Applikation eines kaltplastischen Wurzelfüllmaterials (GuttaFlow®) in ISO-genormte Kanallumina

Eine In-vitro-Studie

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Hohen Medizinischen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

Ingo Kessel
aus Bonn-Duisdorf

2015
Angefertigt mit Genehmigung der
Medizinischen Fakultät der Universität Bonn

1. Gutachter: Prof. Dr. med. dent. A.Braun
2. Gutachter: Prof. Dr. med. dent. H.Stark

Tag der Mündlichen Prüfung: 09.09.2015

Aus der Poliklinik für Zahnerhaltung und Parodontologie, Zahnerhaltung und Präventive Zahnheilkunde des Zentrums für Zahn-, Mund- und Kieferheilkunde der Universität Bonn
Direktor: Professor Dr. Dr. S. Jepsen
Diese Arbeit widme ich meiner Frau Verena,
meiner Tochter Lia Josephina,
meinem Sohn Julius Leander
und meinen Eltern
Inhaltsverzeichnis

Inhaltsübersicht ... - 5 -

1 Einleitung und Ziel der Arbeit ... - 8 -

1.1 Einführung ... - 8 -

1.2 Wurzelkanalaufbereitung .. - 8 -

1.2.1 Allgemeines .. - 8 -

1.2.2 Manuelle Wurzelkanalaufbereitung .. - 10 -

1.2.3 Maschinelle Wurzelkanalaufbereitung - 11 -

1.3 Wurzelkanalfüllung ... - 14 -

1.3.1 Historisches .. - 14 -

1.3.2 Klassifizierung der Wurzelfüllmaterialien - 15 -

1.3.3 Klassifizierung der Wurzelfülltechniken - 28 -

1.3.4 Apikaler Endpunkt .. - 33 -

1.3.5 Postendodontische Versorgung ... - 34 -

1.4 Ziel der Arbeit .. - 35 -

2 Materialien und Methoden ... - 36 -

2.1 Materialbeschreibung Guttaflow ... - 36 -

2.2 Herstellung der ISO-genormten Wurzelkanäle mit apikalem Wachsreservoir ... - 37 -

2.2.1 Herstellung des apikalen Wachsreservoirs - 37 -

2.2.2 Befestigung des Wachsreservoirs an ISO-genormten Fingerspreadern .. - 39 -

2.2.3 Einbetten der Fingerspreader in Kunststoff - 42 -

2.3 Aufteilung der Versuchsgruppen .. - 44 -

2.4 Erläuterung der Fülltechniken .. - 45 -

2.5 Röntgendokumentation ... - 47 -

2.5.1 Röntgenologische Auswertung .. - 49 -
2.6 Fotodokumentation ... - 54 -

2.7 Zwischenfälle ... - 56 -

2.8 Auswertung .. - 57 -

3 Ergebnisse .. - 60 -

3.1 Ergebnisse bezüglich der Dichtigkeit in Abhängigkeit von der ISO- Größe - 60 -
 3.1.1 Ergebnisse der Gruppe I ... - 60 -
 3.1.2 Ergebnisse der Gruppe II .. - 62 -
 3.1.3 Ergebnisse der Gruppe III ... - 64 -
 3.1.4 Ergebnisse der Gruppe IV ... - 66 -
 3.1.5 Ergebnisse der Gruppe V .. - 68 -
 3.1.6 Ergebnisse der Gruppe VI ... - 70 -
 3.1.7 Ergebnisse der Gruppe VII .. - 72 -

3.2 Ergebnisse bezüglich der Länge in Abhängigkeit von der ISO- Größe.... - 74 -
 3.2.1 Ergebnisse der Gruppe I ... - 74 -
 3.2.2 Ergebnisse der Gruppe II .. - 76 -
 3.2.3 Ergebnisse der Gruppe III ... - 78 -
 3.2.4 Ergebnisse der Gruppe IV ... - 80 -
 3.2.5 Ergebnisse der Gruppe V .. - 82 -
 3.2.6 Ergebnisse der Gruppe VI ... - 84 -
 3.2.7 Ergebnisse der Gruppe VII .. - 86 -

