abb. 32: Nierenlängen der konservativen Gruppe (n = 42). *** zeigt einen hochsignifikanten Zusammenhang mit p < 0,001

Dynamischer Nierenindex – Gruppe 3

Mit Hilfe der nachfolgenden Formel wurde der dynamische Nierenindex berechnet:

\[
\text{Dynamischer Nierenindex} = \frac{\text{max. Nierenlänge}}{\text{max. NBW}} / \frac{\text{letzte Nierenlänge}}{\text{letzte NBW}}
\]
Tab. 17: Übersicht über die Werte des dynamischen Nierenindex der konservativ therapierten Gruppe (n = 42)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,63 ± 0,23</td>
</tr>
<tr>
<td>Median</td>
<td>0,63</td>
</tr>
<tr>
<td>Spannweite</td>
<td>0,07 – 1,02</td>
</tr>
</tbody>
</table>

In der konservativen Gruppe betrug der Mittelwert 0,63. Hierbei nahm der dynamische Nierenindex Werte zwischen 0,07 – 1,02 an (s. Tab. 17). Folglich konnte nicht bei jeder Niereneinheit, im Mittel jedoch ein Rückgang des Nierenquotienten um 37 % erreicht werden. Zwei Niereneinheiten zeigten einen Nierenquotienten von mindestens 1,00.

Bei der Niereneinheit Nr. 75 kam es während des Therapieverlaufs zu einer geringfügigen Zunahme der Nierenbeckenweite von 12 mm auf 16 mm bei persistierender Nierenlänge von 5,6 cm, sodass ein Nierenquotient von 1,02 errechnet wurde. Die Nierenfunktionsszintigraphie zeigte eine etwas verzögerte, maximale Isotopenanreicherung nach 9,9 min, aber eine prompte Nuklidelimination nach Furosemidapplikation. Der Gesamtabfluss wurde mit 86,6 % und die Nierenpartialfunktion mit 59 % bestimmt. Diese Ergebnisse sind charakteristisch für eine funktionelle Abflussstörung, welche konservative Therapiemaßnahmen bedingen. Trotz Anstieg des Nierenquotienten ist demnach eine operative Korrektur der Ureterabgangsstenose nicht indiziert gewesen.

Bei der Niereneinheit Nr. 84 kam es während der Beobachtungsdauer von 14,5 J. zu einer Zunahme der Nierenbeckenweite von 14 mm auf 22 mm bei gleichzeitigem Nierenwachstum von 6,4 cm auf 10 cm. Damit lag der Nierenquotienten bei 1,00, was einem konstanten Verhältnis zwischen Nierenbeckenweite und Nierenlänge entspricht. Die letzte Nierenfunktionsszintigraphie wurde im November 2000 durchgeführt und ergab eine adäquate Nierenpartialfunktion von 50 % sowie einen Gesamtabfluss von 50 %, das heißt 20 min nach Furosemidapplikation. Anschließend wurde die Therapie aus logistischen Gründen ambulant fortgeführt. Im Rahmen der vorliegenden Studie wurde das Kind der Niereneinheit Nr. 84 im Juni 2012 nochmals vorstellig. In diesem Fall wäre eine erneute Evaluation der Nierenfunktion mittels Nierenfunktionsszintigraphie ratsam. Die Eltern sind hierüber ausführlich informiert und eine
szintigraphische Bestimmung der Nierenfunktion in naher Zukunft geplant worden. Bis auf diese zwei Ausnahmen, kam es bei allen anderen Niereneinheiten (n = 40) zu einer Abnahme des Nierenquotienten um durchschnittlich 37 %.

3.4.3.2 Szintigraphische Befunde – Gruppe 3
Bei den konservativ behandelten Ureterabgangsstenosen (n = 42) wurden insgesamt 56 Nierenzintigraphien ausgewertet. Hierbei wurden bei 31 Niereneinheiten jeweils eine Nierenzintigraphie, bei acht Niereneinheiten jeweils zwei und bei drei Niereneinheiten jeweils drei Nierenzintigraphien analysiert. Durchschnittlich wurde die erste Nierenzintigraphie mit 0,83 J. (Median: 0,42 J.) durchgeführt.

Gesamtabfluss in der Nierenzintigraphie – Gruppe 3
In der ersten Nierenzintigraphie zeigte sich ein durchschnittlicher Gesamtabfluss (20 min nach Furosemidgabe) von 74,4 ± 2,1 %. Dies begründet den konservativen Therapieansatz.

Abb. 33: Entwicklung der Nierenpartialfunktion in Gruppe 3
Wie in den Einschlusskriterien festgelegt, liegt bei jeder konservativ behandelten Nie-
reneinheit mindestens eine Nierenfunktionsszintigraphie vor. Bei keiner Niereneinheit
wurde eine Nierenpartialfunktion von unter 41 % nachgewiesen (s. Abb. 33). Bei
sechs Niereneinheiten (14 %) bestand bei der ersten Nierenfunktionsszintigraphie
mit einer Nierenpartialfunktion zwischen 41 – 45 % eine signifikant seitendifferente
Nierenfunktion. In einer zweiten Nierenfunktionsszintigraphie wurde eine Nierenparti-
alfunktion von höchstens 45 % bei lediglich zwei Niereneinheiten ermittelt. Während
des Therapieverlaufs traten keine signifikanten Veränderungen bei der Nierenpartial-
funktion auf.
Im Gegensatz zur Gruppe der primär operierten Niereneinheiten konnte in der kon-
servativen Gruppe kein signifikanter Zusammenhang zwischen der Ausprägung der
Nierenbeckenweite und der Nierenpartialfunktion nachgewiesen werden.

Korrelation zwischen Nierenbeckenweite und Nierenpartialfunktion – Gruppe 3
Zwischen der maximalen Ausprägung der Nierenbeckenerweiterung und in der ers-
ten Nierenfunktionsszintigraphie ermittelten Nierenpartialfunktion bestand keine Kor-
relation. Die Nierenbeckenweite betrug durchschnittlich 16,1 mm (± 3,6 mm; Spann-
weite: 12 – 25 mm) und die Nierenpartialfunktion im Mittel 50,2 % (± 5,5 %; Spann-
weite: 41 – 60 %).

**Korrelation zwischen Nierenpartialfunktion und dynamischem Nierenindex –
Gruppe 3**
Für elf Niereneinheiten lagen mindestens zwei Nierenfunktionsszintigraphien vor,
welche eine Verlaufsbeurteilung der Nierenpartialfunktion ermöglichten. Es zeigte
sich keine Korrelation (r = 0,151) zwischen der dynamisch ermittelten Nierenpartial-
funktion und dem dynamischen Nierenindex.
Analyse der Kurvenverläufe – Gruppe 3

Die Auswertung der Nierenfunktionsszintigraphien erfolgte nach O’Reilly (s. Abschn. 2.2.2)

Abb. 34: Kurvenverläufe für 1. - 3. Nierenfunktionsszintigraphie in Gruppe 3

Von den 42 Niereneinheiten wurde bei nur einer Niereneinheit ein mäßiggradiger Nuklidabfluss (Typ D) nach Furosemidapplikation festgestellt, bei 16 Niereneinheiten (38 %) kam es bereits ohne Furosemid zu einer suffizienten Nuklidelimination (Typ A), bei 25 Niereneinheiten (60 %) erfolgte diese unmittelbar nach der Gabe von Furosemid (Typ C, s. Abb. 34).

Aufgrund von weiterhin bestehender Ektasie des Nierenbeckens wurde bei elf Niereneinheiten im Therapieverlauf noch eine zweite Diureseszintigraphie durchgeführt. Hierbei wurde bei drei Niereneinheiten ein unauffälliges Abflussverhalten (Typ A) und bei acht Niereneinheiten eine funktionelle Abflussstörung (Typ C) nachgewiesen, welche zur Fortsetzung der konservativen Behandlung führte.
Zum Zeitpunkt der ersten Nierenfunktionsszintigraphie wiesen 18 Niereneinheiten (43 %) eine adäquate Nuklidelimination (HWZ nach Furosemid < 10 min) auf. Bei 16 Niereneinheiten bestand eine HWZ nach Furosemid zwischen 10 - 20 min auf, was ein konservatives Vorgehen zur Folge hatte. Eine OP-Indikation wäre bei einer HWZ > 20 min indiziert gewesen.

Aufgrund der Tatsache, dass in einem Fall lediglich der Untersuchungsbericht vorlag, welcher eine funktionelle Ureterabgangsstenose beschrieb, konnte bei einer Niereneinheit der aktuelle Kurvenverlauf nicht ausgewertet werden (s. Abb. 35). Bei dieser Niereneinheit wurde eine weitere Nierenfunktionsszintigraphie in unserer Klinik durchgeführt, welche ein unauffälliges Abflussverhalten zeigte.

Auf die Durchführung einer weiteren Nierenfunktionsszintigraphie konnte bei 31 Niereneinheiten aufgrund einer rückläufigen bzw. gleichbleibenden Nierenbeckenweite verzichtet werden, um eine unnötige Strahlenbelastung des Kindes zu verhindern.

Nierenfunktionswerte (Kreatinin + Cystatin C) – Gruppe 3

Von den 56 ausgewerteten Nierenfunktionsszintigraphien konnte in 64 % ein Kreatinin-Wert und in 48 % ein Cystatin C-Wert zugeordnet werden. Bei zwei Säuglingen...
fand sich ein mit 1,3 mg/dl erhöhter Kreatinin-Wert, Cystatin C mit 1,3 mg/dl im Referenzbereich, unauffälliges Abflussverhalten in der Nierenfunktionsszintigraphie.

Tab. 18: Übersicht über die ermittelten Laborparameter in Abhängigkeit vom Alter zum Zeitpunkt der Nierenfunktionsszintigraphie der Gruppe 3

<table>
<thead>
<tr>
<th>Laborparameter (mg/dl)</th>
<th>Säuglinge (< 1 J.)</th>
<th>Kinder (> 1 J.)</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krea i.S. (0,2 - 0,8)</td>
<td>20</td>
<td>14</td>
<td>34 (94,4 %)</td>
</tr>
<tr>
<td>Krea i.S. (> 0,8)</td>
<td>2</td>
<td></td>
<td>2 (5,6 %)</td>
</tr>
<tr>
<td>Cys C i.S. (0,5 - 1,6)</td>
<td>18</td>
<td>9</td>
<td>27 (100 %)</td>
</tr>
<tr>
<td>Cys C i.S. (> 0,96)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.5 Vergleiche zwischen den Gruppen

3.5.1 Klinische Daten

Geschlecht und Lokalisation der Ureterabgangsstenose

Jungen sind ca. 2,3 fach häufiger betroffen als Mädchen. Eine Erkrankung der linken Seite wurde mit 55 Niereneinheiten (61 %) 1,6 fach häufiger beobachtet als auf der rechten Seite mit 35 Niereneinheiten (39 %).

Tab. 19: Übersicht über die Lokalisation der Ureterabgangsstenose in Abhängigkeit von der Gruppenzugehörigkeit

<table>
<thead>
<tr>
<th>Lokalisation</th>
<th>Konservative Gruppe</th>
<th>Primär operierte Gruppe</th>
<th>Sekundär operierte Gruppe</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAS li.</td>
<td>32 (76,2 %)</td>
<td>17 (45,9 %)</td>
<td>6 (54,5 %)</td>
<td>55 (61,1 %)</td>
</tr>
<tr>
<td>UAS re.</td>
<td>10 (23,8 %)</td>
<td>20 (54,1 %)</td>
<td>5 (45,5 %)</td>
<td>35 (38,9 %)</td>
</tr>
<tr>
<td>Gesamt</td>
<td>42</td>
<td>37</td>
<td>11</td>
<td>90</td>
</tr>
</tbody>
</table>
In der konservativen Gruppe fand sich in 24 % die Ureterabgangsstenose auf der rechten Seite (s. Tab. 19). In den operativen Gruppen war dies mit 52 % signifikant häufiger (p < 0,001) der Fall.

Lokalisation der Ureterabgangsstenose und OP-Indikation

25 von 35 Niereneinheiten (71 %) mit einer rechtsseitigen Ureterabgangsstenose wurden einer operativen Korrektur behandelt (s. Abb. 36). Auf der linken Seite waren es mit 17 von 55 Niereneinheiten (31 %) deutlich weniger, die mittels Anderson-Hynes Pyeloplastik (AHP) therapiert wurden. Demnach ist in dieser Studie die Inzidenz der rechtsseitigen Ureterabgangsstenose zwar geringer als links, bei Vorliegen einer rechtsseitigen Abflussbehinderung bedarf es aber 2,3 fach häufiger einer operativen Intervention.

Abb. 36: Operative vs. konservative Therapie in Abhängigkeit von der Lokalisation der Ureterabgangsstenose
Alter zum Zeitpunkt der ersten bzw. letzten Sonographie

Tab. 20: Alter der Patienten (in Monaten) bei der jeweiligen Sonographie

<table>
<thead>
<tr>
<th>Gruppeneinteilung</th>
<th>Erstes Sono</th>
<th>Letztes Sono</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primär operiert (n = 37)</td>
<td>16,1 (Median: 1,1)</td>
<td>94,8 (Median: 74,4)</td>
</tr>
<tr>
<td>Sekundär operiert (n = 11)</td>
<td>33,5 (Median: 2)</td>
<td>114,7 (Median: 99,3)</td>
</tr>
<tr>
<td>Konservativ behandelt (n = 42)</td>
<td>4,9 (Median: 1,7)</td>
<td>68,3 (Median: 65,8)</td>
</tr>
</tbody>
</table>

In Tabelle 20 ist der jeweilige Mittelwert und Median (in Monaten) der entsprechenden Gruppe aufgeführt. Zwischen den operativ behandelten Niereneinheiten konnte hinsichtlich des Alters bei der ersten Sonographie, kein signifikanter Unterschied festgestellt werden (p > 0,05). Die konservative Gruppe hingegen war signifikant jünger als die primär (p < 0,05) und sekundär behandelte (p = 0,001) Gruppe. In den operierten Gruppen kommen einige Niereneinheiten vor, bei denen die Ureter- abgangstenose erst später entdeckt wurde (bis zu einem Alter von 10 J.), in der konservativen Gruppe traten solche Fälle nicht auf.

Zum Zeitpunkt der letzten Sonographie waren die Patienten durchschnittlich 6,1 J. (primär operiert), 8,2 J. (sekundär operiert) bzw. 5,4 J. (konservativ behandelt) alt. Die Patienten der operierten Gruppen waren zum Zeitpunkt der letzten Sonographie signifikant älter (p = 0,033 primär operiert bzw. p = 0,008 sekundär operiert) als die konservativ behandelten.

Alter zum Zeitpunkt der operativen Intervention

Die Kinder der primär operierten Gruppe waren zum Operationszeitpunkt im Median 0,4 J. alt (MW 1,7 ± 0,5 J.). Damit waren sie hoch signifikant (p = 0,002) jünger als die Kinder der sekundär operierten Gruppe mit 4,1 J. (MW 5,5 ± 1,5 J.).

