Hinweis zum Urheberrecht| Allgemeine Informationen | FAQ
Beim Zitieren dieses Dokumentes beziehen Sie sich bitte immer auf folgende URN: urn:nbn:de:hbz:5n-45616

 

Mathematisch-Naturwissenschaftliche Fakultät - Jahrgang 2016

 

Titel Simulation of Ion Migration with Particle Dynamics and the Heat-Poisson-Nernst-Planck System
Autor Christian P. T. Neuen
Publikationsform Dissertation
Abstract In this thesis we study the numerical simulation of ion migration and its coupled thermal effects. Many of the existing mathematical models in this area of research implicitly rely on thermal equilibrium conditions, despite the fact that the physical processes are almost exclusively driven by external influences, which move the ensemble away from equilibrium.
For the simulation to be self-sufficient and independent from experimental data for novel materials or structures, we adopt a multiscale approach. On the microscale we regard the dynamics of individual atoms and molecules using meshless particle dynamics methods in the form of non-equilibrium Molecular Dynamics. On the macroscale the ions are no longer considered individually, but as concentration functions, which are driven by an electro-chemical field. The resulting system of partial differential equations is known as the Poisson-Nernst-Planck equation system.
The basis of a Molecular Dynamics simulation is formed by the Hamiltonian function, from which conservation properties and the equations of motion for the particles are derived. For the first time we make use of the duality of work performed on a particle and its energy state to derive a formulation of the external energy, which allows for the inclusion of explicit external forces in the Hamiltonian function. The new approach is explicitly designed to also handle periodic boundary conditions and we further demonstrate that it can be combined with other variants of the Hamiltonian, such as those modeling thermostats and barostats. This approach allows for the exact computation of energy exchanged between the ensemble and its exterior, enabling us to compute the heat generated by the external forces on the atomistic scale, permitting the upscaling of a temperature source term to the macroscopic equations. For the measurement of the transferred heat we provide an a priori error estimate based on the transport properties. Measuring the transferred energy also allows for the detection of steady states in conjunction with other external effects such as thermostats.
On the macroscale we extend the Poisson-Nernst-Planck equation system by the heat equation, a constellation not present in the literature so far. We analyze the nature of the coupling between the different types of partial differential equations and consequently present a taylored discretization scheme based on the Finite Element method. For the first time we present a numerical solver for the extended Heat-Poisson-Nernst-Planck system with an arbitrary number of concentration functions and dynamic transport coefficients. Our implementation of this system allows for a variety of boundary conditions for all solution functions and the use a separate domain (and finite element space) for the evolution of the temperature.
We demonstrate the capabilities of the methods on both scales on a series of numerical experiments. On the microscale we confirm the energy transfer and conservation as well as the consistency with thermostat applications. On the macroscale we determine the convergence rates for uniform, graded and adaptively refined grids. Final experiments include a well matching comparison with experimental results from an industrial application, sensitivity analysis of simulation parameters based on uncertainty quantification methods and a showcase for the solver capabilities on complex geometries.
Zusammenfassung In dieser Arbeit untersuchen wir die numerische Simulation von Ionenmigration und von den daran gekoppelten thermischen Effekten. Viele der bereits existierenden mathematischen Modelle in diesem Forschungsgebiet basieren auf thermischen Gleichgewichtsannahmen, obwohl die zu Grunde liegenden physikalischen Prozesse nahezu vollständig von externen Einflüssen gelenkt werden, die die Prozesszustände vom Equilibrium entfernen.
Damit die Simulation selbständig und für neuartige Materialien möglichst unabhängig von experimentellen Daten ist, verwenden wir einen Multiskalenansatz. Auf der Mikroskala betrachten wir das Verhalten individueller Atome und Moleküle mittels gitterlosen Partikelmethoden in Form von Nicht-Equilibriums Moleküldynamik. Auf der Makroskala werden die Ionen nicht mehr individuell, sondern als Konzentrationsfuktionen berücksichtigt, die wiederum von einem elektrochemischen Feld beeinflusst werden. Das resultierende System partieller Differentialgleichungen ist als das Poisson-Nernst-Planck Gleichungssystem bekannt.
Der Ausgangspunkt der Moleküldynamik wird von der Hamilton-Funktion gebildet, von der die Erhaltungsgrößen des Systems und die Bewegungsgleichungen der Partikel hergeleitet werden. In dieser Arbeit machen wir uns zum ersten Mal die Dualität des Energiezustandes eines Partikels und der an ihm verrichteten Arbeit zunutze, um eine Formulierung der externen Energie herzuleiten, die es erlaubt, den Einfluss externer Kräfte in die Hamilton-Funktion einzubinden. Dieser neue Ansatz ist explizit so angelegt, dass er mit periodischen Randbedingungen kompatibel ist, Weiterhin demonstrieren wir, dass er sich mit anderen Varianten der Hamilton-Funktion kombinieren lässt, wie solchen, die Thermostate und Barostate modellieren. Der Ansatz erlaubt die exakte Berechnung der Energie, die zwischen dem lokalen Ensemble und seiner Umgebung ausgetauscht wird, so dass wir auf der atomaren Ebene die Wärme, die durch externe Kräfte generiert wird, berechnen und durch Upscaling Methoden auf die Makroskala übertragen können. Für die Messung der transferierten Wärme stellen wir eine a-priori Fehlerschätzung vor, die diese Größe mit anderen Transportkoeffizienten verknüpft. Die Messung der ausgetauschten Energie erlaubt des Weiteren auch stationäre Zustände festzustellen, die sich im Zusammenspiel mit anderen externen Effekten wie Thermostaten ausbilden.
Auf der Makroskala erweitern wir das Poisson-Nernst-Planck Gleichungssystem um die Wärmeleitungsgleichung zu einer Konstellation, die in dieser Form noch nicht in der Literatur auftaucht. Wir analysieren die Eigenschaften der Kopplungen, die zwischen den verschiedenen Typen von partiellen Differentialgleichungen herrschen und präsentieren ein entsprechend angepasstes Diskretisierungsschema auf Basis finiter Elemente. Als Neuheit präsentieren wir einen numerischen Löser für das gekoppelte Wärme-Poisson-Nernst-Planck Gleichungssystem mit einer beliebigen Anzahl von Konzentrationsfunktionen und dynamischen Transportkoeffizienten. Unsere Implementierung des Systems erlaubt die Nutzung von variierenden Randbedingungen für jede der Lösungsfunktionen und zusätzlich die Verwendung von separaten Simulationsgeometrien für die zeitliche Änderung der Temperatur.
Wir demonstrieren die Fähigkeiten der Methoden auf beiden Skalen durch eine Serie von numerischen Experimenten. Auf der Mikroskala finden wir den Transfer und die Erhaltung der Energiewerte ebenso bestätigt wie die Konsistenz der Methode mit Thermostatvarianten. Auf der Makroskala bestimmen wir die Konvergenzraten für uniforme, gradierte und adaptiv verfeinerte Gitter. Zu guter Letzt präsentieren wir einen erfolgreichen Vergleich mit experimentellen Daten im Rahmen einer Industrieanwendung, Sensitivitätsanalyse der Simulationsparameter mit Methoden aus dem Gebiet der sogenannten Uncertainty Quantification und einen Demonstrator für die Fähigkeiten des Lösers auf komplexen Geometrien.
Inhaltsverzeichnis pdf-Dokument Hier können Sie den Adobe Acrobat Reader downloaden
Komplette Version pdf-Dokument (4,5 MB) Hier können Sie den Adobe Acrobat Reader downloaden
© Universitäts- und Landesbibliothek Bonn | Veröffentlicht: 22.12.2016