3.3 Ergebnisse bezüglich der Dichtigkeit in Abhängigkeit von der gewählten Applikationstechnik... - 88 -

3.4 Ergebnisse bezüglich der Länge in Abhängigkeit von der gewählten Applikationstechnik.. - 90 -

4 Diskussion ... - 92 -

4.1 Dichtigkeit .. - 92 -

4.2 Länge .. - 97 -
5 Zusammenfassung ... - 101 -

6 Anhang .. - 103 -

6.1 Tabellen zur statistischen Auswertung ... - 103 -
 6.1.1 Homogene Untergruppen für Dichtigkeit Gruppe I - 103 -
 6.1.2 Homogene Untergruppen für Dichtigkeit Gruppe II - 103 -
 6.1.3 Homogene Untergruppen für Dichtigkeit Gruppe III - 104 -
 6.1.4 Homogene Untergruppen für Dichtigkeit Gruppe IV - 104 -
 6.1.5 Homogene Untergruppen für Dichtigkeit Gruppe V - 105 -
 6.1.6 Homogene Untergruppen für Dichtigkeit Gruppe VI - 105 -
 6.1.7 Homogene Untergruppen für Dichtigkeit Gruppe VII - 106 -
 6.1.8 Homogene Untergruppen für Länge Gruppe I ... - 106 -
 6.1.9 Homogene Untergruppen für Länge Gruppe II .. - 107 -
 6.1.10 Homogene Untergruppen für Länge Gruppe III - 107 -
 6.1.11 Homogene Untergruppen für Länge Gruppe IV - 108 -
 6.1.12 Homogene Untergruppen für Länge Gruppe V - 108 -
 6.1.13 Homogene Untergruppen für Länge Gruppe VI - 109 -
 6.1.14 Homogene Untergruppen für Länge Gruppe VII - 109 -
 6.1.15 Homogene Untergruppen für Dichtigkeit ISO 15 bis 40 - 110 -
 6.1.16 Homogene Untergruppen für Länge ISO 15 bis 40 - 110 -

7 Literaturverzeichnis ... - 111 -

8 Danksagungen ... - 136 -

9 Lebenslauf ... - 137 -
1 Einleitung und Ziel der Arbeit

1.1 Einführung

1.2 Wurzelkanalaufbereitung

1.2.1 Allgemeines

Zu Beginn der Wurzelbehandlung steht immer die mechanische Aufbereitung der Wurzelkanäle, welche für den Erfolg der Wurzelbehandlung maßgeblich ist (Koçkapan, 2003).

Die Ziele der Wurzelkanalaufbereitung können wie folgt definiert werden:
• Entfernung von pathologisch verändertem und nekrotischem Pul-
pagewebe
• Entfernung infizierten Kanalwandddentsins
• Möglichst weitreichende Eliminierung aller pathogenen Mikroorganis-
men sowie deren Stoffwechselprodukte
• Vereinfachte und effizientere Aufnahme desinfizierender Substanzen
und Spülfüssigkeiten
• Konische Aufbereitung des Wurzelkanalsystems mit definiertem api-
kalen Endpunkt und Beibehaltung des ursprünglichen Kanalverlaufs
zur Vorbereitung einer Wurzelfüllung

Diese Prinzipien sind durch eine mechanische Aufbereitung allein nicht zu
erzielen, sondern erfordern immer eine kombiniert chemisch-mechanische
Aufbereitung. Hierdurch kann eine Reduktion der Bakterienanzahl um den
Faktor 10^2 bis 10^3 verwirklicht werden (Byström und Sundqvist, 1981).

