Hinweis zum Urheberrecht| Allgemeine Informationen | FAQ
Beim Zitieren dieses Dokumentes beziehen Sie sich bitte immer auf folgende URN: urn:nbn:de:hbz:5n-54199

 

Mathematisch-Naturwissenschaftliche Fakultät - Jahrgang 2019

 

Titel Automatic Reconstruction of Parametric, Volumetric Building Models from 3D Point Clouds
Autor Sebastian Klaus Ochmann
Publikationsform Dissertation
Abstract Planning, construction, modification, and analysis of buildings requires means of representing a building's physical structure and related semantics in a meaningful way. With the rise of novel technologies and increasing requirements in the architecture, engineering and construction (AEC) domain, two general concepts for representing buildings have gained particular attention in recent years. First, the concept of Building Information Modeling (BIM) is increasingly used as a modern means for representing and managing a building's as-planned state digitally, including not only a geometric model but also various additional semantic properties. Second, point cloud measurements are now widely used for capturing a building's as-built condition by means of laser scanning techniques. A particular challenge and topic of current research are methods for combining the strengths of both point cloud measurements and Building Information Modeling concepts to quickly obtain accurate building models from measured data. In this thesis, we present our recent approaches to tackle the intermeshed challenges of automated indoor point cloud interpretation using targeted segmentation methods, and the automatic reconstruction of high-level, parametric and volumetric building models as the basis for further usage in BIM scenarios. In contrast to most reconstruction methods available at the time, we fundamentally base our approaches on BIM principles and standards, and overcome critical limitations of previous approaches in order to reconstruct globally plausible, volumetric, and parametric models.
Zusammenfassung

Automatische Rekonstruktion von parametrischen, volumetrischen Gebäudemodellen aus 3D Punktwolken
Für die Planung, Konstruktion, Modifikation und Analyse von Gebäuden werden Möglichkeiten zur sinnvollen Repräsentation der physischen Gebäudestruktur sowie dazugehöriger Semantik benötigt. Mit dem Aufkommen neuer Technologien und steigenden Anforderungen im Bereich von Architecture, Engineering and Construction (AEC) haben zwei Konzepte für die Repräsentation von Gebäuden in den letzten Jahren besondere Aufmerksamkeit erlangt. Erstens wird das Konzept des Building Information Modeling (BIM) zunehmend als ein modernes Mittel zur digitalen Abbildung und Verwaltung "As-Planned"-Zustands von Gebäuden verwendet, welches nicht nur ein geometrisches Modell sondern auch verschiedene zusätzliche semantische Eigenschaften beinhaltet. Zweitens werden Punktwolkenmessungen inzwischen häufig zur Aufnahme des "As-Built"-Zustands mittels Laser-Scan-Techniken eingesetzt. Eine besondere Herausforderung und Thema aktueller Forschung ist die Entwicklung von Methoden zur Vereinigung der Stärken von Punktwolken und Konzepten des Building Information Modeling um schnell akkurate Gebäudemodelle aus den gemessenen Daten zu erzeugen. In dieser Dissertation präsentieren wir unsere aktuellen Ansätze um die miteinander verwobenen Herausforderungen anzugehen, Punktwolken mithilfe geeigneter Segmentierungsmethoden automatisiert zu interpretieren, sowie hochwertige, parametrische und volumetrische Gebäudemodelle als Basis für die Verwendung im BIM-Umfeld zu rekonstruieren. Im Gegensatz zu den meisten derzeit verfügbaren Rekonstruktionsverfahren basieren unsere Ansätze grundlegend auf Prinzipien und Standards aus dem BIM-Umfeld und überwinden kritische Einschränkungen bisheriger Ansätze um vollständig plausible, volumetrische und parametrische Modelle zu erzeugen.

Komplette Version pdf-Dokument (30 MB) Hier können Sie den Adobe Acrobat Reader downloaden
© Universitäts- und Landesbibliothek Bonn | Veröffentlicht: 02.05.2019