Eine Korrelation zwischen dem Alter der Patienten bei Durchführung der Anderson-Hynes Plastik und postoperativem Outcome, ermittelt anhand des dynamischen Nierenindexes, welcher für die Nierenfunktion steht, konnte nicht erbracht werden (p > 0,05). Kinder, die sehr jung operiert worden waren, wiesen demzufolge keine stärkere Reduktion des dynamischen Nierenindexes auf als solche Kinder, die zum Zeitpunkt der Operation bereits älter waren.
Zwischen der ersten Nierenfunktionsszintigraphie und der primären operativen Intervention vergingen durchschnittlich 43 Tage (MW: 61,5 ± 13,1 T.). In der sekundär operierten Gruppe hingegen wurden bei den Kindern durchschnittlich 2,2 Jahre (MW: 2,8 ± 0,6 J.) nach Auswertung der ersten Nierenfunktionsszintigraphie die Indikation zur operativen Korrektur gestellt. Bei diesen fand die operative Korrektur erst im weiteren Therapieverlauf, das heißt nach Durchführung von mindestens einer zweiten Nierenfunktionsszintigraphie, statt. Bezüglich des Alters der Kinder bei Erstvorstellung (Gruppe 1: 16,1 Mon., Gruppe 2: 33,5 Mon., s. Tab. 20), bestand kein signifikanter Unterschied zwischen den operativen Gruppen. Die Diagnose der Ureterabgangstenose wurde demnach in beiden operativen Gruppen vergleichbar zügig formuliert.

Dauer der postoperativen Weiterbehandlung
Nach operativer Korrektur der Ureterabgangstenose wurden die Kinder der primär operierten Gruppe durchschnittlich 6,2 J. (± 0,8 J.; Median 5,1 J.) und die sekundär operierten Kinder 4 J. (± 1,1 J.; Median 2,9 J.) lang weiterbehandelt. Ein signifikanter Unterschied zwischen den Gruppen bestand nicht (p > 0,05).

3.5.2 Sonographische Befunde – im Gruppenvergleich

Abb. 37: Nierenbeckenweite der operativen Gruppe (primär (n = 37) und sekundär (n = 11) operiert) im Vergleich mit der Nierenbeckenweite der konservativen Gruppe. ★★★ zeigt eine hoch signifikante Veränderung mit p < 0,001
Das Ausmaß der Nierenbeckenektasie war bei den operativ behandelten Niereneinheiten zum Zeitpunkt der ersten Sonographie sowie in der maximalen Ausprägung signifikant höher ($p < 0,001$) als in der konservativen Gruppe. Bei der letzten Sonographie zeigten sich vergleichbare Werte (s. Abb. 37).

Abb. 38: Maximal erreichte Nierenbeckenweite der einzelnen Gruppen. In der konservativen Gruppe bestand eine hoch signifikant ($\ast\ast\ast = p < 0,001$) kleinere Nierenbeckenweite als in den operativen Gruppen.

Zwischen den primär und sekundär operierten Niereneinheiten zeigten sich keine signifikanten Unterschiede hinsichtlich der Ausprägung der Nierenbeckenweite (s. Abb. 38). In der Gruppe der konservativ Behandelten zeigten sich hoch signifikant ($p < 0,001$) kleinere Werte. Hier trat niemals eine Nierenbeckenweite über 25 mm auf, wohingegen in den operativen Gruppen Werte bis 50,2 mm (primär operiert) bzw. 44 mm (sekundär operiert) erreicht wurden.

Tab. 21: Gemessene Nierenbeckendilatation in Abhängigkeit von der Gruppenzugehörigkeit

<table>
<thead>
<tr>
<th></th>
<th>≤ 15 mm</th>
<th>> 15 - 25 mm</th>
<th>> 25 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primär operiert</td>
<td>6 (16,2 %)</td>
<td>16 (43,2 %)</td>
<td>15 (40,5 %)</td>
</tr>
<tr>
<td>Sekundär operiert</td>
<td>0</td>
<td>3 (27,3 %)</td>
<td>8 (72,7 %)</td>
</tr>
<tr>
<td>Konservativ behandelt</td>
<td>23 (54,8 %)</td>
<td>19 (45,2 %)</td>
<td>0</td>
</tr>
</tbody>
</table>

Nur in sechs Fällen (12,5 %) wurde bei einer Nierenbeckenweite von maximal 15 mm die Indikation zur operativen Korrektur gestellt (s. Tab. 21). Im Bereich zwischen 15
und 25 mm Nierenbeckenektasie finden sich vergleichbare Fallzahlen in der operati-
ven und konservativen Gruppe.
Betrachtet man die ermittelten geschlechtsspezifischen Werte, so lassen sich Unter-
schiede zwischen den einzelnen Gruppen nachweisen. In der Gruppe der primär
operierten Niereneinheiten konnte bei den Jungen stets eine stärkere Dilatation des
Nierenbeckens, verglichen mit denen der Mädchen, nachgewiesen werden. Zum
Zeitpunkt der maximalen Nierenbeckendilatation konnte ein Signifikanznachweis
(p = 0,038) erbracht werden.
Die Werte der Mädchen und Jungen in der Gruppe der sekundär operierten Nieren-
einheiten verhielten sich nahezu identisch.
In der Gruppe der konservativ behandelten Niereneinheiten wurde bei den Mädchen
eine größere Nierenbeckenweite erfasst als bei den Jungen, ein hoch signifikanter
Unterschied (p < 0,001) bestand zum Zeitpunkt der maximalen Nierenbeckenweite
sowie der letzten Untersuchung.

Nierenbeckenweite: prä- und postoperativ – im Gruppenvergleich
Beim Vergleich der prä- sowie postoperativen Werte der Nierenbeckenweite zeigt
sich, dass in der Gruppe der sekundär operierten Niereneinheiten präoperativ mit
durchschnittlich 26 mm eine geringfügig größere Nierenbeckenweite nachgewiesen
wurde als in der Gruppe der primär operierten mit durchschnittlich 23 mm. Postope-
rativ war die Nierenbeckenweite der sekundär Operierten mit 9,8 mm etwas kleiner
as die der primär operierten Gruppe (12 mm).
Die beiden operativen Gruppen wiesen präoperativ in 62 % (primär operiert) bzw.
73 % (sekundär operiert) der Fälle eine Nierenbeckenweite von über 21 mm auf.
Postoperativ fand sich bei 48 % (primär operiert) bzw. 64 % (sekundär operiert) eine
Nierenbeckenweite kleiner als 12 mm. Zum Zeitpunkt der letzten Untersuchung
konnten nahezu identische Werte nachgewiesen werden. Bei 88 % (primär operiert)
bzw. 92 % (sekundär operiert) fand sich eine Restektasie des Nierenbeckens von
höchstens 12 mm.
Nierenlänge – im Gruppenvergleich

Die Nierenlänge der operativen Gruppe war zu jedem Untersuchungszeitpunkt signifikant größer (p < 0,05) als die der konservativen Gruppe (s. Tab. 22).

Tab. 22: Nierenlänge der operativen Gruppen (primär (n = 37) und sekundär (n = 11) operiert) im Vergleich mit denen der konservativen Gruppe

<table>
<thead>
<tr>
<th>Untersuchung</th>
<th>Operative Gruppen (n = 48)</th>
<th>Konservative Gruppe (n = 42)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erstes Sono</td>
<td>7,0 cm</td>
<td>6,3 cm</td>
</tr>
<tr>
<td>Max. Ausprägung</td>
<td>9,6 cm</td>
<td>8,6 cm</td>
</tr>
<tr>
<td>Letztes Sono</td>
<td>9,4 cm</td>
<td>8,5 cm</td>
</tr>
</tbody>
</table>

Aus der nachfolgenden Abbildung 39 geht hervor, dass in der Gruppe der sekundär Operierten die Nieren stets ca. 1 cm länger waren, als die der primär Operierten. Die Nieren der konservativ behandelten Niereneinheiten waren stets um ca. 0,8 cm kürzer als die der primär operierten Gruppe und damit am Kleinsten.

Zwischen der primär operierten Gruppe und den konservativ behandelten Niereneinheiten sowie zwischen primär und sekundär operierten Niereneinheiten zeigte sich kein signifikanter Unterschied. Die Nieren der sekundären Gruppe waren zum Zeitpunkt der maximalen Ausprägung signifikant (p = 0,026) und bei der letzten Untersuchung signifikant (p = 0,04) größer als die der konservativ behandelten Niereneinheiten.
Abb. 39: Entwicklung des Längenwachstums in Abhängigkeit der Gruppenzugehörigkeit. * zeigt einen signifikanten Unterschied (p < 0,05) in Bezug auf die Nierenlänge zwischen sekundär operierten und konservativ behandelten Niereneinheiten zum Zeitpunkt der maximalen Ausprägung sowie der letzten Sonographie

3.5.3 Nierenquotient und dynamischer Nierenindex – im Gruppenvergleich

Nierenquotient

Bei der sonographischen Beurteilung der Niere ist neben der Erfassung der Nierenbeckendilatation auch die Nierenlänge von großer Relevanz, da eine größere Nierenbeckenektasie mit zunehmender Nierenlänge als unauffällig eingestuft wird. Eine extrarenale Nierenbeckenweite von 8 mm kann eine unterschiedliche urodynamische Auswirkung des oberen Harntraktes bewirken, abhängig davon, ob die Niere 4 cm oder 12 cm lang ist. Darüber hinaus kann eine massive Aufweitung des extrarenalen Nierenbeckens zu einer Überschätzung der gemessenen Nierenlänge führen. Um dennoch möglichst repräsentative Aussagen hinsichtlich des Therapieerfolges, unter Berücksichtigung der Nierenlänge, treffen zu können, wurde für jede Gruppe der Nierenquotient, also das Verhältnis zwischen Nierenbeckenektasie und Nierenlänge,
jeweils zum Zeitpunkt der maximalen Ektasie und der letzten Untersuchung errechnet.

Abb. 40: Nierenquotient zum Zeitpunkt der maximalen Nierenbeckenweite sowie bei der letzten Sonographie. ★★★ zeigt einen hoch signifikanten Unterschied mit p < 0,001

Bezogen auf die Ergebnisse der letzten Sonographie bedeutet dies, dass in der letzten Untersuchung die Nierenbezekenektasie in der konservativen Gruppe etwa 9 %, der primär operierten Niereneinheiten 6 % und der sekundär operierten Niereneinheiten durchschnittlich 3 % der Nierenlänge betrug. Bei Betrachtung der Ergebnisse der letzten Sonographie erweist sich der Wert 35,2 der sekundär Operierten Gruppe als
auffällig. Er ist hoch signifikant ($p < 0,001$) größer als der Wert 11,5 der konservativ Behandelten, ein signifikanter Unterschied zur primär operierten Gruppe bestand nicht. In der Gruppe der sekundär operierten kam es bei drei Niereneinheiten zu einer vollständigen Regredienz der Nierenbeckenweite (= 1 mm), welche sich aufgrund der deutlich geringeren Stichprobe ($n = 11$) viel stärker auf den Mittelwert auswirkte. In den anderen beiden Kohorten finden sich ebenfalls Niereneinheiten ohne Nierenbeckenektasie, welche bedingt durch die Gesamtanzahl der Niereneinheiten, allerdings kaum zu einer Veränderung des Mittelwertes führten. Letztlich lässt sich sagen, dass bei der letzten Sonographie die operativ therapierten Niereneinheiten indes sogar eine geringere Nierenbeckenektasie aufwiesen als die konservativ Therapierten.

Tab. 23: Übersicht über die metrischen Daten des Nierenquotienten der jeweiligen Gruppe

<table>
<thead>
<tr>
<th></th>
<th>Primär operiert ($n = 37$)</th>
<th>Sekundär operiert ($n = 11$)</th>
<th>Konservativ behandelt ($n = 42$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nierenquotient bei max. Ektasie</td>
<td>$4,1 \pm 1,6$ (Median 4,0)</td>
<td>$3,6 \pm 1,2$ (Median 3,6)</td>
<td>$5,5 \pm 1,4$ (Median 5,5)</td>
</tr>
<tr>
<td>Spannweite</td>
<td>$1,5 – 7,9$</td>
<td>$2,3 – 5,8$</td>
<td>$3,4 – 8,8$</td>
</tr>
<tr>
<td>Nierenquotient im letzten Sono</td>
<td>$16,9 \pm 25,5$ (Median 10,0)</td>
<td>$35,2 \pm 37,2$ (Median 19,5)</td>
<td>$11,5 \pm 11,7$ (Median 9,4)</td>
</tr>
<tr>
<td>Spannweite</td>
<td>$3,2 – 118,8$</td>
<td>$6,8 – 98$</td>
<td>$3,4 – 78,7$</td>
</tr>
</tbody>
</table>

waren es 17,2 – 43,8 %. Es folgte demnach die operative Korrektur, wenn die Nie-
renbeckenweite mindestens 30 % der Nierenlänge ausmachte,. In Gruppe 1 (primär
operiert) bestand bei 13 Niereneinheiten (35,1 %) und in Gruppe 2 (sekundär ope-
riert) bei fünf Niereneinheiten (45,5 %) ein Nierenquotient von \(\leq 3,3 \), das heißt die
Nierenbeckenweite machte präoperativ mindestens 30 % der Nierenlänge aus.

Dynamischer Nierenindex – im Gruppenvergleich

Die operativen Gruppen (n = 48) zeigte mit 0,36 einen signifikant (p < 0,001) klei-
neren dynamischen Nierenindex als die konservative Gruppe mit 0,63. Dies bedeutet,
dass es, unter Berücksichtigung des Nierenlängenwachstums, zu einer signifikant
größeren Regredienz der Nierenbeckenektasie in Bezug auf die Nierenlänge ge-
kommen ist. Signifikante Unterschiede zwischen den primär und sekundär operierten
Niereneinheiten zeigten sich nicht.

Tab. 24: Werte des dynamischen Nierenindexes in den einzelnen Gruppen

<table>
<thead>
<tr>
<th>Dynamischer Nierenindex</th>
<th>Primär operiert (n = 37)</th>
<th>Sekundär Operiert (n = 11)</th>
<th>Konservativ behandelt (n = 42)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,40 ± 0,2</td>
<td>0,26 ± 0,22</td>
<td>0,63 ± 0,23</td>
</tr>
<tr>
<td>Median</td>
<td>0,37</td>
<td>0,17</td>
<td>0,63</td>
</tr>
<tr>
<td>Spannweite</td>
<td>0,05 – 0,79</td>
<td>0,02 – 0,65</td>
<td>0,07 – 1,02</td>
</tr>
</tbody>
</table>

Auch innerhalb der Gruppen nahmen die Werte des dynamischen Nierenindexes
unterschiedlich hohe Werte an (s. Tab. 24). Während bei den sekundär operierten
Niereneinheiten der kleinste Wert des dynamischen Nierenindexes nachgewiesen
werden konnte, fand sich bei der konservativen Gruppe der größte Wert.
Bei jeder sekundär operierten Niereneinheit konnte ein Rückgang der dynamischen
Nierenbeckenweite, das heißt unter Berücksichtigung des Nierenlängenwachstums,
um mindestens 35 % (im Mittel um 74 %) nachgewiesen werden. Im Gegensatz dazu
fand sich bei den primär operierten Niereneinheiten eine Reduktion des dynamischen
Nierenindexes um mindestens 21 % (im Mittel um 60 %).
Bei den konservativ behandelten Ureterabgangsstenosen wurde der dynamische Nierenindex im Mittel um 36 % reduziert. Darüber hinaus kam es bei einer Niereneinheit zu einer leichten Zunahme der dynamischen Nierenbeckenweite und bei einer Niereneinheit präsentierte sich eine konstante Dynamik der Nierenbeckenweite.

Kritische Gruppe: Nierenbeckenweite von > 15 – 25 mm

Sowohl in den operativen Gruppen als auch in der Gruppe der konservativ Behandelten finden sich jeweils 19 Niereneinheiten mit einer maximalen Nierenbeckenektasie zwischen > 15 - 25 mm (s. Abschn. 3.5.2 Tab. 21).

