Contents

1 Introduction 1

2 Ultracold atoms in optical lattices 5
 2.1 From weakly interacting gases to strongly correlated systems 5
 2.2 Trapping of neutral atoms in optical lattices 6
 2.2.1 Optical dipole force 6
 2.2.2 Periodic potentials 7
 2.3 Theoretical description: Hubbard models 10
 2.4 Bosonic atoms in optical lattices 14
 2.5 Fermionic atoms in optical lattices 17
 2.5.1 Repulsive Fermi-Hubbard model 17
 2.5.2 Ionic Fermi-Hubbard model in one dimension 18
 2.6 Lattice amplitude modulation spectroscopy 21

3 Methods 27
 3.1 Matrix product states 27
 3.1.1 Basic ideas 28
 3.1.2 Ground state calculation 31
 3.1.3 Time evolution 32
 3.2 Linear response theory 34
 3.2.1 General aspects 34
 3.2.2 Energy absorption 35
 3.3 Bosonization 37
 3.3.1 Basic ideas 38
 3.3.2 Ionic Fermi-Hubbard model 40

4 Superlattice modulation spectroscopy of ultracold fermions in optical superlattices: 43
 Study of the excitation spectrum of the one-dimensional ionic Fermi-Hubbard model
 4.1 Absence of interaction 44
 4.2 Derivation of an effective Hamiltonian for $J \ll |U - \Delta|, \Delta$ 48
 4.2.1 Application to the band insulating limit 50
 4.2.2 Application to the Mott insulating limit 53
 4.3 Band insulating limit 55
 4.3.1 Energy absorption 55
 4.3.2 Time-dependence of the absorbed energy 59
 4.3.3 Transition matrix elements 62
4.4 Signals of bond order
4.4.1 Ising criticality
4.4.2 Bond order wave phase
4.5 Mott insulating limit
4.5.1 Spin excitations
4.5.2 Charge excitations
4.6 Connection to experiment and conclusion

5 Thermometry of ultracold fermions in optical lattices by modulation spectroscopy
5.1 Two-band tight-binding model
5.2 Detection scheme
5.3 Homogeneous system in one dimension
5.4 Trapped system
5.4.1 Local density approximation
5.4.2 Trapped system in one dimension
5.4.3 Trapped system in higher dimensions
5.5 Thermometry by superlattice modulation spectroscopy
5.6 Conclusion

6 Superlattice modulation spectroscopy of ultracold bosons in optical lattices
6.1 Perturbation theory at $U \gg J$
6.2 Excitations in the Mott insulating phase
6.3 Excitations in the superfluid phase
6.4 Conclusion

7 Conclusion and Outlook

A Numerical Convergence

B Time-dependence of the absorbed energy
B.1 Ionic Fermi-Hubbard model
B.1.1 Ising criticality
B.1.2 Bond order wave phase
B.1.3 Mott insulator
B.2 Bose-Hubbard model
B.2.1 Mott insulator
B.2.2 Superfluid

C Energy absorption within bosonization
C.1 At the Ising transition
C.2 Near the Kosterlitz-Thouless transition

D Ground state of the ionic Fermi-Hubbard model in the Mott insulating limit

Bibliography

Acknowledgements