Contents

Introduction 1

I. Multiscale simulation of polymeric fluids 9

1. **Mathematical modeling of polymeric fluids** 11
 1.1. Macroscopic models for non-Newtonian fluids 11
 1.1.1. Differential stress tensor models 11
 1.1.2. The log-conformation method 13
 1.2. Multiscale polymeric fluid models 14
 1.2.1. Dynamics of multi-bead-spring chains 14
 1.2.2. Derivation of the Fokker-Planck equation 17
 1.2.3. Multiscale Navier-Stokes-BCF system 23
 1.2.4. Existence of global weak solutions for multiscale model 31

2. **Numerical modeling of polymeric fluids** 35
 2.1. Monte Carlo quadrature for diffusion problems 35
 2.1.1. General concepts 35
 2.1.2. Random number generation 38
 2.1.3. Variance reduction schemes 42
 2.1.4. Higher-order Quasi Monte Carlo methods 44
 2.2. Discretization of the multiscale Navier-Stokes-BCF system 48
 2.2.1. Spatial discretization 48
 2.2.2. Temporal discretization 51
 2.3. Complexity and parallelization 55
 2.3.1. Complexity of full grid approach 55
 2.3.2. Parallelization 56

3. **Numerical results on full grids** 59
 3.1. Homogeneous flows 59
 3.1.1. Dumbbell models 60
 3.1.2. Spring-chain models 62
 3.1.3. Reconstruction of the probability density function 66
 3.2. Complex multiscale flows 69
 3.2.1. Planar contraction flow 69
 3.2.2. 4 : 1 square-square contraction flow 76