Bei den operativen Gruppen (n = 19) lag die Ureterabgangsstenose in sieben Fällen (37 %) auf der rechten Seite, während bei den konservativ behandelten Niereneinheiten (n = 19) die Lokalisation der Ureterabgangsstenose in nur drei Fällen (16 %) auf der rechten Seite zu finden war. Für das gesamte Patientenkollektiv (n = 90) konnte bereits nachgewiesen werden, dass die Inzidenz der rechtseitigen Ureterabgangsstenose zwar geringer ist als die der linksseitigen Ureterabgangsstenose, bei Vorliegen einer rechtseitigen Abflussbehinderung aber 2,3 fach häufiger einer operativen Intervention erfolgt ist (s. Abschn. 3.5.1 Abb. 37). Zum Zeitpunkt der ersten Sonographie hatten beide Gruppen mit knapp zwei Monaten (Median 56 T.) ein vergleichbares Alter.

Tab. 25: Übersicht über die Nierenbeckenweite, den Nierenquotienten und den dynamischen Nierenindex der Niereneinheiten mit einer Nierenbeckenweite von > 15 – 25 mm, in Abhängigkeit der gewählten Therapieform. ★★★ zeigt einen hoch signifikanten Unterschied mit p < 0.001

<table>
<thead>
<tr>
<th></th>
<th>Operativ behandelt (n = 19)</th>
<th>Konservativ behandelt (n = 19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nierenbeckenweite (in mm)</td>
<td>20,8 ± 2,5</td>
<td>19,2 ±3,1</td>
</tr>
<tr>
<td>Nierenquotient bei max. Ektasie</td>
<td>4,7 ± 0,9</td>
<td>4,5 ± 0,9</td>
</tr>
<tr>
<td>Dynamischer Nierenindex</td>
<td>0,4 ± 0,22 ★★★</td>
<td>0,7 ± 0,25</td>
</tr>
</tbody>
</table>
Tabelle 25 zeigt den Nierenquotienten sowie den dynamischen Nierenindex der beiden Gruppen. Die durchschnittliche Nierenbeckenweite beträgt 20,8 mm (operativ) bzw. 19,2 mm (konservativ). Beim Nierenquotienten zeigen sich mit 4,7 (operativ) bzw. 4,5 (konservativ) ebenfalls vergleichbare Werte, das heißt die Nierenbeckenweite machte 21,3 % (operativ) bzw. 22,2 % (konservativ) der Nierenlänge aus. Hingegen findet sich beim dynamischen Nierenindex ein hoch signifikanter Unterschied (p < 0,001). Während die operativen Gruppen mit einem dynamischen Nierenindex von 0,4 eine durchschnittliche Reduktion der Nierenbeckenweite, unter Berücksichtigung des Nierenlängenwachstums, von 60 % aufweisen, liegt in der konservativen Gruppe mit durchschnittlich 30 % ein signifikant (p < 0,001) geringerer Rückgang der Nierenbeckenweite während des Therapieverlaufes vor. Durch die operative Korrektur der Ureterabgangsstenose ließ sich demzufolge ein stärkerer Rückgang der Nierenbeckenektasie erzielen. Diese Daten decken sich mit den Angaben aus Tabelle 24, welche einen Überblick über den dynamischen Nierenindex in den einzelnen Gruppen widerspiegelt.

3.5.3 Szintigraphische Befunde – im Gruppenvergleich

Nierenfunktionsszintigraphie mit Furosemidbelastung

Abb. 41: Übersicht über den Gesamtabfluss der ersten Nierenfunktionsszintigraphie. ★★★ zeigt einen hoch signifikanten Unterschied mit p < 0,001
In den operativen Gruppen findet sich mit 35,6 % ± 28,2 % ein signifikant (p < 0,001) verringelter Gesamtabfluss, das heißt nach Furosemidbelastung, als in der konservativen Gruppe mit durchschnittlich 74,4 % ± 12,3 % (s. Abb. 41).

Abbildung 42 veranschaulicht die Unterschiede innerhalb der operativen Gruppe im Vergleich mit den konservativ behandelten Niereneinheiten.

Abb. 42: Übersicht über die gruppenspezifische Nuklidelimination der ersten Nierenfunktionsszintigraphie. ** zeigt, dass in Gruppe 1 ein hoch signifikant (p < 0,001) geringerer Gesamtabfluss nachgewiesen wurde als in Gruppe 2 und 3.**

In der Gruppe der primär operierten Niereneinheiten (Gruppe 1) konnte ein durchschnittlicher Gesamtabfluss von 28,1 % (± 4 %, Median 31,5 %) und damit hoch signifikant (p < 0,001) weniger als in den anderen beiden Gruppen nachgewiesen werden. Bei zwei Niereneinheiten lag mit 65 % bzw. 85 % ein suffizienter Abfluss vor.
Aufgrund der stark erniedrigten Nierenpartialfunktion (jeweils 29 %) entschied man sich dennoch für eine Operation.

Wie aus Abbildung 42 ersichtlich wird, findet sich in der ersten Nierenfunktions-

szintigraphie kein signifikanter Unterschied ($p > 0,05$) hinsichtlich des Abflussverhal-
tens zwischen der sekundär operierten (MW: 66,7 %, ± 10,1 %) und der konservati-
ven Gruppe (MW: 74,4 %, ± 2,1 %). Aufgrund dieser Ergebnisse wurde in beiden

Gruppen zunächst ein konservatives, das heißt abwartendes Therapiekonzept, ein-
geleitet.

Bei drei sekundär operierten Niereneinheiten wurde die erste Nierenfunktions-

szintigraphie extern durchgeführt und der Gesamtabfluss wurde aufgrund des abwei-

chenden Protokolls nicht berücksichtigt. Eine sekundär operierte Niereneinheit zeigte

in der ersten Nierenfunktionsszintigraphie keine Auswaschung des Isotops. Zum

Untersuchungszeitpunkt war der Säugling erst einen Monat alt, weswegen die Nie-

renfunktion sowie das Ansprechen des Tubulussystems auf Furosemid noch nicht

vollständig entwickelt war. Zwei Monate später wurde erneut eine Nierenfunktions-

tsintigraphie gemacht, welche eine kompensierte Ureterabgangsstenose mit adä-

quatem Abflussverhalten nachwies. Die Indikation zur operativen Therapie wurde

erst im weiteren Therapieverlauf gestellt.

In der Gruppe der Konservativen wurde bei sechs Niereneinheiten auf eine Furo-

semidgabe verzichtet, da bereits im Nativszintigramm eine funktionelle Ureter-

abgangsstenose erkennbar war. Bei einer Niereneinheit musste die Untersuchung

aufgrund eines sehr unruhigen Kindes vorzeitig abgebrochen werden. Bei 35 Nieren-
einheiten konnte mit einem Gesamtabfluss von über 50 % eine kompensierte, nicht

operationsbedürftige Ureterabgangsstenose bestätigt werden.
Nierenpartialfunktion – im Gruppenvergleich

Abb. 43: Übersicht über die Nierenpartialfunktion zum Zeitpunkt der ersten Nierenfunktionsszintigraphie. ★★★ zeigt den hoch signifikanten Unterschied (p < 0,001) zwischen den Gruppen.

In den operativen Gruppen zeigte sich mit 41,1 % eine hoch signifikant (p < 0,001) kleinere Nierenpartialfunktion als in der konservativen Gruppe mit 50,2 % (s. Abb. 43).

Auch innerhalb der Gruppen finden sich signifikante Unterschiede (s. Abb. 44). Die Nierenpartialfunktion der primär operierten Niereneinheiten ist mit 38 % hoch signifikant geringer (p < 0,001) als die der sekundär operierten mit 51,6 % und der konservativen Gruppe mit 50,2 %.

Die Nierenpartialfunktion der sekundär operierten Niereneinheiten ist mit 51,6 % vergleichbar mit der Nierenpartialfunktion der konservativen Gruppe mit 50,2 %. Dies stimmt mit dem zunächst gewählten konservativen Therapieansatz überein, denn die operative Korrektur in der sekundär operierten Gruppe erfolgte erst im weiteren Therapieverlauf.
Abb. 44: Übersicht über die Nierenpartialfunktion der ersten Nierenfunktionsszintigraphie. ★★★ zeigt die hoch signifikant (p < 0,001) verringerte Nierenpartialfunktion der primär operierten Niereneinheiten.

Korrelation zwischen präoperativer Nierenbeckenweite und Nierenpartialfunktion
Sowohl in der Gruppe der primär als auch der sekundär operierten Niereneinheiten zeigte sich eine negative Korrelation (r = -0,49 bzw. r = -0,441) zwischen präoperativer Nierenbeckenweite und Nierenpartialfunktion. Folglich ging eine ausgeprägte Nierenbeckenektasie mit einer verminderten Nierenfunktion einher.

Prä-/Postoperative Nierenfunktionsszintigraphie

Tab. 26: Daten der prä- und postoperativen Nierenfunktionsszintigraphie

<table>
<thead>
<tr>
<th></th>
<th>Primär operiert (n = 37)</th>
<th>Sekundär operiert (n = 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präop. NPF (in %)</td>
<td>38</td>
<td>51,6 (n = 11)</td>
</tr>
<tr>
<td>Postop. NPF (in %)</td>
<td>43,3 (n = 23)</td>
<td>44 (n = 3)</td>
</tr>
<tr>
<td>Präop. Gesamtabfluss (in %)</td>
<td>27,8 (n = 33)</td>
<td>37,7 (n = 10)</td>
</tr>
<tr>
<td>Postop. Gesamtabfluss (in %)</td>
<td>70,7 (n = 15)</td>
<td>88,1 (n = 2)</td>
</tr>
</tbody>
</table>

Tabelle 26 zeigt die Daten der prä- und postoperativen Nierenfunktionsszintigraphie. Die präoperative Nierenpartialfunktion der primär operierten Niereneinheiten ist mit
38 % signifikant (p < 0,001) geringer als die der sekundär operierten Niereneinheiten mit 51,6 %. Hinsichtlich des präoperativen Gesamtabflusses finden sich mit 27,8 % (primär operiert) und 37,7 % (sekundär operiert) vergleichbare Werte. Bei der postoperativen Nierenfunktionsszintigraphie zeigen sich ebenfalls keine signifikanten Unterschiede. Für die sekundär operierte Gruppe muss beachtet werden, dass nur für drei Niereneinheiten eine postoperative Nierenfunktionsszintigraphie vorliegt, in den restlichen Fällen war aufgrund einer sonographisch stark rückläufigen Nierenbeckenweite keine weitere Nierenfunktionsszintigraphie indiziert gewesen.

Nierenpartialfunktion und dynamischer Nierenindex
Der dynamische Nierenindex repräsentiert den Rückgang der Nierenbeckenektasie unter Berücksichtigung des Nierenlängenwachstums. Um auch eine sogenannte dynamische Nierenpartialfunktion zu ermöglichen, wurde die Differenz der prä- und postoperativ ermittelten Nierenpartialfunktion verwendet. Es zeigt sich eine signifikante (p = 0,05), negative Korrelation (r = -0,419) in der primär operierten Gruppe. Das bedeutet, je größer der postoperative Anstieg der Nierenpartialfunktion, desto kleiner der dynamische Nierenindex.
In der Gruppe der sekundär operierten Niereneinheiten konnte aufgrund der Stichprobengröße (n = 3) keine Korrelationsprüfung durchgeführt werden.
Für die konservativ behandelten Niereneinheiten zeigte sich keine Korrelation zwischen der dynamisch ermittelten Nierenpartialfunktion und dem dynamischen Nierenindex.

Nierenfunktionswerte (Kreatinin + Cystatin C) – im Gruppenvergleich
Von den 98 ausgewerteten Kreatinin-Werten fand sich in vier Fällen (4 %) ein erhöhter Wert, jeweils zwei in der primär operierten und konservativen Gruppe. In vier (6 %) von 66 Fällen fand sich eine Erhöhung des bestimmten Cystatin C, alle in der Gruppe der primär operierten Niereneinheiten. In der Gruppe der sekundär Operierten lagen alle Laborparameter innerhalb der Referenzbereiche (s. Tab. 27).
Tab. 27: Erhöhte Laborparameter in Abhängigkeit der Gruppenzugehörigkeit

<table>
<thead>
<tr>
<th></th>
<th>Primär operiert</th>
<th>Sekundär operiert</th>
<th>Konservativ behandelt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreatinin ↑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Säugling</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Kind (>1 J.)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cys. C. ↑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Säugling</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kind (>1 J.)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.6 Niereneinheiten mit Verringerung der Nierenpartialfunktion im Therapieverlauf

Tab. 28: Übersicht über die Niereneinheiten mit einer Abnahme der Nierenpartialfunktion während des Therapieverlaufs

<table>
<thead>
<tr>
<th>Befundverschlechterung</th>
<th>Gruppe, Nr. der NE</th>
<th>Erste NPF (in %)</th>
<th>Letzte NPF (in %)</th>
<th>Differenz der NPF (absolut)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nein</td>
<td>Primär operiert, 25</td>
<td>61</td>
<td>55</td>
<td>-6</td>
</tr>
<tr>
<td>ja</td>
<td>Primär operiert, 43</td>
<td>41</td>
<td>36</td>
<td>-5</td>
</tr>
<tr>
<td>ja</td>
<td>Primär operiert, 45</td>
<td>39</td>
<td>36</td>
<td>-3</td>
</tr>
<tr>
<td>ja</td>
<td>Primär operiert, 46</td>
<td>21</td>
<td>18</td>
<td>-3</td>
</tr>
<tr>
<td>ja</td>
<td>Sekundär operiert, 5</td>
<td>53</td>
<td>44</td>
<td>-9</td>
</tr>
<tr>
<td>nein</td>
<td>Konservativ, 55</td>
<td>57</td>
<td>53</td>
<td>-4</td>
</tr>
<tr>
<td>nein</td>
<td>Konservativ, 56</td>
<td>57</td>
<td>54</td>
<td>-3</td>
</tr>
<tr>
<td>nein</td>
<td>Konservativ, 90</td>
<td>60</td>
<td>49,9</td>
<td>-10,1</td>
</tr>
<tr>
<td>nein</td>
<td>Konservativ, 61</td>
<td>51</td>
<td>48</td>
<td>-3</td>
</tr>
<tr>
<td>nein</td>
<td>Konservativ, 87</td>
<td>52</td>
<td>45</td>
<td>-7</td>
</tr>
<tr>
<td>ja</td>
<td>Konservativ, 60</td>
<td>47,1</td>
<td>43,7</td>
<td>-3,4</td>
</tr>
<tr>
<td>ja</td>
<td>Konservativ, 64</td>
<td>52,6</td>
<td>43,7</td>
<td>-8,9</td>
</tr>
</tbody>
</table>
Tabelle 28 zeigt eine Übersicht über die Niereneinheiten und deren Gruppenzugehörigkeit, bei denen es zu einer Abnahme der Nierenpartialfunktion gekommen ist. Als Befundverschlechterung wurde eine seitendifferente Nierenpartialfunktion (45 % \(< \text{NPF} > 55 \% \)) definiert oder eine weitere Abnahme der Nierenpartialfunktion bei bereits bestehender seitendifferenter Nierenpartialfunktion.

Bei insgesamt zwölf Niereneinheiten (13 %) der Gesamtkohorte nahm die Nierenpartialfunktion trotz Therapiemaßnahmen ab. Dies war bei vier Niereneinheiten (11 %) mit primärer invasiver Intervention, bei einer sekundär operierten Niereneinheit (9 %) und bei sieben konservativ behandelten Niereneinheiten (17 %) der Fall.

