Hinweis zum Urheberrecht| Allgemeine Informationen | FAQ
Beim Zitieren dieses Dokumentes beziehen Sie sich bitte immer auf folgende URN: urn:nbn:de:hbz:5n-51590

 

Mathematisch-Naturwissenschaftliche Fakultät - Jahrgang 2018

 

Titel Remote sensing based assessment of land cover and soil moisture in the Kilombero floodplain in Tanzania
Autor Fridah Kirimi
Publikationsform Dissertation
Abstract Wetlands provide important ecological, biological, and social-economic services that are critical for human existence. The increasing demand for food, arable land shortage and changing climate conditions in East Africa have created a paradigm shift from upland cultivation to wetland use due to their year-round soil water availability. However, there is need to control and manage the activities within the wetlands to ensure sustainable use while negating any negative effects caused by these activities. This is implemented through the decisions made by the land managers within the wetlands. Providing the users of the wetlands with scientific knowledge acts as a support tool for policy-making geared towards the sustainable use of the wetlands. The overall research contains two main components: First, the need for timely land cover maps at a reasonable scale, and secondly, the assessment of soil moisture as a major contributor to agricultural production.
The objectives of the study were to generate land cover maps from multi-sensor optical datasets and to assess the performance of single-polarized Sentinel-1 Gray Level Co-occurrence Matrix (GLCM) texture and Principal Component Analysis (PCA) features by applying multiple classification algorithms in a floodplain in the Kilombero catchment. Furthermore, soil moisture spatial-temporal patterns over three hydrological zones was assessed, estimation of soil moisture from radar data and generation of soil moisture products from global products was investigated. The correlation of the merged products to Normalized Difference Vegetation Index (NDVI) measures was also investigated.
RapidEye, Sentinel-2 and Landsat images were used in determining the areal extents of four major land cover classes namely vegetated, bare, water and built up. The acquisition period of the images ranges from August 2013 to June 2015 for the RapidEye images, December 2015 to August 2016 for the Sentinel-2 images and 2013 to 2016 Landsat-8 images were included in the land cover time series dynamic study. However, the major challenge arising was cloud coverage and hence Sentinel-1 images were tested in the application of Synthetic Aperture Radar (SAR) in wetland mapping. Variograms were used in spatial-temporal assessment of soil moisture data collected from three hydrological zones, riparian, middle and fringe. A roughness parameter was derived from a semi-empirical model. Soil moisture was retrieved from TerraSAR-X and RadarSAT-2 with the retrieved roughness parameter as an input in a linear regression equation. Triple collocation was applied in error assessment of the global soil moisture products prior to development of a merged product. Cross-correlation was applied in relating NDVI to soil moisture.
Optical data (RapidEye, Landsat-8, and Sentinel-2) generated land cover maps used in assessing the land cover dynamics over time. The land cover ratios were related to depth to groundwater. As the depth to groundwater reduced in June the bare land coverage was 45-57% while that of vegetation was 34-47%. In December when the depth to groundwater was highest, bare land coverage was 62-69% while that of the vegetated area was 27-25%. This indicates that depth of groundwater and vegetation coverage responds to seasonality. During the dry season, 68-81% of the total vegetation class is within the riparian zone.
In the classification of the SAR images, the overall accuracies for the single polarized VV images ranged from 54-76%, 60-81% and 61-80% for Random Forest (RF), Neural Network (NN) and Support Vector Machine (SVM) respectively. GLCM features had overall accuracies of 64-86%, 65-88% and 65-86% for RF, NN, and SVM respectively. PCA derived images had similar overall accuracies of 68-92% for NN, RF, and SVM respectively. The PCA images had the highest overall accuracy for the entire time series indicating that reduction in the number of texture features to layers containing the maximum variance improves the accuracy.
The standard deviation of soil moisture was noted to increase with increasing soil moisture. Soil texture plays a key role in soil moisture retention. The riparian fields had a high water content explained by the high clay and organic matter content. A roughness parameter was derived and utilized in the retrieval of soil moisture from SAR resulting to R2 of 0.88- 0.92 between observed and simulated soil moisture values from co-polarized RadarSAT-2 HH and TerraSAR-X HH and VV.
Merged soil moisture product from FEWSNET Land Data Assimilation System_NOAH (FLDAS_NOAH), ECMWF Re-Analysis Interim (ERA-Interim) and Soil Moisture and Ocean Salinity (SMOS) and FLDAS_Variable Infiltration Capacity (VIC), ERA-Interim and SMOS had similar patterns attributed to FLDAS_NOAH and FLDAS_VIC forced by the same precipitation product (RFE). Cross-correlation of Moderate-resolution Imaging Spectrometer (MODIS) NDVI and the merged soil moisture products revealed a 2-month lag of NDVI. Hence, the relationship is useful in determining the Start of Season from soil moisture products.
