Table of Contents

1 Introduction 1
 1.1 Role of sulfur in plants 1
 1.2 Sulfur access and assimilation in plants 2
 1.3 History of plant S deficiency 3
 1.4 Plant responses to S deficiency 3
 1.5 S deficiency and nitrogen fixation of legumes 4
 1.5.1 Leguminous and nitrogen fixation 4
 1.5.2 Nodule formation 5
 1.5.3 Genes related to nitrogen fixation in legumes 6
 1.5.3.1 Nif gene 7
 1.5.3.2 Leghemoglobin 8
 1.5.3.3 Ferredoxin 10
 1.6 S deficiency responses of legumes 11
 1.7 Sulfate transporter gene family in plants 12

2 Material and methods 15
 2.1 Equipments and chemicals 15
 2.1.1 Equipments 15
 2.1.2 Chemicals 16
 2.2 Enzymes 17
 2.3 Molecular biology Kit 18
 2.4 Plant Cultivation of *Pisum sativum* and growth conditions 18
 2.4.1 Seeds infection and germination 18
 2.4.2 Fertilization and treatment 18
 2.4.3 CNS measurement 20
 2.5 mRNA quantification using quantitative real-time PCR 20
 2.5.1 RNA Isolation and purification 20
 2.5.2 RNA quality controls 20
 2.5.2.1 Total RNA quantity measurement 20
 2.5.2.2 Total RNA purity 20
 2.5.2.3 Total RNA integrity 20
 2.5.2.4 Determination of RNA integrity factor (RIN) 21
 2.5.3 First strand cDNA synthesis 21
2.5.4 mRNA expression
2.5.5 Data analysis of real-time PCR
2.5.6 Reference gene selection for normalization of genes of interest
2.5.7 Gene of interest
2.5.8 Statistical analyses

2.6 Identification of symbiotic sulfate transporter gene in *Pisum sativum*
2.6.1 Preparing electrocompetent cells of *Escherichia Coli*
2.6.2 Transformation of *Escherichia coli*
2.6.3 Plasmid preparation from *Escherichia Coli*
2.6.4 Degenerated primer designing
2.6.5 Isolation of partial cDNA corresponding to symbiotic sulfate transporter
2.6.6 Cloning of partial cDNA of SST for sequencing
2.6.6.1 Extraction of partial cDNA from an agarose gel
2.6.6.2 Ligation
2.6.6.3 Purification of ligation mixture
2.6.6.4 Blue/white screening
2.6.6.5 Restriction Analysis
2.6.7 Designing specific sense and anti sense primer from partial cDNA
2.6.8 Rapid Amplification cDNA 3´ End (3´-RACE)
2.6.9 Rapid Amplification cDNA 5´ End (5´-RACE)

2.7 Functional complementation of SST in yeast double mutant
2.7.1 Amplification of ORF fragments
2.7.2 Cloning Strategy
2.7.3 Ligation of Blunt End SST ORF with the pJET 1.2 cloning vector
2.7.4 Ligation of SST ORF with the pESC_His yeast expression vector
2.7.5 Generation of electrocompetent of *Saccharomyces cerevisiae*
2.7.6 Transformation of *Saccharomyces cerevisiae*

2.8 Biochemical methods
2.8.1 Protein isolation
2.8.2 Protein quantification
2.8.3 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE)
2.8.4 Western blotting and immunodetection
2.8.5 Chlorophyll determination
2.8.6 Leghemoglobin measurement

2.9 Next generating sequencing
2.9.1 Biological samples for transcriptional analysis
2.9.2 RNA isolation and purification
2.9.3 Transcriptome de novo assembly
2.9.4 Data analysis and sequence homology for transcriptome identification of sulfate transporter gene family in *Pisum sativum*

3 Results
3.1 Sulfur supply and growth conditions
3.2 Sulfur content of plants
3.3 Sulfur supply and nodule development
3.4 Sulfur supply and chlorophyll content
3.5 Sulfur supply and leghemoglobin content in nodules
3.6 Expression of symbiotic nitrogen fixation (SNF) related genes
3.6.1 Expression of leghemoglobin genes in the nodule tissue
3.6.2 Expression of the symbiotic sulfate transporter (SST) gene in the nodule tissue
3.6.3 Expression of the nitrogenase (Nif) gene in the nodule tissue
3.6.4 Expression of the ferredoxin (Fd) gene in the root, nodule and leaf tissues

3.7 Western blotting and immunodetection of ferredoxin
3.8 Identification of a symbiotic sulfate transporter cDNA in *Pisum sativum*
3.8.1 Isolation of a partial cDNA corresponding to the symbiotic sulfate transporter
3.8.2 Isolation of the 3´ end of the SST from pea by 3´-RACE
3.8.3 Isolation of the 5´ end of the SST from pea by 5´-RACE
3.9 Functional complementation of symbiotic sulfate transporter in a yeast double mutant
3.10 Identification of the sulfate and molybdate transporter gene family in *Pisum sativum* by transcriptome identification