Unter Berücksichtigung des Kurvenverlaufs sowie des Abflussverhaltens, wurde bei sechs Niereneinheiten (7 %) eine Befundverschlechterung festgestellt. Bei den übrigen sechs Niereneinheiten wurde in der letzten Nierenfunktionsszintigraphie eine unauffällige Nierenpartialfunktion erreicht.

Die primär operierte Niereneinheit Nr. 25 wies präoperativ mit 61 % eine supranormale Nierenpartialfunktion auf, welche sich postoperativ auf 55 % normalisierte. In der postoperativen Nierenfunktionsszintigraphie zeigte sich ein Gesamtabfluss des Isotops von 88 %. Dies bedeutet, dass eine Befundverbesserung vorliegt.

Die konservativ behandelten Niereneinheiten Nr. 55, 56 und 90 zeigten bei der ersten Nierenfunktionsszintigraphie ebenfalls eine seitendifferente Nierenpartialfunktion, wohingegen sich die Nierenpartialfunktion bei der zuletzt durchgeführten Nierenfunktionsszintigraphie im Normalbereich (NPF 45 - 55 %) befand. Eine regelrechte Isotopauswaschung wurde bei diesen drei Niereneinheiten ubiquitär mit einem Gesamtabfluss von durchschnittlich 79,2 % bei der ersten und 72,6 % zum Zeitpunkt der letzten Nierenfunktionsszintigraphie nachgewiesen (s. Tab. 27).

Ein besonderes Augenmerk wurde auf die Niereneinheiten gelegt, bei denen zuletzt eine seitendifferente Nierenpartialfunktion von unter 45 % nachgewiesen wurde.

Die nachfolgende Tabelle illustriert die Auswertung der einzelnen Parameter. \(T_{\text{max}}\) beschreibt den Zeitpunkt der Untersuchung, an dem die maximale Nuklidanreicherung innerhalb des Nierenbeckens erreicht wurde. \(T_{30}\) gibt die prozentuale Nuklideelimination 30 min nach Untersuchungsbeginn innerhalb des Nativszintigramms wieder, das heißt, ohne Beeinflussung der Diurese durch harn treibende Mittel wie

Tab. 29: Niereneinheiten mit seitendifferenter NierenpartiaLFunktion: Ergebnisse der letzten Nierenfunktionsszintigraphie

<table>
<thead>
<tr>
<th>Gruppe, Nr. der NE</th>
<th>Tmax (in min)</th>
<th>t30 (in %)</th>
<th>Gesamtabfluss (in %)</th>
<th>letzte NPF (in %)</th>
<th>letzte NBW (in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primär operiert, 43</td>
<td>21</td>
<td>18,6</td>
<td>59,3</td>
<td>36</td>
<td>14</td>
</tr>
<tr>
<td>Primär operiert, 45</td>
<td>10</td>
<td>38,9</td>
<td>89,8</td>
<td>36</td>
<td>15</td>
</tr>
<tr>
<td>Primär operiert, 46</td>
<td>30</td>
<td>0</td>
<td>26,3</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>Sekundär operiert, 5</td>
<td>3</td>
<td>64,8</td>
<td></td>
<td>44</td>
<td>12</td>
</tr>
<tr>
<td>Konservativ, 60</td>
<td>30</td>
<td>0</td>
<td>79</td>
<td>43,7</td>
<td>14</td>
</tr>
<tr>
<td>Konservativ, 64</td>
<td>18,2</td>
<td>30,2</td>
<td>83</td>
<td>43,7</td>
<td>20</td>
</tr>
</tbody>
</table>

Bei den Niereneinheiten Nr. 43 und 45 (beide primär operiert) wurde zuletzt eine NierenpartiaLFunktion von 36 % nachgewiesen (s. Tab. 29), präoperativ hatte bei diesen Niereneinheiten mit einer NierenpartiaLFunktion von 41 bzw. 39 % ebenfalls eine verringerte NierenpartiaLFunktion bestanden. Die Nuklidauwaschung bestätigt bei beiden Niereneinheiten das Vorliegen einer funktionellen Abflussstörung mit einer Restektasie des Nierenbeckens von 14 bzw. 15 mm. Die präoperative Nierenfunktionsszintigraphie hatte in beiden Fällen das Bild einer obstruktiven Abflussstörung mit einem Gesamtabfluss von weniger als 40 % ergeben. Trotz vermindelter NierenpartiaLFunktion konnte demnach eine Verbesserung des Abflussverhaltens unter operativer Therapie erreicht werden.

Simultan verhält es sich bei den Niereneinheiten Nr. 5 (sekundär operiert) sowie Nr. 60 und 64 (jeweils konservativ behandelt). Die sekundär operierte Niereneinheit Nr. 5 zeigt mit Ausnahme der verminderten NierenpartiaLFunktion von 44 % eine durchweg regelrechte Nuklidelimination. Dabei konnte auf eine Gabe von Furosemid verzichtet werden, weil es im Nativszintigramm bereits zu einem Gesamtabfluss von 65 % gekommen war.

Bei der konservativen therapierten Niereneinheit Nr. 60 besteht das Bild einer Akkumulationskurve, nach Gabe von Furosemid erfolgte die suffiziente Isotopaus-
waschung mit einem Gesamtabfluss von 79 %. Die Niereneinheit Nr. 64 zeigte eine etwas verzögerte, maximale Nuklidanreicherung nach 18,2 min, mit 83 % Gesamtabfluss ebenfalls eine unauffällige Nuklidelimination nach Furosemidgabe. Damit stellt die primär operierte Niereneinheit Nr. 46 den einzigen Fall in der vorliegenden Studie dar, bei der die operative Maßnahme zu keiner Verbesserung des Abflussverhaltens geführt hat.

Bei dieser Niereneinheit besteht die Ureterabgangsstenose auf der linken Seite, präoperativ wurde eine Nierenbeckenweite von 34 mm ermittelt. Eine Nierenfunktionsszintigraphie wurde im Alter von zwei Monaten durchgeführt. Diese ergab eine Nierenpartialfunktion von 21 % und einen unzureichenden Gesamtabfluss von 39 %. In diesem Zusammenhang war Kreatinin (0,3 mg/dl) und Cystatin C mit 1,08 mg/dl im Referenzbereich. 79 Tage nach der ersten Nierenfunktions-szintigraphie wurde die Ureterabgangsstenose operativ korrigiert. In der postoperativen Sonographie fand sich eine rückläufige Nierenbeckenektasie von 17 mm. Trotz intensiver Beratung und Betonung der notwendigen postoperativen Kontrollen, wurden diese nur unzureichend wahrgenommen. Dies hatte zur Folge, dass erst knapp 11 Jahre nach der Operation bei Persistenz der Nierenbeckenektasie von 22 mm erneut eine Nierenfunktionsszintigraphie zur Evaluation der Nierenfunktion durchgeführt worden ist. Diese zeigte das Bild einer nahezu funktionslosen Niere auf der linken Seite mit einer Nierenpartialfunktion von 18 % und einem Gesamtabfluss von lediglich 26 %. Die beiden Laborparameter Kreatinin (0,59 mg/dl) und Cystatin C (0,73 mg/dl) lagen innerhalb des Referenzbereichs.

Hinsichtlich der präoperativen Nuklidauwaschung, unterscheidet sich die Niereneinheit Nr. 46 nicht von den anderen Niereneinheiten, bei denen eine postoperative Befundverbesserung festgestellt wurde. Allerdings fällt auf, dass die präoperative Nierenpartialfunktion von 21 % deutlich geringer ist als die mittlere präoperative Nierenpartialfunktion von 38 %, welche in der primär operierten Gruppe vorlag (s. Abschn. 3.4.1.2).
Abb. 45: Übersicht über die präoperative Nierenpartialfunktion der operierten Niereneinheiten, unter besonderer Berücksichtigung der Niereneinheiten Nr. 46, Nr. 10 und Nr. 6

Abbildung 45 veranschaulicht, dass bei zwei Niereneinheiten eine noch geringere präoperative Nierenpartialfunktion bestand als bei der Niereneinheit Nr. 46 mit einer Nierenpartialfunktion von 21 %.

Bei der Niereneinheit Nr. 10 zeigte die präoperative Diagnostik vergleichbare Werte mit denen von Niereneinheit Nr. 46. Es lag eine präoperative Nierenpartialfunktion von 18 % bei einem Gesamtabfluss von 15 % vor. Die präoperative Dilatation des Nierenbeckens betrug 30 mm. Ebenfalls ließ sich postoperativ ein Rückgang der Nierenbeckenweite auf 14 mm nachweisen. Im Gegensatz zur Niereneinheit Nr. 46, bei der es im weiteren Therapieverlauf zu einer erneuten Progredienz der Nierenbeckenektasie gekommen war, verringerte sich die Nierenbeckenweite bei der Nieren-

Bei der ebenfalls primär operierten Niereneinheit Nr. 7 ließ sich präoperativ im Isotopenephorogramm keine Nierenfunktion der linken Seite nachweisen. In diesem Fall wurde bereits pränatal eine ausgeprägte Nierenbeckenkelchsystemerweiterung auf der linken Seite festgestellt und am vierten Lebenstag eine Nierenbeckenweite von 44 mm diagnostiziert. Daraufhin erfolgte am 42. Lebenstag die Nierenfunktionsszintigraphie mit fehlendem Nachweis einer Nierenfunktion bei einer Nierenbeckenweite von 50 mm. Die operative Korrektur der Ureterabgangsstenose erfolgte 7 Tage später. Postoperativ konnte keine Nierenbeckenektasie mehr nachgewiesen werden. Im Alter von 4,5 Jahren wurde die Nierenfunktion erneut mittels Nierenfunktionsszintigraphie evaluiert. Es fand sich das Bild einer funktionellen Abgangsstenose mit einer persistierenden verringerten Nierenpartialfunktion von 38 % und einem Gesamtabfluss von 91 % nach Furosemidbelastung. In Anbetracht der präoperativen Ergebnisse, handelt es sich hier dennoch um ein hervorragendes Operationsergebnis. Der dynamische Nierenindex beträgt 0,15, das heißt, unter Berücksichtigung des Nierenwachstums ist es zu einem Rückgang der Nierenbeckenweite um 85 % gekommen.

In der sekundär operierten Gruppe befindet sich keine Niereneinheit mit einer präoperativen Nierenpartialfunktion von weniger als 36 %. Bei den konservativ behandelten Niereneinheiten trat zu keinem Zeitpunkt eine Nierenpartialfunktion von unter 41 % auf.
4. Diskussion

4.1 Methodenkritik

4.1.1 Sonographie

In der vorliegenden Arbeit sind auch Patienten Teil der Kohorte, die bereits 1985 erstmals am Bonner Universitätsklinikum vorstellig geworden sind. Dies führt unweigerlich dazu, dass die Untersuchungen von verschiedenen Ärzten durchgeführt worden sind.

Es existiert wenig Literatur, welche die Untersucherabhängigkeit bei der Sonographie quantifiziert. Bei Rud et al. (2012) findet sich eine sehr gute Übereinstimmung. In 18 von 22 Fällen (82 %) wurde von zwei unterschiedlich Untersuchern derselbe Hydronephrosegrad diagnostiziert.

Auch Pereira et al. (2011) beschäftigten sich mit der Abweichung der sonographischen Datenerhebung sowohl bei aufeinanderfolgenden interindividuellen als
auch intraindividuellen Messungen. Es zeigte sich eine absolute Abweichung von 5,2 ± 3,5 % bei den intraindividuell und von 9,3 ± 9,7 % bei den interindividuellen Messungen. Bei größerem anterior-posterior Diameter kam es nicht simultan zu einer Zunahme der Messdifferenz. Wurden die Messungen von unterschiedlichen Untersuchern durchgeführt, fanden sich nahezu doppelt so große Abweichungen als wenn ein einziger Untersucher eine Niereneinheit mehrmals ausgemessen hatte. Konsequenterweise wird empfohlen, die Untersuchungen nach Möglichkeit immer von demselben Arzt durchführen zu lassen, was in der Klinik nicht immer realisierbar ist. Des Weiteren sollte bei Interpretation der Studienergebnisse davon ausgegangen werden, dass die Sorgfalt bei der Durchführung von sonographischen Untersuchungen im Rahmen der Studie durchaus höher gewesen sein könnte als es im klinischen Alltag der Fall ist (sog. „Hawthorne-Effekt“) und demzufolge größere Abweichungen in Betracht gezogen werden müssen. Dasselbe gilt für die im Zusammenhang mit der Studie erneut nachgemessenen und ausgewerteten sonographischen Befunde. Darüber hinaus ist nicht auszuschließen, dass die Schallköpfe heutzutage die präzisere Darstellung des Harntraktes vereinfachen und somit die erfassten Parameter eher der Wirklichkeit entsprechen. Die Komponente der subjektiven Erfassung wird, ungeachtet des steigenden technischen Fortschritts, jedoch nie verschwinden.

In wenigen Einzelfällen konnten Sonographieaufnahmen aufgrund von unvollständiger Darstellung oder unzureichender Dokumentation leider nicht berücksichtigt werden.
4.1.2 Miktionszystourethrogramm

In der Literatur finden sich unterschiedliche Ansichten bezüglich der Indikationsstellung. Hubertus et al. (2012) analysierten retrospektiv die Daten von 266 Patienten (m:w = 3:1) mit einer Ureterabgangsstenose, von denen 178 ein Miktionszystourethrogramm erhalten hatten. Es zeigte sich eine Koinzidenz von 7,3 % zwischen einer Hydronephrose und begleitendem vesikoureteralem Reflux. Die Autoren sprechen sich gegen ein routinemäßiges Miktionszystourethrogramm aus. Ein Zusammenhang zwischen zusätzlichem Reflux und dem Schweregrad der Hydronephrose konnte nicht nachgewiesen werden. In unserer Studie führte das Vorliegen eines vesikoureteralen Refluxes zum Ausschluss. Dies war bei insgesamt 10 Kindern der Fall, bezogen auf das vorläufige Patientenkollektiv (s. Abschn. 3.1) ergibt das eine Koinzidenz von 4,4 %.
Unter Berücksichtigung ausschließlich der Patienten mit diagnostizierter Ureterabgangsstenose ohne weitere Anomalien, ergibt sich eine Koinzidenz zwischen Ureterabgangsstenose und vesikoureteralem Reflux von 9,3 % (10 von 107) und damit eine vergleichbare Koinzidenz wie bei Hubertus et al.

Die Prävalenz einer Ureterabgangsstenose und eines zusätzlichen Refluxes geben Asl und Maleknejad (2012) mit nur 4,4 % an. Ein Miktionszystourethrogramm wurde bei allen 45 Kindern (m:w = 1,8:1) mit pränatal erkannter Hydronephrose im Alter von 6 - 8 Wochen durchgeführt. Bei zwei Kindern wurde ein Reflux nachgewiesen. Je-
doch findet sich keine detailliertere Evaluation dieser zwei Fälle. Basierend auf ihren Ergebnissen empfehlen die Autoren die Durchführung eines Miktionszystourethrogramms bei sonographisch nachweisbar erweitertem Ureter oder einer ausgeprägten Schwankung der Nierenbeckenektasie.

