Contents

Declaration xi

Acknowledgments xiii

Abstract xv

1 Introduction 1

1.1 Learning Tasks ... 2
 1.1.1 Supervised Learning 2
 1.1.2 Semi-Supervised and Transductive Learning 3

1.2 Kernel Methods .. 3

1.3 Greedy Algorithms .. 4

1.4 Outline of the Thesis 5

1.5 Bibliographical Notes 7

I Deterministic Greedy Approaches 9

2 Knowledge-Based Kernel Principal Component Analysis 11

2.1 Kernel Principal Component Analysis 13
 2.1.1 Definition of Kernel Principal Components 14
 2.1.2 Representer Theorem 16
 2.1.3 Derivation of Kernel Principal Components 17

2.2 Semi-Supervised Learning 18
 2.2.1 Problem Setting 18
 2.2.2 When Can Unlabeled Data Aid in Learning? 19

2.3 Knowledge-Based Kernel Principal Component Analysis .. 20
 2.3.1 Definition of Knowledge-Based Kernel Principal Components .. 20
 2.3.1.1 Knowledge-Based Constraints 20
 2.3.1.2 Knowledge-Based Kernel Principal Components 21
 2.3.2 Representer Theorem 22
 2.3.3 Derivation of Knowledge-Based Kernel Principal Components .. 23

2.4 Optimization Problem 25
Contents

2.4.1 Eliminating Linear Constraint 26
2.4.2 Optimization of a Quadratic Form over a Hypersphere 27
2.4.3 Secular Equation .. 29

2.5 Large Scale Approximations .. 30
2.5.1 Iterative Optimization of a Quadratic Form over a Hypersphere . 30
 2.5.1.1 Iterative Computation of the Lagrange Multiplier 30
 2.5.1.2 Conjugate Gradient Descent 31
2.5.2 Low-Rank Approximations 34
 2.5.2.1 Nyström Method ... 35
 2.5.2.2 Random Fourier Features 36

2.6 Interactive Data Visualization 37
 2.6.1 Efficient Formulation of Interaction 37
 2.6.2 Rank-One Modification of a Diagonal Matrix 38
 2.6.2.1 Secular Equation of a Rank-One Modification of a Diagonal Matrix 40
 2.6.2.2 Deflation .. 41

2.7 Hyperparameter Optimization 42

2.8 Discussion .. 45

2.9 Experiments ... 47

3 Greedy Feature Construction .. 51
 3.1 Greedy Feature Construction 52
 3.1.1 Overview .. 52
 3.1.2 Greedy Features ... 53
 3.1.3 Convergence .. 54
 3.1.4 Generalization Bound 56
 3.1.5 Algorithm .. 61
 3.2 Learning with Fourier Features 63
 3.2.1 Fourier Features ... 63
 3.2.1.1 Stationary Kernels 63
 3.2.1.2 Random Kitchen Sinks 65
 3.2.2 Learning with Greedily Constructed Fourier Features 70
 3.2.3 À la Carte ... 75
 3.3 Experiments .. 77
 3.3.1 Baselines ... 78
 3.3.2 Results .. 79
 3.4 Discussion .. 80

II Randomized Greedy Approaches 85

4 Nyström Method with Kernel K-means++ Landmarks 87
 4.1 Nyström Method .. 88
 4.1.1 Nyström Method for Approximation of Integral Eigenfunctions 88
 4.1.2 Application of the Nyström Method to Low-Rank Approximation of Kernel Matrices 90
 4.1.3 Alternative Derivation of the Nyström Method for Low-Rank Approximation of Kernel Matrices 90
 4.1.4 Optimal Low-Rank Approximation of Kernel Matrix 91
4.2 K-means Clustering .. 93
 4.2.1 Optimization Problem ... 93
 4.2.2 Relation to Optimal Low-Rank Approximation of Kernel Matrices . 94
4.3 Nyström Method with Kernel K-means++ Landmarks 99
 4.3.1 K-means++ Sampling Scheme 99
 4.3.2 Kernel K-means++ Landmarks 101
 4.3.3 Theoretical Analysis ... 102
4.4 Discussion ... 105
 4.4.1 Related Approaches .. 105
 4.4.2 K-DPP Nyström Method ... 106
 4.4.3 Instance Space K-means Centroids as Landmarks 106
4.5 Experiments ... 108
4.6 Appendix: Additional Figures 111
 4.6.1 Parkinsons .. 112
 4.6.2 Delta-Ailerons ... 113
 4.6.3 Kinematics .. 114
 4.6.4 CPU-Activity .. 115
 4.6.5 Bank .. 116
 4.6.6 Pumadyn ... 117
 4.6.7 Delta-Elevators .. 118
 4.6.8 Ailerons .. 119
 4.6.9 Pole-Telecom ... 120
 4.6.10 Elevators ... 121
 4.6.11 Cal-Housing .. 122
 4.6.12 UJIL .. 123
 4.6.13 CT-Slice ... 124

5 Active Search for Computer-Aided Cyclic Discovery Processes 125
 5.1 Problem Setting and Algorithm 127
 5.2 Conditional Exponential Family Models 130
 5.2.1 Basic Notions .. 130
 5.2.2 Relation to Conditional Max-Entropy Models 131
 5.2.3 Relation to Gaussian Processes 135
 5.3 Markov Chains and the Metropolis–Hastings Algorithm 137
 5.3.1 Markov Chains .. 137
 5.3.2 The Metropolis–Hastings Algorithm 140
 5.4 Theoretical Analysis ... 143
 5.4.1 Consistency .. 143
 5.4.2 Mixing Time Analysis ... 148
 5.4.3 Handling Large Importance Weights 150
 5.5 Adaptations to Exemplary Cyclic Discovery Processes 150
 5.5.1 Discovery of Flavorful Cocktail Recipes 151
 5.5.2 Focused Drug Design Problem 153
 5.5.3 Synthetic Testbeds ... 156
 5.6 Experiments ... 158
 5.6.1 Baselines .. 158
 5.6.2 Comparison against Baselines 159
 5.6.3 Drug Discovery ... 161
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7 Discussion</td>
<td>163</td>
</tr>
<tr>
<td>5.7.1 Machine Learning Perspective</td>
<td>163</td>
</tr>
<tr>
<td>5.7.2 De Novo Drug Design Perspective</td>
<td>165</td>
</tr>
<tr>
<td>5.8 Appendix</td>
<td>168</td>
</tr>
</tbody>
</table>

List of Figures

173

List of Tables

176

Notation

177

Bibliography

180