Die Aufbereitung der Wurzelkanäle kann maschinell oder manuell erfolgen.
Aufgrund der äußerst variablen Wurzelkanalanatomie mit differierender An-
zahl, Größe und Struktur von Haupt- und Nebenkanälen ist es jedoch we-
der mit maschineller noch mit manueller Aufbereitung möglich, das Wurzel-
kanalsystem vollständig zu instrumentieren. Aus diesem Grund ist es not-
wendig, den in den uninstrumentierten Kanalabschnitten verbleibenden
bakteriellen Biofilm durch zwischen den Instrumentierungen erfolgenden
Spülungen mit chemischen Agenzien wie Natriumhypochlorit zu zerstören.
1.2.2 Manuelle Wurzelkanalaufbereitung

Grund wurde die Step-Back-Technik entwickelt, welche bei der manuellen Aufbereitung als Goldstandard angesehen werden darf.

1.2.3 Maschinelle Wurzelkanalaufbereitung

Die maschinelle Wurzelkanalaufbereitung ermöglicht bei richtiger Anwendung eine effizientere, da weniger zeitintensive Aufbereitung gekrümmter Wurzelkanäle (Schäfer et al., 2004; Schäfer und Lohmann, 2002; Alam et al., 2006). Eine Einteilung der zahlreichen Systeme kann durch die Art des Antriebs vorgenommen werden und soll hier nur der Vollständigkeit halber

Die Systeme mit modifiziertem Bewegungsablauf, wie Excalibur (W&H, Bürmoos, Österreich), Endoplaner (Microna, Spreitenbach, Schweiz), EndoFlash (KaVo, Leutkirch) oder Canal-Finder (SET, Marseille, Frankreich) arbeiten mit Kombinationen aus Hub- und/oder Rotationsbewegungen oder niedrigfrequenten Schwingungen. Optimale Ergebnisse bezüglich der Aufbereitung des Wurzelkanals konnten experimentell nicht erzielt werden (Hülsmann, 2000).

Schall- und Ultraschallsysteme wie Sonic Air 3000 (Micro-Méga, Besançon, Frankreich), Piezon Master (EMS, Nyon, Schweiz) oder Cavi-Endo (Dentsply, Konstanz, Deutschland) arbeiten auf der Basis bekannter Schallschwankungen. Die Aufbereitung von Wurzelkanälen mit Hilfe dieser Systeme wird unterschiedlich beurteilt. Die ultraschallgestützte Spülung von Wurzelkanälen scheint jedoch gegenüber der konventionellen
Wurzelkanalspülung Vorteile hinsichtlich der Reinigungsleistung zu haben (Hülsmann, 1993).

Die maschinelle Wurzelkanalaufbereitung erfolgt heute überwiegend mit rotierenden Nickel-Titan-Instrumenten, welche in einem drehmomentbegrenzten Winkelstück betrieben werden. In den letzten Jahren konnten sich zahlreiche Systeme wie z.B. Lightspeed (Maxdental, Augsburg), Mity Roto Files (Loser, Leverkusen), ProFile und ProTaper (Dentsply/ Maillefer, Bellaigues, Schweiz), GT-Rotary Files (Dentsply/ Maillefer, Bellaigues, Schweiz), HERO 642 (Micro-Méga, Besançon, Frankreich), RaCe (FKG, La Chaux-de Fonds, Schweiz) sowie Flexmaster (VDW, München) auf dem Markt etablieren.