Im Gegensatz zur niedrigen Inzidenz von 4,4 % wiesen Hwang et al. (2011) in ihrer retrospektiven Studie (n = 195) eine Inzidenz von 17,4 % für das Vorliegen eines vesikoureteralen Refluxes bei Kindern mit pränataler Hydronephrose nach. Demnach präferieren die Autoren ein Miktionszystourethrogramm bei hydronephrotischen Nieren. Im Unterschied zur Studie von Hubertus et al. waren Jungen 2,4 Mal häufiger betroffen als Mädchen. Auch Anderson et al. (1997) sprechen sich für die Durchführung eines Miktionszystourethrogramms bei allen Kindern mit pränataler Hydronephrose aus. Für die Nierenbeckenweite legten sie als Schwellenwert 4 mm fest. In ihrer prospektiven Studie (n = 386) lag bei 13 % (m = w) der Kinder ein vesikoureteraler Reflux vor.

Die Sensitivität in der Diagnostik des vesikoureteralen Refluxes mittels Ultraschall wird mit 70,9 % und die Spezifität mit 51,4 % angegeben und liegt damit unter denen...
des Miktionszystourethrogramms (Adibi et al., 2013). Dies verdeutlicht die unangefochtene Bedeutung des Miktionszystourethrogramms im Rahmen der Refluxabklärung.

Auch am Bonner Universitätsklinikum erhält jedes Kind mit sonographisch auffälliger Nierenbeckenektasie leitliniengerecht in Vorbereitung auf eine eventuelle Nierenbeckenplastik nach Anderson-Hynes, ein Miktionszystourethrogramm. In der vorliegenden Arbeit lag bei 16 von 225 Patienten (s. Abschn. 3.2 Abb. 7) ein vesikoureteraler Reflux vor. Folglich beträgt die Inzidenz für eine Nierenbeckenerweiterung mit begleitendem Reflux 6,2 %. Darüber hinaus verläuft der vesikoureterale Reflux häufig auch asymptomatisch und ohne Erweiterung des Ureters. Bei solchen Kindern würde der vesikoureterale Reflux andernfalls nicht erkannt und damit bestünde die Gefahr der progredienten Nierenschädigung.

4.1.3 99mTc-MAG3-Nierenfunktionsszintigraphie

Im Gegensatz zur Sonographie ermöglicht die Nierenfunktionsszintigraphie direkte Rückschlüsse auf die seitendifferente Nierenfunktion. Die Differenzierung zwischen funktioneller und obstruktiver Harnabflussstörung ist entscheidend für das weitere Therapieprozedere (Garcia Alonso et al., 2007). Während beim langfristigen Bestehen einer obstruktiven Harnabflussstörung eine konsekutive Parenchymatrophie und folglich eine abnehmende Nierenfunktion gefürchtet wird, kann bei einer funktionellen Ureterabgangsstenose, trotz bestehender Nierenbeckenektasie, ein suffizientes Abflussverhalten vorliegen. Eine operative Korrektur ist demzufolge nur bei einer Ob-
struktion nötig, während bei einer funktionellen Stenose ein konservativer Therapieversuch eingeleitet werden kann. In der Diagnostik der Nierenbeckenektasie stellt die Nierenfunktionsszintigraphie deswegen den Goldstandard zur Evaluation des Abflussverhaltens dar.

Entscheidend für die Vergleichbarkeit der Ergebnisse ist, neben einem standardisierten Untersuchungsablauf, auch die Auswertung der Daten. Insbesondere die korrekte Lage der ROI (Region of Interest) über den Nieren ist entscheidend für die Evaluation der Durchblutung und Verteilung des injizierten Tracers. Dies geschieht anhand von Zeit-Aktivitäts-Kurven (Berner, 2002). Zusätzlich zur Positionierung der ROI ist auch die Geschwindigkeit der Bolusapplikation zu Beginn Untersucherabhängig und erschwert die klinikübergreifende Vergleichbarkeit der Untersuchungsergebnisse.

Die Befundinterpretation wurde in wenigen Fällen durch Bewegungsartefakte erschwert. Aus diesem Grund wurde bei einigen Kindern eine Sedierung verabreicht, deren Indikation sehr zurückhaltend gestellt wurde.

Am Bonner Universitätsklinikum werden die Untersuchungen anhand des F+30 Protokolls durchgeführt, das heißt, die Furosemidbelastung erfolgt 30 min nach Untersuchungsbeginn. Gemäß den Leitlinien der der Arbeitsgemeinschaft für Pädiatrische Nephrologie, der Deutschen Gesellschaft für Kinderchirurgie und der Deutschen Gesellschaft für Nephrologie soll die Furosemidgabe 20 min nach Injektion des Radio
dharamkons erfolgen (F+20). Damit weichen wir in unserem Vorgehen von den Leit-

Dennoch ist es auch für zukünftige Untersuchungen am Universitätsklinikum Bonn durchaus denkbar, Nierenfunktionsszintigraphien weiterhin nach dem F+30 Protokoll durchzuführen. In der vorliegenden Studie wurden insgesamt 155 Nierenfunktionsszintigraphien durchgeführt. In 16 Fällen (10,3 %) konnte auf eine Furosemidgabe verzichtet werden, da bereits im Nativszintigramm ein suffizientes Abflussverhalten gezeigt wurde. 15 min nach Untersuchungsbeginn war durchschnittlich 38,7 %, weitere 15 min später, das heißt am Ende des Nativszintigrams, durchschnittlich 70,1 % des Tracers eliminiert worden. Folglich fand zwischen der 15. und 30. Minute etwa 32,4 % der Elimination statt, was das Untersuchungsende bereits ohne Furosemidbelastung zur Folge hatte. Wenn die Nierenfunktionsszintigraphien leitliniengerecht gemäß des F+20 Protokolls durchgeführt worden wären, wäre bei einem Groß-

Auch die Deutsche Gesellschaft für Nuklearmedizin gibt keinen eindeutigen Applikationszeitpunkt für Furosemid an. Späte Injektionen von Furosemid, wie beispielsweise F+20, erlauben die direkte Beurteilung des Kurvenverlaufs nach Furosemidgabe, wohingegen eine frühe Gabe von Furosemid (F-15, F0, F+2) nur eine intravenöse Injektion erfordert, was insbesondere bei jungen Kindern mit zarten Venen einen Vorteil darstellt.

Es wäre wünschenswert, in einer größer angelegten Studie die einzelnen Protokolle miteinander zu vergleichen. Ideal wäre ein zukünftig standardisiertes Vorgehen, welches sich, basierend auf fundierten Studienergebnissen, in den Leitlinien wiederfindet. Bis dahin werden sich weiterhin verschiedene Protokolle bezüglich der Durchführung von Nierenfunktionsszintigraphien in den einzelnen Studien zeigen, wobei jedes Protokoll über eigene Stärken und Schwächen verfügt.

4.2 Indikation zur Nierenfunktionsszintigraphie

Die Deutsche Gesellschaft für Nuklearmedizin gibt in der DGN-Handlungsempfehlung (S1-Leitlinie aus 2013) bezüglich der Nierenfunktionsszintigraphie keine konkrete Ausmaß hinsichtlich der Nierenbeckenweite an, an welcher eine Nierenfunktionsszintigraphie durchgeführt werden soll. Als Indikation gelten „alle Nierenerkrankungen, bei denen die Bestimmung der seitengetrennten Nierenfunktion und die Bestimmung des Abflusses zum Zeitpunkt der Diagnose und während der einzelnen Phasen der operativen oder konservativen Therapie erforderlich sind. Eingeschlossen sind hierbei Dilatationen, zum Beispiel durch pelviureterale und vesikoureterale Stenosen (…)“.

Eine wesentliche Zielsetzung der vorliegenden Arbeit war es, unsere Vorgehensweise, bereits ab 12 mm eine Nierenfunktionsszintigraphie durchzuführen, kritisch zu hinterfragen. Unsere Kohorte umfasste insgesamt 90 Niereneinheiten, von denen 37 primär operativ, elf sekundär operativ und 42 Niereneinheiten konservativ therapiert worden sind. In der Gruppe der primär Operierten betrug die durchschnittliche präoperative Nierenbeckenweite 24,8 mm. Es finden sich allerdings auch sechs Niereneinheiten (vier UAS rechts, zwei UAS links), deren Nierenbeckenektasie zwischen 12 und 15 mm lag (s. Abschn. 3.5.2 Tab. 21). Die operative Korrektur erfolgte durchschnittlich mit sechs Monaten (0,19 - 1,12 J.). Trotz recht geringer Nierenbecken- dilatation war in der Nierenfunktionsszintigraphie ein obstruktives Abflussverhalten apparent geworden. Der Gesamtabfluss nach Furosemid lag bei diesen sechs Niereneinheiten zwischen 33,7 und 64 % und die Nierenpartialfunktion zwischen 27,4 % und 52 %. Eine Nierenpartialfunktion von weniger als 45 % zeigte sich in vier Fällen (67 %). Man kann davon ausgehen, dass es bei den Niereneinheiten mit nachgewiesener vermindelter seitengetrennter Nierenpartialfunktion von 27,4 %, 29 % bzw. 40 % mittels konservativer Therapie nicht zu einer Befundverbesserung gekommen wäre und für die operative Korrektur demzufolge eine absolute Indikation bestand. In vier Fällen wurde erneut eine Szintigraphie im postoperativen Therapieverlauf durchgeführt, welche bei allen eine funktionelle Abflussstörung mit einem Anstieg der Nierenpartialfunktion und damit eine deutliche Befundverbesserung ergab. Insbesondere die Niereneinheiten mit der präoperativen Nierenpartialfunktion von 27,4 bzw. 29 % wiesen eine deutliche Verbesserung der Nierenpartialfunktion von 32,3 bzw. 41 % auf.

Eine normale Nierenpartialfunktion von mindestens 45 % hatten alle Kinder mit einer Nierenbeckenweite von höchstens 19 mm. Basierend auf diesen Ergebnissen empfehlen die Autoren die Durchführung einer Nierenfunktionsszintigraphie ab einem anterior-posterior Diameter von 20 mm, da bei geringer Nierenbeckenektasie keine Nierenpartialfunktion von weniger als 40 % zu erwarten sei und eine Nierenpartialfunktion von weniger als 40 % oftmals als Schwellenwert für die operative Intervention gesehen wird.

Auch in der vorliegenden Arbeit zeigte sich in der Gruppe der konservativ Behandelten (n = 42) keine Korrelation zwischen dem Ausmaß der maximalen Nierenbeckenektasie (MW 16 ± 3,6 mm) und der Nierenpartialfunktion (MW: 50,7 %, Spannweite 41 – 60 %). Die maximal ermittelte Nierenbeckeneinteilung betrug 25 mm. Das bedeutet, dass in diesem Bereich keine Einschränkung der Nierenpartialfunktion zu erwarten ist.

Trotz der Leitlinien der Arbeitsgemeinschaft für Pädiatrische Nephrologie, der Deutschen Gesellschaft für Kinderchirurgie und der Deutschen Gesellschaft für Nephrologie sowie der Studie von Burgu et al. empfehlen wir, die Indikation zur erstmaligen Nierenfunktionsszintigraphie weiterhin ab einer Nierenbeckenektasie von 12 mm zu stellen. Es ist durchaus anzunehmen, dass es bei nur sehr wenigen Kindern mit einer solchen Nierenbeckendilatation bereits zu einer szintigraphisch relevanten Abflussbehinderung gekommen ist. Dennoch finden sich in unserer Studie drei Niereneinheiten, deren Funktion trotz anterior-posterior Diameter von höchstens 15 mm bereits maßgeblich eingeschränkt war (27,4 %, 29 % bzw. 40 % NPF) und ohne operative Intervention wohmöglich irreversibel geschädigt worden wäre. Die Werte des Nie-
renquotienten zum Zeitpunkt der maximalen Ausprägung lagen zwischen 5 – 6,2 das heißt, die Nierenbeckenektasie machte zwischen 16,1 und 20 % der Nierenlänge aus. In der Auswertung des Nierenquotienten (s. Abschn. 3.5.3 Tab. 23) zeigt sich, dass es keine konservativ behandelte Niereneinheit gibt, deren Nierenbeckenektasie mindestens 30 % der Nierenlänge ausmachte. Folglich ist bei den operativ behandelten Niereneinheiten mit einer Nierenbeckenektasie von höchstens 15 mm anhand des Nierenquotienten (16,1 – 20 %) keine Differenzierung zwischen operativer und konservativer Therapie möglich. Dies könnte als Entscheidungshilfe bezüglich der Indikation zur Nierenfunktionsszintigraphie fungieren. Das bedeutet, dass bei jeder Niereneinheit, deren Nierenbeckenweite mehr als 30 % der Nierenlänge ausmacht, eine Nierenfunktionsszintigraphie durchgeführt werden sollte.

Der dynamische Nierenindex umfasste bei diesen drei Niereneinheiten mit präoperativer Nierenbeckenweite von höchstens 15 mm bei vermindert der Nierenpartialfunktion Werte zwischen 0,53 – 0,79. Demzufolge konnte eine Reduktion der Nierenbeckenektasie, unter Berücksichtigung des Nierenlängenwachstums, zwischen 21 und 47 % erzielt werden. Dies ist etwas weniger als die durchschnittlich erzielte Reduktion von 60 % in der primär operierten Gruppe (s. Abschn. 3.5.3 Tab. 24). Anhand des dynamischen Nierenindexes kann eine Evaluation des Therapieverlaufs erfolgen. Kommt es zu einer Persistenz des dynamischen Nierenindexes, das heißt, zu einer zunehmenden Nierenbeckenweite bei gleichzeitigem Nierenwachstum im Therapieverlauf (Werte von ± 1) bzw. persistierender Nierenbeckenweite über 12 mm, sollte ebenfalls eine Nierenfunktionsszintigraphie zur Evaluation der seitengetrennten Nierenpartialfunktion durchgeführt werden.

4.3 Einfluss der Nierenbeckenweite auf die OP-Indikation

Peters (1995) beschrieb bereits die Problematik, dass es keinerlei konkrete Schwellenwerte hinsichtlich der Nierenbeckenektasie gäbe, anhand derer die Entscheidung zur operativen oder konservativen Therapie getroffen werden könnte. Es gelte als Herausforderung für die Experten, darüber zu entscheiden, ob die Abflussbehinderung zu einer irreversiblen Nierenschädigung führen könnte.

Auch wir legten den Fokus auf den Zusammenhang zwischen Nierenbeckenweite und nachgewiesener Obstruktion. Eine Nierenbeckenektasie von mindestens 25 mm trat zu keinem Zeitpunkt bei einer der 42 konservativ therapierten Niereneinheiten auf (s. Abschn. 3.5.2 Abb. 28). Diese fand sich aber bei 23 der insgesamt 48 operativ versorgten Niereneinheiten (48 %). Demnach sehen wir einen möglichen Schwellenwert bei 25 mm. Bei einer Nierenbeckenweite von höchstens 15 mm ist das Vorliegen einer Obstruktion als unwahrscheinlich anzusehen, dennoch kamen in unserer Kohorte sechs Niereneinheiten (7 %) vor, welche trotz der moderat ausgeprägten Nierenbeckenektasie bereits eine signifikante Abflussstörung zeigten. Dies unterstreicht, dass die Ausprägung der Nierenbeckenweite keineswegs als alleinige OP-Indikation gewählt werden darf. Als kritischer Bereich ist eine extrarenale Nierenbeckenweite zwischen 15 und 25 mm anzusehen. Eine solche Nierenbeckenektasie hatte bei jeweils 19 operativ behandelten und auch 19 konservativ behandelten Niereneinheiten bestanden (s. Abschn. 3.5.3 Tab. 25). Der Nierenquotient zeigte vergleichbare Werte (4,7 operativ bzw. 4,5 konservativ), das heißt, zum Zeitpunkt der maximalen Ektasie machte die Nierenbeckenektasie etwa 21,3 % (operativ) bzw. 22,2 % (konservativ) aus. Der Nierenquotient liefert demzufolge keinen signifikanten Hinweis, ob eine operative Korrektur nötig ist. Beim dynamischen Nierenindex zeigte sich ein hochsignifikanter Unterschied (p < 0,001) innerhalb der Gruppen. Während in den operativen Gruppen durchschnittlich eine Reduktion der Nierenbeckenweite unter Berücksichtigung des Nierenlängenwachstums um 60 % (± 22 %) erreicht werden konnte, war der Rückgang in der konservativen Gruppe mit 30 % (± 25 %) signifikant geringer. Allerdings wurden in der Berechnung des dynamischen Nierenindexes die Daten zum Zeitpunkt der letzten Sonographie und damit bei den operativen Gruppen die postoperative Sonographie berücksichtigt, sodass trotz des signifikanten Unterschiedes anhand des dynamischen Nierenindexes keine Präferenz für eine Therapieform erstellt werden kann.

