Hinweis zum Urheberrecht | Allgemeine Informationen | FAQ
Beim Zitieren dieses Dokumentes beziehen Sie sich bitte immer auf folgende URN: urn:nbn:de:hbz:5n-44121

 

Landwirtschaftliche Fakultät - Jahrgang 2016

 

Titel High-Level Facade Image Interpretation using Marked Point Processes
Autor Susanne Wenzel
Publikationsform Dissertation
Abstract In this thesis, we address facade image interpretation as one essential ingredient for the generation of high-detailed, semantic meaningful, three-dimensional city-models. Given a single rectified facade image, we detect relevant facade objects such as windows, entrances, and balconies, which yield a description of the image in terms of accurate position and size of these objects.
Urban digital three-dimensional reconstruction and documentation is an active area of research with several potential applications, e.g., in the area of digital mapping for navigation, urban planning, emergency management, disaster control or the entertainment industry. A detailed building model which is not just a geometric object enriched with texture, allows for semantic requests as the number of floors or the location of balconies and entrances. Facade image interpretation is one essential step in order to yield such models.
In this thesis, we propose the interpretation of facade images by combining evidence for the occurrence of individual object classes which we derive from data, and prior knowledge which guides the image interpretation in its entirety. We present a three-step procedure which generates features that are suited to describe relevant objects, learns a representation that is suited for object detection, and that enables the image interpretation using the results of object detection while incorporating prior knowledge about typical configurations of facade objects, which we learn from training data.
According to these three sub-tasks, our major achievements are: We propose a novel method for facade image interpretation based on a marked point process. Therefor, we develop a model for the description of typical configurations of facade objects and propose an image interpretation system which combines evidence derived from data and prior knowledge about typical configurations of facade objects. In order to generate evidence from data, we propose a feature type which we call shapelets. They are scale invariant and provide large distinctiveness for facade objects. Segments of lines, arcs, and ellipses serve as basic features for the generation of shapelets. Therefor, we propose a novel line simplification approach which approximates given pixel-chains by a sequence of lines, circular, and elliptical arcs. Among others, it is based on an adaption to Douglas-Peucker's algorithm, which is based on circles as basic geometric elements
We evaluate each step separately. We show the effects of polyline segmentation and simplification on several images with comparable good or even better results, referring to a state-of-the-art algorithm, which proves their large distinctiveness for facade objects. Using shapelets we provide a reasonable classification performance on a challenging dataset, including intra-class variations, clutter, and scale changes. Finally, we show promising results for the facade interpretation system on several datasets and provide a qualitative evaluation which demonstrates the capability of complete and accurate detection of facade objects
Zusammenfassung High-Level Interpretation von Fassaden-Bildern unter Benutzung von Markierten Punktprozessen
Das Thema dieser Arbeit ist die Interpretation von Fassadenbildern als wesentlicher Beitrag zur Erstellung hoch detaillierter, semantisch reichhaltiger dreidimensionaler Stadtmodelle. In rektifizierten Einzelaufnahmen von Fassaden detektieren wir relevante Objekte wie Fenster, Türen und Balkone, um daraus eine Bildinterpretation in Form von präzisen Positionen und Größen dieser Objekte abzuleiten.
Die digitale dreidimensionale Rekonstruktion urbaner Regionen ist ein aktives Forschungsfeld mit zahlreichen Anwendungen, beispielsweise der Herstellung digitaler Kartenwerke für Navigation, Stadtplanung, Notfallmanagement, Katastrophenschutz oder die Unterhaltungsindustrie. Detaillierte Gebäudemodelle, die nicht nur als geometrische Objekte repräsentiert und durch eine geeignete Textur visuell ansprechend dargestellt werden, erlauben semantische Anfragen, wie beispielsweise nach der Anzahl der Geschosse oder der Position der Balkone oder Eingänge. Die semantische Interpretation von Fassadenbildern ist ein wesentlicher Schritt für die Erzeugung solcher Modelle.
In der vorliegenden Arbeit lösen wir diese Aufgabe, indem wir aus Daten abgeleitete Evidenz für das Vorkommen einzelner Objekte mit Vorwissen kombinieren, das die Analyse der gesamten Bildinterpretation steuert. Wir präsentieren dafür ein dreistufiges Verfahren: Wir erzeugen Bildmerkmale, die für die Beschreibung der relevanten Objekte geeignet sind. Wir lernen, auf Basis abgeleiteter Merkmale, eine Repräsentation dieser Objekte. Schließlich realisieren wir die Bildinterpretation basierend auf der zuvor gelernten Repräsentation und dem Vorwissen über typische Konfigurationen von Fassadenobjekten, welches wir aus Trainingsdaten ableiten.
Wir leisten dazu die folgenden wissenschaftlichen Beiträge: Wir schlagen eine neuartige Me-thode zur Interpretation von Fassadenbildern vor, die einen sogenannten markierten Punktprozess verwendet. Dafür entwickeln wir ein Modell zur Beschreibung typischer Konfigurationen von Fassadenobjekten und entwickeln ein Bildinterpretationssystem, welches aus Daten abgeleitete Evidenz und a priori Wissen über typische Fassadenkonfigurationen kombiniert. Für die Erzeugung der Evidenz stellen wir Merkmale vor, die wir Shapelets nennen und die skaleninvariant und durch eine ausgesprochene Distinktivität im Bezug auf Fassadenobjekte gekennzeichnet sind. Als Basismerkmale für die Erzeugung der Shapelets dienen Linien-, Kreis- und Ellipsensegmente. Dafür stellen wir eine neuartige Methode zur Vereinfachung von Liniensegmenten vor, die eine Pixelkette durch eine Sequenz von geraden Linienstücken und elliptischen Bogensegmenten approximiert. Diese basiert unter anderem auf einer Adaption des Douglas-Peucker Algorithmus, die anstelle gerader Linienstücke, Bogensegmente als geometrische Basiselemente verwendet.
Wir evaluieren jeden dieser drei Teilschritte separat. Wir zeigen Ergebnisse der Liniensegmen-tierung anhand verschiedener Bilder und weisen dabei vergleichbare und teilweise verbesserte Ergebnisse im Vergleich zu bestehende Verfahren nach. Für die vorgeschlagenen Shapelets weisen wir in der Evaluation ihre diskriminativen Eigenschaften im Bezug auf Fassadenobjekte nach. Wir erzeugen auf einem anspruchsvollen Datensatz von skalenvariablen Fassadenobjekten, mit starker Variabilität der Erscheinung innerhalb der Klassen, vielversprechende Klassifikationsergebnisse, die die Verwendbarkeit der gelernten Shapelets für die weitere Interpretation belegen. Schließlich zeigen wir Ergebnisse der Interpretation der Fassadenstruktur anhand verschiedener Datensätze. Die qualitative Evaluation demonstriert die Fähigkeit des vorgeschlagenen Lösungsansatzes zur vollständigen und präzisen Detektion der genannten Fassadenobjekte.
Inhaltsverzeichnis pdf-Dokument Hier können Sie den Adobe Acrobat Reader downloaden
Komplette Version pdf-Dokument (61,5 MB) Hier können Sie den Adobe Acrobat Reader downloaden
pdf-Dokument (mit niedrigerer Auflösung: 15,5 MB) Hier können Sie den Adobe Acrobat Reader downloaden
© Universitäts- und Landesbibliothek Bonn | Veröffentlicht: 06.07.2016