Allen Systemen gemeinsam ist die Nickel-Titan-Legierung, welche i.d.R. aus 45% Titan und 55% Nickel bestehen. Das besonders niedrige Elastizitätsmodul verleiht den Instrumenten pseudoelastische Eigenschaften, wodurch der vollrotierende Einsatz auch in gekrümmten Wurzelkanälen ermöglicht wird (Schäfer et. al., 2004). Viele Autoren bestätigen die vereinfachte und zeitsparende Arbeitsweise (Guelzow et al., 2005; Sonntag et al., 2003). Im Vergleich zu manuellen Aufbereitungsinstrumenten besitzen die rotierenden Nickel-Titan-Instrumente eine deutlich größere Konizität (4%, 6% oder noch größer) sowie eine nicht schneidende Spitze, welche einer Veränderung des ursprünglichen Kanalverlaufs entgegenwirken soll. Die meisten Instrumente werden mit der Crown-Down-Technik verwendet, was bedeutet, dass zunächst die koronalen Kanalabschnitte erweitert werden, bevor eine Instrumentierung auf volle Arbeitslänge erfolgt. Dies bewirkt eine Entlastung der Instrumentenspitze und wirkt somit Instrumentenfrakturen entgegen. Generell ist das gegenüber Handinstrumenten erhöhte Risiko einer Instrumentenfraktur (Sattapan et al., 2000; Bortnick et al., 2001) im
Wurzelkanal kritisch zu betrachten und durch geeignete Maßnahmen zu minimieren. Zu diesen zählen zum einen der Einsatz von Chelatoren, die intensive Spülung des Kanals zwischen den Instrumentierungsschritten und der Einsatz drehzahl- und drehmomentbegrenzter Motoren, zum anderen die Einhaltung der vom Hersteller angegebenen Anwendungshinweise bezüglich Häufigkeit der Anwendung, Drehmoment und Drehzahl bei gleichzeitig anzuwendender passiver, d.h. druckloser Arbeitsweise. Neuartige Antriebssysteme geben eine akustische Rückmeldung, wenn das programmierte Drehmoment bald erreicht wird und drehen rückwärts oder stoppen die Rotationsbewegung beim Erreichen des kritischen Wertes.

Der Vollständigkeit halber seien hier auch noch weitere Systeme wie diverse Lasersysteme, das Hochfrequenzchirurgie-System Endox (Orangedental, Steinberg, Deutschland), die Depotphorese sowie die Nichtinstrumentelle Technik (NIT) nach Lussi erwähnt, die jedoch in der Praxis derzeit kaum eine Rolle spielen.

1.3 Wurzelkanalfüllung

1.3.1 Historisches

In den Anfängen der endodontischen Therapie standen nur wenige geeignete Aufbereitungsinstrumente sowie Wurzelfüllmaterialien- und methoden zur Verfügung, welche eine verlässliche Behandlung eines Zahnes mit infizierter Pulpa ermöglichten. Eine gängige Methode war die Pulpenamputation. Hierbei wurde versucht, falls die vollständige Entfernung der Pulpa nicht gelang, mit Hilfe dauerhafter antiseptischer Einlagen die verbliebenen Pulpareste zu sterilisieren (Kantorowicz, 1924). Die hierfür verwendeten Präpara-
te, welche meist in Pastenform eingebracht wurden, enthielten oft Formaldehyd und/oder Thymol (Bach, 1930) und gelten heute als obsolet. Dennoch hat man die grundlegenden Anforderungen an die Wurzelbehandlung, wie das Arbeiten unter sterilen Kautelen, die möglichst vollständige Entfernung infizierten Gewebes, die Bedeutung einer korrekten Arbeitslänge (Andresen, 1912) und der dauerhafte hermetische Verschluß des Wurzelkanalsystems, welche auch heute noch für endodontische Behandlungen gelten, bereits sehr früh erkannt. Sachs beschreibt bereits 1894 eindrucksvoll die Anforderungen an eine ordnungsgemäß durchgeführte Wurzelbehandlung mit sofortiger Wurzelfüllung, welche mit den heutigen wissenschaftlich untermauerten Forderungen in weiten Teilen übereinstimmt (Sachs, 1894).

1.3.2 Klassifizierung der Wurzelfüllmaterialien

- Es soll leicht in den Wurzelkanal einzubringen sein
- Es soll den Wurzelkanal lateral und vertikal dicht verschließen
- Es soll nicht schrumpfen
- 16 -

- Es soll unempfindlich und undurchlässig gegenüber Feuchtigkeit sein
- Es darf das Bakterienwachstum nicht fördern oder sollte sogar bakteriostatisch wirken
- Es soll radiopak sein
- Es soll den Zahn nicht verfärben
- Es soll das periapikale Gewebe nicht reizen
- Es soll sterilisierbar sein
- Es soll leicht wieder aus dem Kanal zu entfernen sein

Keines der heute bekannten Materialien für die Wurzelfüllung wird jedoch all diesen Anforderungen gerecht. Im Allgemeinen gilt heute die Kombination von Guttaperchastiften mit einem Wurzelkanalsealer, welche mit der Methode der lateralen Kondensation eingebracht werden, als Goldstandard (Heidemann, 1989).