Auffällig ist, dass sich in der operativen Gruppe nahezu doppelt so häufig die Lokalisation der Ureterabgangsstenose auf der rechten Seite befindet (sieben UAS re.
operativ, drei UAS re. konservativ). Ein signifikanter Unterschied liegt nicht vor. In-
wiefern die Lokalisation der Ureterabgangsstenose einen Einfluss auf die Therapie-
form hat, sollte in einer größeren Studie evaluiert werden. Entscheidungsgrundlage
für das weitere Vorgehen bei einer Nierenbeckenektasie zwischen > 15 – 25 mm bil-
det weiterhin, neben der klinischen Symptomatik des Patienten, in hohem Ausmaß
auch der Befund der Nierenfunktionsszintigraphie.
Von besonderem Interesse waren auch die Niereneinheiten, bei denen die OP-
Indikation erst im weiteren Therapieverlauf gestellt worden war (Gruppe 2, sekundär
operiert). Es gilt als Herausforderung, diese Fälle herauszufiltern, bei denen die OP-
Indikation erst nach Durchführung von mindestens zwei Nierenfunktionsszintigra-
phien gestellt wurde. Das Ziel besteht darin, die operative Korrektur bereits frühzeitig
durchzuführen und dadurch die aufwendige, patientenbelastende invasive Diagnostik
so spärlich wie möglich anzuwenden. Bei Interpretation der Ergebnisse muss die
recht geringe Gruppenstärke der sekundär Operierten (n = 11) berücksichtigt wer-
den.
Die Operation in der Gruppe 2 (sekundär operiert) fand in 73 % (acht NE) mit maxi-
mal 5,5 Jahren statt. In der Gruppe der primär operierten war dies bei 86 % (32 NE)
der Fall. Demzufolge scheinen die ersten sechs Lebensjahre entscheidend für die
operative Korrektur zu sein. Eine innerhalb der ersten sechs Lebensjahre aufgetrete-
ne Nierenbeckenektasie sollte demnach engmaschiger kontrolliert bzw. evaluiert
werden, während bei älteren Kindern ein eher abwartendes Therapiekonzept ange-
wendet werden kann. Da die Nierenlänge mit dem Alter zunimmt, kann hier der
Nierenquotient bei der Entscheidung hinsichtlich invasiver Diagnostik/Therapie behilf-
lich sein. Fünf Niereneinheiten (45.5 %) der Gruppe 2 (sekundär operiert) und 13
Niereneinheiten (35,1 %) der Gruppe 1 (primär operiert) wiesen präoperativ einen
Nierenquotient von ≤ 3,3 auf, das bedeutet, die Nierenbeckenektasie machte min-
destens 30 % der Nierenlänge auf. Ein solches Verhältnis bestand bei keiner konserv-
vativ behandelten Niereneinheit.
Des Weiteren lag in der Gruppe der sekundär Operierten zum Zeitpunkt der maxima-
len Ektasie bei 73 % eine Nierenbeckenweite von über 25 mm vor, bei drei Nieren-
einheiten fand sich die Nierenbeckenweite von über 25 mm bereits bei der Erstunter-
suchung. In Gruppe 1 (primär operiert) fand sich bei 15 Niereneinheiten (41 %)
präoperativ eine Nierenbeckenweite von über 25 mm. Erfreulicherweise zeigte sich innerhalb der Gruppe 2 (sekundär operiert) beim dynamischen Nierenindex mit 0,26 (± 0,22) ein vergleichbarer Wert wie in Gruppe 1 (primär operiert) mit 0,4 (± 0,20). Demzufolge konnte im Therapieverlauf eine Reduktion der Nierenbeckenweite unter Berücksichtigung des Nierenlängenwachstums um 74 % (Gruppe 2) bzw. 60 % (Gruppe 1) erzielt werden. Zum Zeitpunkt der letzten Sonographie zeigte sich bei 64 % (Gruppe 2) bzw. 49 % (Gruppe 1) eine Nierenbeckenrestektasie von unter 12 mm. Das beachtliche erzielte postoperative Ergebnis ist demnach unabhängig von der Gruppenzugehörigkeit.

4.4 Nierenpartialfunktion – Entscheidungsgrundlage funktionelle vs. operative Therapie?

findet sich die Indikation zur operativen Korrektur der Ureterabgangstenose bei einer szintigraphisch nachgewiesenen Nierenpartialfunktion von unter 45 %.

In der retrospektiven Studie von Jain et al. (2012) galt, neben der klinischen Symptomatik (Schmerzen und Harnwegsinfektionen), auch eine verminderte NPF < 40 % als Kriterium zur chirurgischen Intervention. Von 30 Kindern mit pränatal diagnostizierter Nierenbeckendilatation wurden acht Kinder früh und weitere zwölf Kinder im weiteren Therapieverlauf operiert. Bei jeder konservativ behandelten Niereneinheit bestand stets eine Nierenpartialfunktion von über 40 %.

Herndon und Kitchens (2009) sehen den Anlass zur operativen Korrektur bei einem obstruktiven Abflussverhalten (HWZ nach Furosemidapplikation > 20 min) oder einem indifferenten Kurvenverlauf, einhergehend mit einer Nierenpartialfunktion von weniger als 40 %.

Am Bonner Universitätsklinikum wurde die Entscheidung zur operativen Therapie anhand des Kurvenverlaufs in der Nierenfunktionsszintigraphie getroffen. Ein Gesamtabfluss von weniger als 50 % 20 min nach Furosemidapplikation wurde, ebenso wie von Amling et al. (1996), als Obstruktion definiert. Eine präoperative seitendifferente Nierenpartialfunktion von unter 40 % bestand bei 49 % der primär und nur 9 % der sekundär operierten Niereneinheiten. Trotz adäquatem Abflussverhalten in der Nierenfunktionsszintigraphie wurde bei zwei primär operierten Niereneinheiten die OP-Indikation aufgrund einer deutlich verminderten Nierenpartialfunktion von jeweils 29 % gestellt. An anderen Kliniken wären einige dieser Kinder mit einer NPF > 40 % wohlmöglich zunächst konservativ behandelt worden, wir sahen aufgrund der szinti-
graphisch apparent gewordenen Abflussstörung die Indikation zur Operation gegeben. Dies veranschaulicht, dass die Entscheidung zur operativen Korrektur neben objektiv quantifizierten Befunden auch von der routinemäßigen Vorgehensweise und Meinung der Ärzte am jeweiligen Klinikum abhängig ist.

Auch wir teilen die Ansicht der der Arbeitsgemeinschaft für Pädiatrische Nephrologie, der Deutschen Gesellschaft für Kinderchirurgie und der Deutschen Gesellschaft für Nephrologie, dass die Nierenpartialfunktion keinesfalls als alleiniges Entscheidungskriterium für die Therapieform gewählt werden, sondern leitliniengerecht vor allem auch das Abflussverhalten bedacht werden sollte.

4.5 Determinanten für die Notwendigkeit der chirurgischen Intervention

In unserer Studie wurde in 53 % der Fälle (48 NE) die Ureterabgangsstenose operativ korrigiert, davon bei 37 Nierenineinheiten nach der ersten Nierenfunktionsszintigraphie und bei den übrigen elf Nierenineinheiten im weiteren Therapieverlauf. Ähnliche

Bei der Interpretation unserer Ergebnisse muss berücksichtigt werden, dass nur Patienten mit einer Nierenbeckenektasie von mindestens 12 mm eingeschlossen wurden. Zahlreiche Fälle mit einer sehr milden Form der Nierenbeckenektasie wurden aus der Analyse ausgeschlossen. Dennoch wurde etwa jedes zweite Kind mit Ureterabgangsstenose operativ therapiert.

Nelson et al. (2005) analysierten retrospektiv mit Hilfe des „Nationwide patient sample“ (Daten von bis zu 20 % aller Krankenhäuser der USA) die Daten von 5800 Kindern, die eine Pyeloplastik erhalten hatten. Das Durchschnittsalter bei Operation betrug 5,2 J., wobei Jungen mit 5 J. signifikant (p < 0,001) früher operiert wurden als Mädchen mit 5,8 Jahren.

Auch wir erhielten diesbezüglich ähnliche Ergebnisse. Von 90 Niereneinheiten wurden 48 Niereneinheiten operativ versorgt. Primäre Korrekturen fanden im Mittel im Alter von 1,7 J. (primär operiert, Median 0,4 J.) bzw. 5,5 J. (sekundär operiert, Median 4,1 J.) statt. Im Gegensatz zu Nelson et al. fanden wir keine signifikanten (p > 0,05)
geschlechtsspezifischen Unterschiede. Dennoch wurden auch bei uns Jungen im Schnitt mit 1,8 J. früher operiert als Mädchen mit 3,9 Jahren. Ein Grund für die fehlende Signifikanz könnte im deutlich geringeren Umfang unserer Studie mit 90 NE vs. 5800 NE (Nelson et al., 2005) gesehen werden.

Zahlreiche Studien belegen, dass die Prävalenz für das Vorliegen der Ureterabgangsstenose auf der linken Seite deutlich erhöht ist. Bei Jain et al. (2012) war die Hydronephrose 1,7 Mal, bei Karnak et al. (2009) 1,5 Mal und bei Moon et al. (2003) sogar 3,8 Mal häufiger links lokalisiert als rechts. Bei Chertin et al. (2006) lag eine linksseitige Ureterabgangsstenose 2,1 Mal häufiger vor als eine rechtsseitige, die
Seite der Ureterabgangsstenose hatte allerdings keinen prädiktiven Wert für das weitere Procedere. Auch in unserer Kohorte fand sich 1,6 fach häufiger eine links lokalisierte Ureterabgangsstenose. Allerdings war bei Vorliegen einer Ureterabgangsstenose rechts in 71 %, aber nur in 31 % der Fälle mit linksseitiger Ureterabgangsstenose eine operative Korrektur notwendig. In Gegensatz zu den Ergebnissen von Chertin et al. musste bei uns eine rechtsseitige Abflussbehinderung folglich 2,3 fach häufiger mit einer Nierenbeckenplastik versorgt werden.

Ebenso finden sich bezüglich der Indikationsstellung zur Pyeloplastik unterschiedliche Ansichten. Einige Studien stellen die Nierenpartialfunktion als Entscheidungsgrundlage zwischen operativer und konservativer Vorgehensweise in den Vordergrund. Als signifikante unabhängige Risikofaktoren für eine chirurgische Therapie beschreiben Chertin et al. (2006) eine Nierenbeckenektasie vom Grad III - IV und eine NPF < 40%.

Als OP-Indikation wird neben einer zunehmenden Hydronephrose einhergehend mit einer Parenchymverschmälerung, eine NPF < 40% bzw. eine Verschlechterung der Nierenpartialfunktion um mehr als 10 % in Bezug auf die erste Szintigraphie genannt (Coplen et al., 2006; Karnak et al., 2009; Molina et al., 2013). Das Abflussverhalten spielte hierbei eine untergeordnete Rolle.

Des Weiteren konnten wir zeigen, dass in der konservativen Gruppe niemals eine Nierenbeckenweite von über 25 mm vorlag, wohingegen eine solche Nierenbeckenektasie bei 48 % der operativ behandelten Niereneinheiten nachgewiesen wurde. In der Gruppe der primär Operierten konnte eine negative Korrelation (r = -0,49) zwischen Ausmaß der Nierenbeckenektasie und präoperativer Nierenpartialfunktion erbracht werden. Je ausgeprägter die Hydronephrose, desto niedriger war die seitengetrennte Nierenfunktion. Für die sekundär operierten Niereneinheiten konnte diese Korrelation nicht nachgewiesen werden. Hier liegt ein möglicher Grund in der kleinen Stichprobe (n = 11).
Zusammenfassend lässt sich sagen, dass eine NPF < 40 %, eine szintigraphisch relevante Abflussstörung sowie eine ausgeprägte Nierenbeckenektasie von mindestens 25 mm als signifikante Determinanten für die Notwendigkeit einer chirurgischen Intervention beschrieben werden können.

4.6 Nierenquotient – Abschätzung der urodynamischen Relevanz?

Während der Aufarbeitung und Analyse der Daten kam es zu der Frage, inwieweit die Evaluation der Nierenbeckenektasie unter Berücksichtigung der Nierenlänge, das heißt der Nierenquotient, für die Entscheidung des Therapieprozedere relevant sein könnte. Bei der Bestimmung der Nierenlängen der einzelnen Gruppen fiel auf, dass die sekundär operierten Niereneinheiten stets am Größten, wohingegen die der konservativen am kleinsten waren (s. Abschn. 3.5.2 Abb. 40). Bei der Interpretation der Werte muss angemerkt werden, dass die konservativ therapierten Kinder bei den Untersuchungen signifikant jünger waren als die der operativen Gruppen. Dies scheint eine plausible Erklärung dafür zu sein, dass die Nieren in dieser Gruppe scheinbar am kleinsten sind. Außerdem bestand kein signifikanter Unterschied zwischen den operierten Gruppen in Bezug auf das Alter zum Zeitpunkt der ersten und letzten Messung.

Es lag sowohl in den operativen Gruppen als auch in der konservativen Gruppe zum Zeitpunkt der maximalen Nierenbeckenektasie auch die größte Nierenlänge vor. Folglich ermöglicht dies die Hypothese, dass ein Zusammenhang zwischen Nierenlänge und Ausprägung der Nierenbeckenweite besteht. Demnach könnte ein stark dilatiertes Nierenbecken zu einer Überschätzung der tatsächlichen Nierenlänge führen. Dieser Ansatz wird durch die Tatsache gestützt, dass in allen Gruppen die Nierenlängen bei der letzten Untersuchung geringer waren als zum Zeitpunkt der maximalen Ausprägung. Die Kinder waren bei Erstuntersuchung im Mittel etwa 47 Tage alt, wohingegen die letzte Sonographie im Mittel mit 6,1 J. durchgeführt wurde (s. Abschn. 3.3 Tab. 1 und 2). Die Maße der konservativ behandelten Nieren liegen mit 6,3 cm (Erstuntersuchung) und 8,5 cm (letzte Sonographie) jeweils zwischen der 50. und 95. Perzentile der altersgerechten Nierentwicklung (Zerin und Blane, 1994). In den operativen Gruppen wurden im Mittel signifikant größere Nieren gemessen, welche oberhalb der 95. Perzentile anzusiedeln sind. Dies verstärkt die Hypo-
pothese, dass eine ausgeprägte Hydronephrose zu einer Überschätzung der tatsächlichen Nierenlänge führen könnte.