In conclusion, the successful land cover mapping of the study area demonstrated the use of satellite imagery for wetland characterization. The vast coverage and frequent acquisitions of optical and microwave remotely sensed data additionally make the approaches transferable to other locations and allow for mapping at larger scales. Soil moisture assessment from point data revealed varied soil moisture patterns whereas global remotely sensed and modeled products rather provide complementary information about growing conditions, and hence a situational assessment tool of potential of physical availability dimension of food security. This study forms a baseline upon which additional monitoring and assessment of the Kilombero wetland ecosystem can be performed with the current results marked as a reference. Moreover, the study serves as a demonstration case of remote sensing based approaches for land cover and soil moisture mapping, whose results are useful to stakeholders to aid in the implementation of adapted production techniques for yield optimization while minimizing the unsustainable use of the natural resources.
Zusammenfassung Feuchtgebiete erbringen wichtige ökologische, biologische und sozial-ökonomische Dienstleistungen, welche entscheidend für das menschliche Dasein sind. Der steigende Bedarf an Nahrung, der Mangel an landwirtschaftlichen Nutzflächen und die Veränderung der klimatischen Bedingungen in Ostafrika haben zu einem Paradigmenwechsel vom Anbau im Hochland hin zur Nutzung von Feuchtgebieten geführt. Allerdings sind Kontrolle und Management der Aktivitäten in Feuchtgebieten notwendig, um die nachhaltige Nutzung zu sichern und negative Effekte dieser Aktivitäten zu vermeiden. Die Implementierung erfolgt durch die Landverwalter in den Feuchtgebieten. Den Nutzern von Feuchtgebieten wissenschaftliche Erkenntnisse bereitzustellen dient als Hilfsmittel zur politischen Entscheidungsfindung für die nachhaltige Feuchtgebietsnutzung. Die Forschung im Rahmen der Dissertation beinhaltet zwei Hauptkomponenten: erstens den Bedarf an aktuellen Landbedeckungskarten auf einer angemessenen Skalenebene und zweitens die Erfassung der Bodenfeuchte als wichtiger Einflussfaktor auf die landwirtschaftliche Produktion. Das Ziel der Untersuchung war, Landbedeckungskarten auf Grundlage von multisensorischen optischen Daten zu erstellen und die Eignung der Textur der einfach polarisierten Sentinel-1 Grauwertmatrix (GLCM) sowie der einer Hauptkomponentenanalyse (PCA) bei Anwendung unterschiedlicher Klassifikationsalgorithmen zu beurteilen. Des Weiteren wurden raum-zeitliche Bodenfeuchtemuster über drei hydrologische Zonen hinweg modelliert, die Bodenfeuchte aus Radardaten abgeleitet sowie die Erstellung von Bodenfeuchteprodukten auf Basis von globalen Produkten untersucht. Die Korrelation der Bodenfeuchteprodukte mit dem Normalisierten Differenzierten Vegetationsindex (NDVI) wurde ebenfalls analysiert. RapidEye, Sentinel-2 und Landsat Bilder wurden genutzt um die räumliche Ausdehnung der vier Hauptklassen (Vegetation, freiliegender Boden, Wasser und Bebauung) der Landbedeckung zu ermitteln. Für die Zeitreihenanalyse der der Landbedeckungsdynamik wurden RapidEye-Daten von August 2013 bis Juni 2015, Sentinel-2-Bilder von Dezember 2015 bis August 2016 und Landsat-8-Bilder von 2013 bis 2016 verwendet. Die größte Herausforderung war jedoch die Wolkenbedeckung, weshalb die Anwendung von Synthetic Aperture Radar (SAR) für die Feuchtgebietskartierung getestet wurde. Die gemessene Bodenfeuchte wurde mittels Variogrammen für die drei hydrologischen Zonen (Uferzone, Mitte und Randgebiete) raum-zeitlich interpoliert. Ein Rauhigkeitsparameter wurde aus einem semi-empirischen Modell hergeleitet. Die Bodenfeuchte wurde aus TerraSAR-X und RadarSAT-2- Bildern unter Verwendung des Rauhigkeitsparameters als Eingangsgröße