Wurzelfüllstifte

- Guttaperchastifte

• Silberstifte
• **Gold- und Titanstifte**

• **Kunststoffstifte**

zelkanal abkühlt. Auf Einzelheiten zu den thermoplastischen Fülltechniken wird im Kapitel 1.3.3 näher eingegangen.

Wurzelfüllpasten/Sealer

- **Wurzelfüllpasten auf Zinkoxid-Eugenol-Basis**

 Die Wurzelkanalsealer auf Zinkoxid-Eugenol-Basis werden als Zweikomponenten-Präparate vor dem Einbringen in den Wurzelkanal angemischt und erhärten dann in der Form eines löslichen Zinkeugenolates (Wilson et al.,
Zahlreiche Studien bestätigen die Fähigkeit, den Wurzelkanal dauerhaft hermetisch zu verschliessen (Tepel et al., 1994; Ørstavik et al., 1987), was wohl auch auf die geringe Schrumpfung und die antibakteriellen Eigenschaften zurückzuführen ist (Roggendorf, 2004). Es konnte in vitro eine Zyto- und Neurotoxizität des Eugenols, welches auch im abgebundenen Eugenolat vorliegt, nachgewiesen werden (Guigand et al., 1999). Dies erlaubt jedoch keine Rückschlüsse auf die In-vivo- Anwendung (Klaiber et al., 1981). Bei Überstopfen des Materials in den Canalis Mandibularis können Sensibilitätsstörungen und dauerhafte Nervschädigungen die Folge sein (Kozam, 1977). Auch über die Förderung der Entstehung einer Aspergillose (Koch et al., 1993) sowie über allergisierendes Potential wurde berichtet (Grade, 1995). Die Löslichkeit der Wurzelkanalsealer auf Eugenol-Basis in Gewebsflüssigkeiten kann als weiterer Nachteil angesehen werden (Koçkapan, 2003). Vertreter der genannten Gruppe sind beispielsweise Hermetic (Lege artis, Dettenhausen, Deutschland), Grossman-Zement (Standard Dental), ProcoSol (Star Dental, DentalEZ Group, Lancaster, PA, USA) und Tubli-Seal (Sybron Endo, Orange, CA, USA).

Wurzelfüllpasten auf Epoxidharz-Basis

- **Wurzelfüllpasten auf Methakrylatbasis**

- **Wurzelfüllpasten auf Polyketon-Basis**

Einziger Vertreter dieser Gruppe ist das Diaket (3M Espe, Seefeld, Deutschland). Es handelt sich um eine Mischung aus Vinylpolymerisaten, welche durch Komplexbildung aushärten. Im Tierversuch wurde eine neuro- und zytotoxische Wirkung nachgewiesen (Feiglin, 1987; Brodin, 1982). Die
Irritation des periapikalen Gewebes ist bei direktem Kontakt im Vergleich zu anderen Materialien schwach ausgeprägt und temporär (Olson et al., 1985). Diese Wurzelfüllungsmaterialien zeigen während und nach der Abbindereaktion weder karzinogene noch mutagene Wirkungen (Schweikl et al., 1991). Im Allgemeinen können Diaket gute Eigenschaften bezüglich Volumenbeständigkeit, Abdichtungsvermögen und Biokompatibilität bescheinigt werden (Ørstavik et al. 1987; Regan et al., 2002)

- **Wurzelfüllpasten auf Polydimethylsiloxan-Basis**

Zur Gruppe dieser auf der Basis additionsvernetzenden Silikons hergestellten Wurzelfüllpasten zählen RoekoSeal® Automix® (RSA)® (Roeko, Langenau, Deutschland) sowie GuttaFlow® (Roeko, Langenau, Deutschland).