Eine Schrumpfung infolge von Atrophie könnte ebenfalls ein Grund für die Größenregredienz sein. Dies kann jedoch insofern weitestgehend ausgeschlossen werden, da alle Gruppen, unabhängig von der Form der Abgangsstenose, dieses Phänomen zeigen und eine fortgeschrittene irreversible Niereneschädigung eine Nierenatrophie zur Folge hätte. Darüber hinaus konnte für den Zeitpunkt der maximalen Ausprägung, welcher bei jeder Niereneinheit individuell bestand, eine signifikante (p = 0,01) positive Korrelation (r = 0,283) zwischen Nierenlänge und Nierenbeckenweite nachgewiesen werden. Somit bedeutet dies, dass je ausgeprägter die Nierenbeckenektasie war, desto größer war die Nierenlänge. Die Unterschiede der Nierenlängen zwischen den operativen Gruppen (primär operiert: MW 9,4 cm; sekundär operiert: MW 10,4 cm) sind demnach möglicherweise auf den divergenten Auspräungsgrad der Hydronephrose zurückzuführen.

Ein interessanter Ansatz hinsichtlich der Evaluation der Nierenläge in Bezug auf die Nierenfunktion findet sich auch bei Weitz et al. (2013). In ihrer Studie mit 85 Kindern, davon 55 Mädchen, konnten sie eine signifikante Korrelation (r = 0,91; p < 0,001) zwischen dem im Ultraschall gemessenen Nierenvolumen und der mittels Szintigraphie bestimmten seitengetrennten Nierenfunktion nachweisen. Die durchschnittliche Abweichung zwischen sonographisch bestimmtem Nierenvolumen und szintigraphisch erfasster Nierenparti(al)funktion wird mit 2,8 % (SD 4,1 %) angegeben. Ein großes Nierenvolumen korreliert demnach mit einer guten Nierenparti(al)funktion. Diese positive Korrelation wurde zuvor bereits in einigen anderen Studien nachgewiesen (Adibi et al., 2007; Sargent und Gupta, 1993). Die Kinder dieser Studien waren gesund und wiesen eine normale Nierenfunktion auf. Anzumerken ist, dass bei denen von Weitz et al. (2013) untersuchten Kindern eine primäre Refluxproblematik vorlag. Patienten mit Hydronephrose, ohne diagnostizierten primären Reflux, wurden aus der Studie ausgeschlossen. Ob diese Studienergebnisse auch auf Patienten mit durch Ureterabgangsstenose bedingter Nierenbeckendilatation übertragen werden können, ist fraglich. Insbesondere aber für Kinder mit nur geringer Nierenbeckenektasie oder persistierender Dilatation, könnte dies eine patientenfreundliche Möglich-
keit darstellen, die Nierenfunktion ohne invasive Diagnostik kontinuierlich evaluieren zu können.

Der dynamische Nierenindex evaluiert die Entwicklung der Nierenbeckenweite unter Berücksichtigung des Nierenlängenwachstums im Therapieverlauf. Bei jeder sekundär operierten Niereneinheit konnte ein Rückgang der dynamischen Nierenbeckenweite, das heißt unter Berücksichtigung des Nierenlängenwachstums, um mindestens 35 % (im Mittel um 74 %) nachgewiesen werden. Im Gegensatz dazu fand sich bei den primär operierten Niereneinheiten eine Reduktion der dynamischen Nierenbeckenweite um mindestens 21 % (im Mittel um 60 %). Bei den konservativ behandelten ureterabgangstenosen wurde die dynamische Nierenbeckenweite bei einer
Verlaufsbeobachtung von $5,3 \pm 3,9$ J. im Mittel um 36 % reduziert (s. Abschn. 3.5.3 Tab. 24). Wenn es während des Behandlungsverlaufes zu einer Zunahme der Nierenbeckenweite bei gleichzeitigem Nierenwachstum kommt (Persistenz des dynamischen Nierenindexes), sollte eine Evaluation der Nierenpartialfunktion mittels Nierenfunktionsszintigraphie in Betracht gezogen werden. Unsere Daten der konservativ therapierten Niereneinheiten belegen, dass eine Abnahme des dynamischen Nierenquotienten eintreten sollte. In welchen Zeitraum eine Abnahme des dynamischen Nierenindexes zu erwarten ist, sollte in einer zukünftigen Studie genauer untersucht werden.

Die Analyse unserer Daten resultiert in der Empfehlung, den Nierenquotienten ergänzend im Entscheidungsprozess zwischen funktioneller und operativer Therapie zu berücksichtigen. Da keine konservative therapierte Niereneinheit jemals einen Nierenquotient von $\leq 3,3$ aufzeigte, sollte bei einem solchen Nierenquotienten eine operative Korrektur der Ureterabgangsstenose in Betracht gezogen werden.

4.7 Postoperative Ergebnisse

Neben der Bestimmung der Determinanten zur funktionellen Therapie beschäftigten wir uns intensiv mit dem postoperativen Outcome der mittels offener Pyeloplastik versorgten Niereneinheiten.

In der vorliegenden Arbeit sind insgesamt 48 Niereneinheiten (53 %) operativ versorgt worden. Die postoperative Verlaufsbeobachtung betrug im Mittel 5,8 J. ($\pm 4,7$ J.).

Fünf Niereneinheiten (10 %) wurden postoperativ weniger als ein Jahr behandelt, die weitere Betreuung erfolgte ambulant durch ärztliche Kollegen. Ermöglicht wurde dies durch ein sehr erfreuliches Operationsergebnis, im Sinne einer geringen Restektasie von jeweils unter 12 mm. Nach chirurgischer Intervention konnte die Nierenbeckenweite von durchschnittlich 25,5 mm hoch signifikant ($p < 0,001$) auf 12,1 mm postoperativ verringert werden, wobei bei drei primär operierten Niereneinheiten (8 %) eine Dezimierung der Nierenbeckenweite um höchstens 5 mm erzielt wurde. Eine postoperative Nierenfunktionsszintigraphie zur Evaluation des Therapieerfolges wurde am Universitätsklinikum Bonn nicht routinemäßig, sondern lediglich bei persistierender Nierenbeckenekstasie durchgeführt. Dies geschah aufgrund der Tatsache,

Bei 26 Niereneinheiten lag eine postoperative Verlaufsszintigraphie vor. Ein Anstieg der Nierenpartialfunktion konnte in ca. 85 % der Fälle (n = 22) beobachtet werden. Hierbei war eine postoperative Langzeitbeurteilung (> 5 J.) bei nur sieben Niereneinheiten möglich, von denen 71 % (5 NE) einen Anstieg der Nierenpartialfunktion zeigten. Besonders interessant ist der Therapieverlauf der Niereneinheit Nr. 45, bei der präoperativ eine Nierenpartialfunktion von 39 % bestand. Fünf Jahre postoperativ zeigte sich eine seitengleiche Nierenpartialfunktion von 50 %, weitere sechs Jahre später lag trotz hervorragender Tracerelimination (Gesamtabfluss: 90 %) eine seitendivergente Nierenpartialfunktion von nur noch 36 % vor. Dieser Fall veranschaulicht, dass es, trotz zunächst postoperativ erfreulicher Befundnormalisierung, im weiteren Verlauf zu einer Verschlechterung der Nierenfunktion kommen kann. Inwiefern es sich hier um einen Einzelfall handelt, sollte in der Fragestellung bevorstehender Langzeitstudien Berücksichtigung finden.

Auch Helmy et al. (2012) analysierten retrospektiv 43 Patienten, deren Ureterabgangsstenose mit einer offenen Pyeloplastik zwischen 1995 und 2010 behandelt worden war. Eine Befundverbesserung, definiert als Symptomlinderung bzw. radiologisch regredienter Obstruktion zum Zeitpunkt der letzten Untersuchung (im Mittel mit 5,8 J.), konnte in 82,6 % nachgewiesen werden. Ein vollständiger Rückgang der Nierenbeckendilatation fand sich bei Amling et al. (1996) bei neun Niereneinheiten (19 %). In 91 % wurde zwei Jahre postoperativ eine verringerte Nierenbeckenektasie diagnostiziert. Darüber hinaus zeigte sich, dass nur bei 38 % der Nieren bereits innerhalb der ersten sechs Monate postoperativ eine Befundverbesserung nachweis-
bar war, wohingegen dies bei 81 % erst zwei Jahre nach chirurgischer Intervention der Fall war.
McAleer und Kaplan (1999) konnten in ihrer Studie aus 79 Kindern keine signifikante (\(p = 0.078 \)) postoperative Steigerung der Nierenpartialfunktion belegen, eine Verbes-
serung des Abflussverhaltens fand sich in 90 % der Fälle. Die Indikation zur operati-
ven Korrektur stellten sie bei einer HWZ von Furosemid > 20 min. Das Verlaufseno-
gramm wurde bereits drei Monate postoperativ angefertigt. Angelehnt an die Ergeb-
nisse von Amling et al. wäre es denkbar, dass zu einem späteren Zeitpunkt bei einer
großeren Anzahl an Kindern eine Verbesserung der Nierenfunktion vorgelegen hätte.
Zusammenfassend lässt sich sagen, dass unsere Ergebnisse mit einer Verbesse-
rungr der Nierenpartialfunktion in 84,6 %, des Abflussverhaltens in 96,1 % und Dezi-
mierung der Nierenbeckendilatation in allen Fällen (\(n = 26 \)) als hervorragend eingef-
stuf werden können. Bei der Beurteilung der regredienten Nierenbeckenweite im
Vergleich mit anderen Studien muss beachtet werden, dass wir diese anhand des
anterior-posterior Diameters vorgenommen haben, anders als in vielen Studien, in
denen sich oftmals auf die Stadieneinteilung der Hydronephrose (I - IV) der „Society
for fetal Urology“ (SFU) berufen wird. Diese basiert nicht auf konkreten Werten des
anterior-posterior Diameters, sondern vielmehr auf dessen morphologischen Korrela-
ten im Ultraschall, wie beispielsweise der Kelchbeteiligung und Parenchymverschmäl-
erung.
Auch der von uns berechnete dynamische Nierenindex, der die Nierenbeckenekstasie
unter Berücksichtigung der Nierenlänge zu verschiedenen Zeitpunkten evaluiert, un-
terstreicht den Therapieerfolg. So konnte in den operativen Gruppen mit durch-
schnittlich 74 % eine signifikant höhere Reduktion erzielt werden als bei den konservat-
vativen Niereneinheiten mit 37 %. Zwischen den primär und sekundär operierten Nie-
reneinheiten zeigten sich keine signifikanten Unterschiede, das heißt, es wurde ein
vergleichbarer Therapieerfolg erreicht. Während in den operativen Gruppen für jede
Niereneinheit eine Befundverbesserung nachgewiesen werden konnte, traf dies in
der konservativen Gruppe in 95 % der Fälle zu.
4.8 Offene Pyeloplastik – Goldstandard oder bald veraltete Methode?

Zusammenfassend lässt sich schlussfolgern, dass die laparaskopische Vorgehensweise, einhergehend mit einer geringeren Morbidität und exzellenten kosmetischen Ergebnissen, zunehmend die offene Pyeloplastik ersetzen wird. Dennoch wird die offene Pyeloplastik nach Anderson-Hynes in den nächsten Jahren weiterhin vielerorts als Standardmethode verwendet werden, solange bis adäquate Langzeitstudien zur Evaluation des Operationserfolges vorliegen und flächendeckend die gesteigerten psychomotorischen Anforderungen seitens der Operateure erfüllt werden können.
5. Zusammenfassung

Bei der Ureterabgangsstenose handelt es sich um ein häufiges Krankheitsbild, welches meist asymptomatisch in Form einer Nierenbeckenektasie als sonographischer Zufallsbefund auffällig wird. Die Differenzierung zwischen funktioneller, potenziell reversibler Stenose und obstruktiver Abflussstörung, einhergehend mit einem langfristig gefürchteten, konsekutiven Nierenfunktionsverlust, gilt als Herausforderung für die interdisziplinär behandelnden Ärzte. Hierbei gilt als oberstes Ziel, die Nierenfunktion zu schützen und simultan invasive Diagnostik sowie Interventionen so gering wie nötig durchzuführen.

Ziel der vorliegenden Arbeit war die Definition von unabhängigen Determinanten in der Diagnostik und Therapie der Ureterabgangsstenose unter Berücksichtigung der entsprechenden Leitlinien sowie der aktuellen Studienlage.

Von den 90 in die Studie eingeschlossenen Niereneinheiten wurden 37 Niereneinheiten nach der ersten Nierenfunktionsszintigraphie und elf Niereneinheiten im weiteren Therapieverlauf operiert. Bei den übrigen 42 Niereneinheiten wurde ein konservatives Vorgehen gewählt.
Postoperativ zeigte sich bei 84,6 % ein Anstieg der Nierenpartialfunktion. Ein signifikant verbessertes Abflussverhalten (p < 0,001) konnte, bis auf eine Ausnahme, bei jeder Niereneinheit nachgewiesen werden. Unter Berücksichtigung des simultanen Nierenwachstums kam es in der Gruppe der primär Operierten zu einem Rückgang des dynamischen Nierenindexes um durchschnittlich 60 %, bei den sekundär Operierten um 74 % und bei den konservativ behandelten Niereneinheiten um 37 %.

Eine Nierenpartialfunktion unter 40 %, eine szintigraphisch relevante Abflussstörung sowie eine ausgeprägte Nierenbeckenektasie von mindestens 25 mm und ein Nierenquotient von ≤ 3,3 konnten als Determinanten für die Notwendigkeit einer chirurgischen Intervention beschrieben werden. 75 % der Operationen wurden bis zum fünften Lebensjahr durchgeführt. Hierbei waren die Kinder durchschnittlich 2,5 J. (± 3,7 J) alt (primär operiert 1,7 J., sekundär operiert 4,1 J.). Ausgehend von den erhaltenen Ergebnissen empfehlen wir, auch bei nur einmalig auffälliger Nierenbeckenektasie von mindestens 12 mm im Querschnitt, die routinemäßige, jährliche sonographische Kontrolle bis zum Ende des sechsten Lebensjahres.

