Content

Danksagung

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Abbreviations</td>
<td>IX</td>
</tr>
<tr>
<td>2.</td>
<td>Figures</td>
<td>XII</td>
</tr>
<tr>
<td>3.</td>
<td>Tables</td>
<td>XV</td>
</tr>
<tr>
<td>4.</td>
<td>Definitions</td>
<td>XVII</td>
</tr>
<tr>
<td>5.</td>
<td>Amino acid code</td>
<td>XVIII</td>
</tr>
<tr>
<td>6.</td>
<td>Summary</td>
<td>XIX</td>
</tr>
<tr>
<td>7.</td>
<td>Kurzdarstellung</td>
<td>XXI</td>
</tr>
<tr>
<td>8.</td>
<td>Publications related to the PhD thesis</td>
<td>XXIII</td>
</tr>
<tr>
<td>9.</td>
<td>Contributions of the co-authors</td>
<td>XXV</td>
</tr>
</tbody>
</table>

Chapter I General Introduction

I.1 Theoretical background

I.1.1 Bioactive substances from milk

I.1.2 Bioactive oligosaccharides

I.1.2.1 Structure of milk oligosaccharides (MOS)

I.1.2.2 Biological activities of MOS

I.1.2.3 Availability of MOS as functional food ingredients

I.1.2.4 Membrane filtration procedures

I.1.2.5 Whey as a raw material for the enrichment of MOS

I.1.2.6 Nanofiltration (NF) process for the enrichment of MOS

I.1.2.7 Structure, production and biological activity of galactooligosaccharides (GOS)

I.1.3 Bioactive peptides from milk

I.1.3.1 Anti-inflammatory peptides from milk and other sources

I.1.3.2 β-Casein as a precursor of bioactive peptides

I.1.3.3 Isolation of β-casein and generation of bioactive peptides

I.1.4 Determination of NFkB activation in HEK_{nfxb-RE} cells

I.2 Motivation
I.2.1 Development of procedures for the enrichment of milk oligosaccharides (MOS) by nanofiltration (NF)
I.2.2 Development of procedures for the generation of anti-inflammatory peptides
I.2.3 Characterization of the biological activity of enriched MOS concentrates and generated β-casein hydrolysates

I.2 References

I.4 Objectives

Chapter II Comparison of the efficiency of different NF membranes for the enrichment of milk oligosaccharides from bovine milk

II.1 Abstract

II.2 Introduction

II.3 Material and methods
 II.3.1 Nanofiltration assays
 II.3.2 Analytical methods
 II.3.2.1 Quantification of MOS, mono- and disaccharides
 II.3.2.1.1 Sample pretreatment
 II.3.2.1.2 Determination of milk oligosaccharides by HPAEC-PAD/MS
 II.3.2.1.3 Quantification of other components
 II.3.3 Effect of NF MOS concentrates on NFκB activation in HEK^{nfκb-RE} cells and followed Luciferase assay

II.4 Results and discussion
 II.4.1 Efficiency of different NF membranes for the enrichment of MOS
 II.4.1.1 Laboratory scale NF
 II.4.1.2 Pilot plant scale NF
 II.4.1.3 Industrial scale NF
 II.4.2 Composition of sugars in MOS concentrates
 II.4.3 The effect of MOS concentrates on the NFκB activity in TNF-α induced HEK^{nfκb-RE} cells

II.5 Conclusion

II.6 References
Chapter III NF-enrichment of milk oligosaccharides (MOS) in relation to process parameters

III.1 Abstract
III.2 Introduction
III.3 Material and methods
 III.3.1 Nanofiltration assays
III.3.2 Analytical methods
 III.3.2.1 Quantification of MOS, mono- and disaccharides
 III.3.2.1.1 Sample pretreatment
 III.3.2.1.2 Determination of milk oligosaccharides by HPAEC-PAD/MS
 III.3.2.1.3 Quantification of other components
III.4 Results and discussion
III.4.1 Enrichment of MOS from bovine milk
III.4.2 Enrichment of MOS from caprine milk
III.4.3 Composition of sugars in MOS concentrates
III.5 Conclusion
III.6 References

Chapter IV Generation and identification of anti-inflammatory peptides from bovine β-casein using enzyme preparations from cod and hog

IV.1 Abstract
IV.2 Introduction
IV.3 Material and methods
 IV.3.1 Isolation of β-casein from rennet casein
 IV.3.2 Enzymes and hydrolysates
 IV.3.3 Separation and identification of peptides by HPLC-ESI-MSn (LC-MS)
 IV.3.4 Evaluation of anti-inflammatory effect via NFκB activation in HEK_{nFκb-RE} cells
IV.4 Results and discussion
 IV.4.1 Identification of peptides in tryptic/ chymotryptic hydrolysates
Content

IV.4.2 Potentially anti-inflammatory effect of peptide fractions in HEK$^{\text{nfκb-RE}}$ cells 142

IV.5 Conclusion 149

IV.6 References 151

Chapter V Conclusions 154

V.1 Development of procedures for the enrichment of MOS by NF 154
V.2 Development of procedures for the generation of anti-inflammatory peptides 157
V.3 Characterization of biological activity of enriched MOS concentrates and generated β-casein hydrolysates 159
V.4 Outlook 160
V.5 References 162