RoekoSeal®

Bei RoekoSeal® handelt es sich um einen Wurzelkanalsealer auf Polydimethylsiloxanbasis. Eine hervorzuhebende Eigenschaft ist die leichte Expansi

on beim Abbindevorgang. In zahlreichen Studien erwiesen sich die Abdich
tungseigenschaften von RoekoSeal® als sehr gut (Cobankara et al., 2002; Roggendorf et al., 2001; Wu et al., 2002). Von RoekoSeal® verspricht man sich eine Vereinfachung der Wurzelfülltechnik, da mit diesem Material bei Anwendung der Einstifttechnik die gleichen Dichtigkeitswerte wie bei Anwendung der lateralen Kondensation erreicht werden können (Wu et al., 2003). Zudem scheint Roekoseal® eine gute Biokompatibilität aufzuweisen (Gençoğlu et al., 2003), antibakterielle Eigenschaften fehlen jedoch.
GuttaFlow®

GuttaFlow® ist die marktreife Variante des in der vorliegenden Arbeit untersuchten Wurzelkanalsealers GuttaFill. Es handelt sich um eine Weiterentwicklung des bekannten Sealers RoekoSeal®, welches mit mikrofeinen Gut-taperchakügelchen angereichert wurde. Zudem erfolgte ein Zusatz von Nanosilber in kolloidaler Form, welches bei Escherischia Coli bereits bei sehr geringen Konzentrationen gute antibakteriellen Eigenschaften (Baker et al., 2005) aufweist. Guttaflow® konnte in Studien eine sehr gute Biokompatibilität bescheinigt werden (Eldeniz et al., 2007; Bouillaguet et al., 2006; Brzovic et al., 2005; Gençoglu et al., 2005; Gerosa et al., 2003).

- **Wurzelfüllpasten auf Salicylat-Basis mit Kalziumhydroxid**

im Gewebe und die damit verbundene erhöhte Resorption sowie die Löschlichkeit in Gewebsflüssigkeiten beurteilt (Flax et al., 1986), welche beim Sealapex® langfristig zur Ausbildung von Randspalten in der Wurzelfüllung führen. Apexit hingegen scheint diesbezüglich bessere Ergebnisse zu liefern (Limkangwalmongkol et al., 1992).

- **Wurzelfüllpasten auf Glasionomerzementbasis**

- **Wurzelfüllpasten auf Guttapercha-Basis**

Wurzelfüllpasten auf Guttapercha-Basis haben heute nur noch historische Bedeutung und sollen hier nur der Vollständigkeit halber erwähnt werden.
Es handelt sich um in Chloroform (=Chloropercha) oder in Eucalyptusöl (=Eucapercha) gelöste Guttapercha, welche entweder selbst hergestellt werden kann oder als fertiges Produkt erhältlich ist, beispielsweise als Harz-Chloropercha (Deibele) oder Chloropercha (Moyco). Aufgrund der toxischen Eigenschaften der organischen Lösungsmittel (Klaiber et al., 1981; Morse et al., 1984) und wegen der starken Schrumpfung des Materials (Wong et al., 1982), welche durch die Verdampfung des Lösungsmittels bedingt ist, gelten diese Materialien heute als ungeeignet.

- **Wurzelfüllpasten mit Medikamentenzusatz**

Als Medikamentenzusätze in Wurzelfüllpasten kommen (Para-)Formaldehyd und Kortikosteroid-Zusätze zum Einsatz.

(Para-)Formaldehydzusätze

Kortikosteroidzusätze

Der Kortikoidzusatz in Produkten wie dem Endomethasone N (Pharma-Dental, Bonn, Deutschland) führt zu einer lokalen Immunsuppression und kann somit eine unkontrollierte Vermehrung von Mikroorganismen bewirken. Als Folge kann eine Verschlechterung periapikaler Entzündungen eintreten (Tepel et al., 1994). Kortikosteroidhaltige Wurzelfüllpasten können somit nicht empfohlen werden.