Limitationen der vorliegenden Studie sind insbesondere im recht kleinen Patientenkollektiv (n = 90), der unterschiedlichen Gruppengröße (n = 37, n = 11 und n = 42) und den Messungenaugkeiten bei der Befunderhebung und -auswertung der Sonographie und Nierenfunktionsszintigraphie zu sehen. Wünschenswert wären zukünftige Studien unter besonderer Berücksichtigung des Nierenquotienten und des dynamischen Nierenindexes. Hierbei sollte in erster Linie deren potenzieller Einfluss auf den Entscheidungsprozess zwischen funktioneller und operativer Therapie evaluiert werden.
6. Ausblick

Bei der Betrachtung aller evaluierten Fakten können die Ergebnisse aktueller Studien zwar als vielversprechend eingestuft werden, eine zuverlässige, der Klinik vorausgehende Differenzierung zwischen funktioneller und obstruktiver Stenose ist derzeit
dennoch nicht möglich. Als oberstes Ziel gilt es, die Pathophysiologie der obstrukti-
ven Nephropathie im Detail zu verstehen. Es ist durchaus realistisch, davon auszu-
gehen, dass hierbei noch einige Jahre vergehen werden. Fraglich bleibt auch, inwie-
fern Biomarker standardisiert im täglichen Klinikalltag Anwendung finden werden.
7. Abbildungsverzeichnis

Abb. 1: Übersicht über die in den jeweiligen Abteilungen des Bonner Universitätsklinikums vorstellig gewordenen Patienten. In zentraler Position zeigt sich das vorläufige Patientenkollektiv mit 225 Patienten 14

Abb. 2: Zusammensetzung des vorläufigen Patientenkollektivs. Darstellung des Rekrutierungsvorgangs ... 15

Abb. 3: Erfasste statistische Parameter im Rahmen der sonographischen Untersuchung ... 17

Abb. 4: Übersicht über ein regelrechtes Nephrogramm mit Darstellung der einzelnen Phasen. Insbesondere die Exkretionsphase dient der Differenzierung zwischen funktioneller Stenose und relevanter Obstruktion (Seidel, 2006) ... 20

Abb. 6: Schematische Darstellung der Nierenbeckenplastik nach Anderson-Hynes (Hautmann R. 2006) .. 24

Abb. 7: Gründe für den Ausschluss der Patienten (n = 142) aus der Studie (in %) ... 26

Abb. 8: Übersicht über die Nierenlänge im Verlauf. ★★★ zeigt, dass zum Zeitpunkt der maximalen Ausprägung sowie bei der letzten Sonographie eine hoch signifikante (p < 0,001) größere Niere vorlag als bei der Erstuntersuchung ... 30

Abb. 9: Übersicht über die extrarenale Nierenbeckenweite während des Therapieverlaufs. ★★★ zeigt, dass zum Zeitpunkt der maximalen Ektasie sowie bei der letzten Sonographie eine hoch signifikant kleinere (p < 0,001) extrarenale Nierenbeckenweite vorlag als bei der Erstuntersuchung ... 31

Abb. 10: Gruppeneinteilung, basierend auf den Ergebnissen der Nierenfunktionsszintigraphie ... 33

Abb. 11: Übersicht über die Dauer der Verlaufsbeobachtung der einzelnen Gruppen ... 34

Abb. 12: Übersicht über die gemessenen Nierenbeckenweite der Gruppe 1. ★★★ zeigt eine hoch signifikante Veränderung mit p < 0,001 36

Abb. 13: Übersicht über die Veränderung der Nierenbeckenweite (jeweils n = 37) im Behandlungsverlauf .. 38

Abb. 14: Veränderung der extrarenalen Nierenbeckenweite durch operative Intervention. ★★★ zeigt, dass postoperativ eine hoch signifikant (p < 0,001) geringere Nierenbeckenweite vorlag .. 39
Abb. 15: Übersicht über prä- sowie postoperativen extrarenalen Nierenbeckenweite (jeweils n = 37). ★★★ zeigt, dass postoperativ bei hoch signifikant (p < 0,001) weniger Niereneinheiten eine Nierenbeckenweite zwischen 21 und 30 mm vorlag...40

Abb. 16: Nierenlängen der primär operierten Gruppe (n = 37). ★★★ zeigt, dass bei der ersten Sonographie eine hoch signifikant (p < 0,001) geringere Nierenlänge erfasst wurde als zum Zeitpunkt der maximalen Ausprägung bzw. der letzten Sonographie...41

Abb. 17: Veränderung der Nierenpartialfunktion durch operative Intervention (n = 23) der Gruppe 1. ★★ zeigt, dass postoperativ eine signifikant (p = 0,001) größere Nierenpartialfunktion vorlag ..43

Abb. 18: Signifikante Korrelation (p = 0,01) zwischen präoperativer Nierenbeckenweite und Nierenpartialfunktion der Gruppe 1. Es lässt sich r = -0,49 und damit ein signifikanter Zusammenhang errechnen, das Diagramm zeigt R² ...46

Abb. 19: Signifikante Korrelation (p = 0,048) zwischen dynamischem Nierenindex und dynamischer Nierenpartialfunktion der Gruppe 1. Es lässt sich r = -0,419 und damit ein signifikanter Zusammenhang errechnen, das Diagramm zeigt R². ..47

Abb. 20: Kurvenverläufe prä- und postoperativ der primär operierten Gruppe48

Abb. 21: Übersicht über die Halbwertszeit nach Gabe von Furosemid in der primär operierten Gruppe...49

Abb. 22: Übersicht über die gemessenen Nierenbeckenweite (jeweils n = 11) im Behandlungsverlauf der Gruppe 2. ★★★ zeigt eine hoch signifikante Veränderung mit p < 0,001...52

Abb. 23: Übersicht über die Veränderung der Nierenbeckenweite (jeweils n = 11) im Behandlungsverlauf der Gruppe 2. ..53

Abb. 24: Veränderung der extrarenalen Nierenbeckenweite durch operative Intervention der Gruppe 2. ★★ zeigt, dass postoperativ eine signifikant (p = 0,004) kleinere Nierenbeckenweite bestand..54

Abb. 25: Übersicht über die prä- sowie postoperative extrarenalen Nierenbeckenweite (n = 11) von Gruppe 2 ..55

Abb. 26: Nierenlängen von Gruppe 2 (n = 11). ★★★ zeigt, dass bei der ersten Sonographie eine hoch signifikant (p < 0,001) kleinere Nierenlänge vorlag als zum Zeitpunkt der max. Ausprägung bzw. der letzten Sonographie...56

Abb. 27: Korrelation zwischen präoperativer Nierenbeckenweite und Nierenpartialfunktion (n = 11) der Gruppe 2. Es lässt sich r = -0,441 errechnen, das Diagramm zeigt R²..59

Abb. 28: Kurvenverläufe prä- sowie postoperativer der sekundär operierten Gruppe..59
Abb. 29: Darstellung der Halbwertszeit nach Gabe von Furosemid in der sekundär operierten Gruppe

Abb. 30: Übersicht über die gemessenen Nierenbeckenweite (n = 42) der konservativen Gruppe. *** zeigt, dass es zunächst zu einem hoch signifikanten (p < 0.001) Anstieg der Nierenbeckenweite und im weiteren Therapieverlauf zu einer hoch signifikanten Abnahme (p < 0.001) der ermittelten Nierenbeckenweite gekommen ist

Abb. 31: Übersicht über die Veränderung der Nierenbeckenweite (n = 42) im Behandlungsverlauf

Abb. 32: Nierenlängen der konservativen Gruppe (n = 42). *** zeigt einen hoch signifikanten Zusammenhang mit p < 0.001

Abb. 33: Entwicklung der Nierenpartialfunktion in Gruppe 3

Abb. 34: Kurvenverläufe für 1. - 3. Nierenfunktionsszintigraphie in Gruppe 3

Abb. 35: Übersicht über die Halbwertszeit nach Gabe von Furosemid in der konservativen Gruppe

Abb. 36: Operative vs. konservative Therapie in Abhängigkeit von der Lokalisation der Ureterabgangsstenose

Abb. 37: Nierenbeckenweite der operativen Gruppe (primär (n = 37) und sekundär (n = 11) operiert) im Vergleich mit der Nierenbeckenweite der konservativen Gruppe. *** zeigt eine hoch signifikante Veränderung mit p < 0.001

Abb. 38: Maximal erreichte Nierenbeckenweite der einzelnen Gruppen. In der konservativen Gruppe besteht eine hoch signifikant (*** = p < 0.001) kleinere Nierenbeckenweite als in den operativen Gruppen

Abb. 39: Entwicklung des Längenwachstums in Abhängigkeit der Gruppenzugehörigkeit. * zeigt einen signifikanten Unterschied (p < 0.05) in Bezug auf die Nierenlänge zwischen sekundär operierten und konservativ behandelten Niereneinheiten zum Zeitpunkt der maximalen Ausprägung sowie der letzten Sonographie

Abb. 40: Nierenquotient zum Zeitpunkt der maximalen Nierenbeckenweite sowie bei der letzten Sonographie. *** zeigt einen hoch signifikanten Unterschied mit p < 0.001

Abb. 41: Übersicht über den Gesamtabfluss der ersten Nierenfunktionsszintigraphie. *** zeigt einen hoch signifikanten Unterschied mit p < 0.001

Abb. 42: Übersicht über die gruppenspezifische Nuklideliminierung der ersten Nierenfunktionsszintigraphie. *** zeigt, dass in Gruppe 1 ein hoch signifikant (p < 0.001) geringerer Gesamtabfluss nachgewiesen wurde als in Gruppe 2 und 3

Abb. 43: Übersicht über die Nierenpartialfunktion zum Zeitpunkt der ersten Nierenfunktionsszintigraphie. *** zeigt den hoch signifikanten Unterschied (p < 0.001) zwischen den Gruppen
Abb. 44: Übersicht über die Nierenpartialfunktion der ersten Nierenfunktions-
szentigraphie. ★★★ zeigt die hoch signifikant (p < 0,001) verringerte
Nierenpartialfunktion ...87

Abb. 45: Übersicht über die präoperative Nierenpartialfunktion der operierten
Niereneinheiten unter besonderer Berücksichtigung der Niereneinheiten
Nr. 46, Nr. 10 und Nr. 6..93
8. Tabellenverzeichnis

Tab. 1: Klinische Daten der in die Auswertung eingeschlossenen Patienten (n = 83) bei Erstvorstellung ... 28
Tab. 2: Klinische Daten der in die Auswertung eingeschlossenen Patienten (n = 83) bei der letzten Sonographie ... 28
Tab. 3: Betrachtung jeder Ureterabgangsstenose als eigenständige Nieren- einheit .. 29
Tab. 4: Auswertung der ersten Nierenfunktionsszintigraphie für das gesamte Patientenkollektiv (n = 90) .. 32
Tab. 5: Alter der primär operierten Gruppe (n = 37) bei verschiedenen Untersuchungen ... 35
Tab. 6: Metrische Daten der Gruppe 1 (n = 37) .. 35
Tab. 7: Übersicht über die Werte des dynamischen Nierenindexes der Gruppe 1 (n = 37) .. 42
Tab. 8: Einzelwerte der Nierenpartialfunktion der primär operierten Gruppe (n = 23) ... 43
Tab. 9: Darstellung der ermittelten Laborparameter in Abhängigkeit vom Alter zum Zeitpunkt der Nierenfunktionsszintigraphie .. 50
Tab. 10: Alter der sekundär operierten Gruppe (n = 11) bei verschiedenen Untersuchungen ... 51
Tab. 11: Metrische Daten der Gruppe 2 (n = 11) .. 51
Tab. 12: Übersicht über die Werte des dynamischen Nierenindex der Gruppe 2 (n = 11) ... 56
Tab. 13: Übersicht über die Nierenpartialfunktion (in %) im Therapieverlauf von Gruppe 2 ... 57
Tab. 14: Übersicht über die ermittelten Laborparameter in Abhängigkeit vom Alter zum Zeitpunkt der Nierenfunktionsszintigraphie der Gruppe 2 61
Tab. 15: Alter der konservativ behandelten Gruppe (n = 42) bei verschiedenen Untersuchungen ... 61
Tab. 16: Metrische Daten der konservativ behandelten Niereneinheiten (n = 42) .. 62
Tab. 17: Übersicht über die Werte des dynamischen Nierenindex der konservativ therapierten Gruppe (n = 42) ... 66
Tab. 18: Übersicht über die ermittelten Laborparameter in Abhängigkeit vom Alter zum Zeitpunkt der Nierenfunktionsszintigraphie der Gruppe 3 71
Tab. 19: Übersicht über die Lokalisation der Ureterabgangsstenose in Abhängigkeit von der Gruppenzugehörigkeit ... 71
Tab. 20: Alter der Patienten (in Monaten) bei der jeweiligen Sonographie 73
Tab. 21: Gemessene Nierenbeckendilatation in Abhängigkeit von der Gruppen- zugehörigkeit ... 75
Tab. 22: Nierenlänge der operativen Gruppen (primär (n = 37) und sekundär (n = 11) operiert) im Vergleich mit denen der konservativen Gruppe 77
Tab. 23: Übersicht über die metrischen Daten des Nierenquotienten der jeweiligen Gruppe ..80
Tab. 24: Werte des dynamischen Nierenindexes in den einzelnen Gruppen........81
Tab. 25: Übersicht über die Nierenbeckenweite, den Nierenquotienten und den dynamischen Nierenindex der Niereneinheiten mit einer Nierenbeckenweite von > 15 – 25 mm, in Abhängigkeit der gewählten Therapieform. ★★★ zeigt einen hoch signifikanten Unterschied mit p < 0,001.......................82
Tab. 26: Daten der prä- und postoperativen Nierenfunktionsszintigraphie........87
Tab. 27: Erhöhte Laborparameter in Abhängigkeit der Gruppenzugehörigkeit89
Tab. 28: Übersicht über die Niereneinheiten mit einer Abnahme der Nierenpartiaalfunktion während des Therapieverlaufs ...89
Tab. 29: Niereneinheiten mit seitendifferenter Nierenpartiaalfunktion: Ergebnisse der letzten Nierenfunktionsszintigraphie ...91
9. Literaturverzeichnis

Berner U. Die wichtigsten Diagnosen in der Nuklearmedizin. Heidelberg: Springer, 2002

Coplen DE, Austin PF, Yan Y, Blanco VM, Dicke JM. The magnitude of fetal renal pelvic dilatation can identify obstructive postnatal hydronephrosis, and direct postnatal evaluation and management. J Urol 2006; 176: 724-727

Deutsche Gesellschaft für Nuklearmedizin. Nierenfunktionsszintigraphie mit und ohne Furosemidbelastung bei Kindern und Erwachsenen DGN-Handlungsempfehlung (S1-Leitlinie), 2013

Hanna MK, Gluck R. Ureteropelvic junction obstruction during the first year of life. Urology 1988; 31: 41-45

Inagaki T, Rha KH, Ong AM, Kavoussi LR, Jarrett TW. Laparoscopic pyeloplasty: current status. BJU Int 2005; 2: 102-105

McAleer IM, Kaplan GW. Renal function before and after pyeloplasty: does it improve? J Urol 1999; 162: 1041-1044

Phadke K, Bagga A. Training in pediatric nephrology for developing countries. Pediatr Nephrol 2005; 20: 1205-1207

Rogenhofer S, Müller SC. Hydronephrose: Dringlichkeit der Interventionen und empfohlene Zeitpunkte der Korrekturen. Urologe 2011; 50: 545-550

10. Danksagung

Diese Arbeit hätte ohne die zahlreiche Mitarbeit und vielfältige Unterstützung der unten genannten Personen nicht erstellt werden können.

Mein Dank gilt meinem Doktorvater Prof. Dr. Michael Lentze für die Vergabe des vorliegenden Themas sowie die Betreuung von September 2011 bis Oktober 2013.

Insbesondere möchte ich Prof. Dr. Rainer Ganschow, Direktor der Abteilung für Allgemeine Pädiatrie, danken, der nach der Emeritierung von Prof. Dr. Lentze ohne zu zögern die Betreuung ab Oktober 2013 übernommen und mit viel Interesse die Fertigstellung der vorliegenden Arbeit verfolgt hat.

Weiterhin danke ich Dr. Marc Born (Leiter der Kinderradiologie), PD Dr. Hojjat Ahmadzadehfar (Oberarzt Nuklearmedizin) und PD Dr. Sebastian Rogenhofer (Oberarzt Urologie) für konstruktive Beiträge sowie anregende Diskussionen bei der Auswertung und Evaluation der erhobenen Daten.

Des Weiteren danke ich den Teams der nephrologischen Ambulanz, der radiologischen, urologischen und nuklearmedizinischen Abteilung für die freundliche Zusammenarbeit.

Ein ganz besonderer Dank gilt allen Kindern und deren Eltern, die an der Studie teilgenommen haben. Ohne deren Teilnahme hätte die vorliegende Arbeit nicht entstehen können.