in einer linearen Regression abgeleitet. Vor der Zusammenführung der Produkte wurde das globale Bodenfeuchteprodukt mithilfe von dreifacher Kollokation auf Fehler überprüft. Die Kreuzkorrelation zwischen NDVI und Bodenfeuchte wurde berechnet. Optische Daten (RapidEye, Landsat-8 und Sentinel-2) wurden genutzt, um die zeitliche Dynamik der Landbedeckung zu bestimmen. Die Landbedeckungsverhältnisse wurde mit der Höhe des Grundwasserspiegels korreliert. Ein hoher Grundwasserstand im Juni resultierte in 45-57% unbedecktem Boden, während der Anteil der Vegetation 34-47% betrug. Im Dezember, als der Grundwasserspiegel seinen Tiefststand hatte, erhöhte sich der Anteil des freiliegenden Bodens auf 62-69% und der Anteil der Vegetation verringerte sich auf 27-25%. Das zeigt, dass Grundwasserspiegel und Vegetation saisonalen Schwankungen unterworfen sind. Während der Trockenzeit liegen 68-81% der gesamten als Vegetation klassifizierten Fläche innerhalb der Uferzone. In der Klassifikation der SAR-Bilder liegt die Gesamtgenauigkeit der einfach polarisierten VV-Bilder im Rahmen von 54-76%, 60-81% und 61-80%, entsprechend für Random Forest (RF), Neuronale Netze (NN) und Support Vector Machine (SVM). Die GLCM ergab eine Gesamtgenauigkeit von 64-86%, 65-88% und 65-86% für RF, NN und SVM. Die über eine PCA abgeleiteten Bilder erreichten eine ähnliche Genauigkeit von 68-92% für NN, RF und SVM. Die PCA-Bilder weisen die höchste Gesamtgenauigkeit der gesamten Zeitreihe auf, was darauf hinweist, dass eine Reduktion von Textureigenschaften auf Layer der maximalen Varianz enthalten, die Genauigkeit erhöht. Die Standardabweichung der Bodenfeuchte stieg mit zunehmender Bodenfeuchte. Die Bodentextur spielt dabei eine Schlüsselrolle für das Wasserhaltevermögen des Bodens. Die Uferzone wies einen hohen Wassergehalt auf, was durch den hohen Anteil von Ton und Humus zu erklären ist. Die beobachteten und simulierten Bodenfeuchtewerte von co-polarisierten RadarSAT-2 HH, TerraSAR-X HH und VV Daten korrelieren mit einem R2 von 0.88 - 0.92. Die zusammengesetzten globalen Bodenfeuchteprodukte von FLDAS_NOAH, ERA-Interim sowie SMOS und FLDAS_VIC, ERA-Interim und SMOS zeigen ähnliche Muster wie FLDAS_NOAH und FLDAS_VIC, was über die Verwendung desselben Niederschlagsproduktes (RFE) zu erklären ist. Die Kreuzkorrelation von MODIS NDVI und den zusammengeführten Bodenfeuchteprodukten ergab eine zeitliche Verzögerung des NDVI von zwei Monaten. Dieser Zusammenhang kann daher bei der Bestimmung des Saisonbeginns aus Bodenfeuchtigkeitsprodukten nützlich sein. Zusammengefasst hat die Studie gezeigt, wie Satellitenbilder zur Charakterisierung von Wetlands genutzt werden können. Die große Abdeckung und häufige Aufnahme der optischen und Mikrowellen-Fernerkundungsdaten ermöglichen darüber hinaus die Übertragung der Ansätze auf weitere Gebiete und Kartierung auf größeren Skalen. Die Punktmessungen zeigen kleinräumige Muster der Bodenfeuchte, während globale Fernerkundungsprodukte und Modelle Informationen über die Wachstumsbedingungen liefern und somit ein Bewertungsinstrument der Ernährungssicherheit darstellen können. Weiterhin bildet die Studie eine Basis, auf der ein weitergehendes Monitoring und eine Bewertung des Feuchtgebietsökosystems durchgeführt werden kann. Sie ist ein Beispiel für fernerkundungsbasierte Ansätze zur Landbedeckungs- und Bodenfeuchtekartierung; ihre Ergebnisse sind nützlich, um Akteuren bei der Implementierung von Produktionstechniken zu unterstützen, welche die Erträge maximieren und gleichzeitig die nicht nachhaltige Nutzung der natürlichen Ressourcen minimieren.
Inhaltsverzeichnis pdf-Dokument Hier können Sie den Adobe Acrobat Reader downloaden
Komplette Version pdf-Dokument (14 MB) Hier können Sie den Adobe Acrobat Reader downloaden
© Universitäts- und Landesbibliothek Bonn | Veröffentlicht: 15.08.2018