Als neuere Entwicklungen sind weiterhin zu nennen:

- **Wurzelfüllpasten auf Polyesterbasis**

 Basierend auf dem Polyester Resilon mit einem Zusatz von bioaktivem Glas wurde vor einiger Zeit das neuartige Sealer-Stift System Epiphany (Pentron Clinical Technologies, Wallingford, CT, USA) auf den Markt gebracht. Hierbei wird erstmals für Sealer und Stifte das gleiche Material verwendet, wodurch eine bessere Verbindung zwischen beiden Komponenten (Ausbildung eines Monoblocks) erreicht werden soll. Für eine bessere Adaption des Sealers zur Wurzelkanalwand enthält das System einen speziellen Primer. Erste bakteriologische Leakage-Tests und Dichtigkeitsuntersuchungen zeigen gute Ergebnisse (Shipper et al., 2004; Eldeniz et al., 2009; Herbert et al., 2009; Dultra et al., 2006). Auch die Biokompatibilität des Systems erscheint in ersten Studien mit bewährten Materialien vergleichbar zu sein (Brzovic et al., 2009).
Wurzelfüllpasten auf Komposit-Basis

1.3.3 Klassifizierung der Wurzelfülltechniken

Zentralstiftmethode

Bei der Zentralstiftmethode wird ein einzelner mit Sealer benetzter Guttaperchastift, welcher auf die Größe des letzten Aufbereitungsinstruments abgestimmt ist, in den Wurzelkanal eingebracht. Hierdurch ergibt sich eine verhältnismäßig große Menge Sealer, welcher die Inkongruenzen zwischen Kanalwand und Guttaperchastift ausfüllen muss. Besonders bei Kanälen mit ovalen Querschnitt ist keine gute Passform des Stiftes gewährleistet, daher sollte die Zentralstifttechnik nur bei rundem Kanalquerschnitt angeendet werden (Guldener, 1971). Durch die den meisten Sealermaterialien eigene Abbindeschrumpfung ergeben Dichtigkeitsuntersuchungen häufig
keine guten Resultate für die Zentralstiftmethode im Vergleich zu anderen Fülltechniken (Monticelli et al., 2007; Beatty, 1987). Andere Autoren jedoch fanden keine signifikanten Unterschiede zu bewährten Fülltechniken (Antonopoulos et al., 1998).

- **Laterale Kondensation**

• Thermoplastische Fülltechniken

Vertikale Kondensation

Thermomechanische Kondensation
Bei dieser erstmals von McSpadden (1980) beschriebenen Fülltechnik wird ein mit Sealer benetzter Guttapercha-Hauptstift in den Wurzelkanal einge-

Injektionsmethode

Thermafil-System®

- **Vakuumtechnik**

Einem völlig neuen Ansatz für die Aufbereitung und Obturation von Wurzelkanälen geht die von Lussi et al. 1993 vorgestellte Methode der Nicht-Instrumentellen Technik (NIT). Die Reinigung und auch das Abfüllen der Wurzelkanäle erfolgt hierbei automatisch ohne den Einsatz abtragender In-

1.3.4 Apikaler Endpunkt

Der apikale Endpunkt der Wurzelfüllung hat eine besondere Bedeutung während der endodontischen Therapie. Als ideal gilt dabei eine Wurzelfüllung, welche am Foramen physiologicum endet. Hier besitzt der Wurzelkanal seinen geringsten Durchmesser, so dass die Kontaktfläche zwischen

den.

1.3.5 Postendodontische Versorgung

Die DGZMK fordert in einer gemeinsamen Stellungnahme von DGZMK, DGZPW und DGZ aus dem Jahr 2003, dass endodontisch behandelte Zäh-
ne umgehend mit einer definitiven, bakteriendichten Restauration versorgt werden sollten, da provisorische Versorgungen und die Wurzelfüllung selbst nicht dauerhaft in der Lage sind, eine Reinfektion des Wurzelkanal-
systems von koronal zu verhindern. Abhängig vom Destruktionsgrad des Zahnes kann eine adhäsive Restauration mit Kompositen, eine Versorgung mit Teilkronen oder eine komplette Überkronung erfolgen. Eine Veranke-
run von Aufbauten mit Wurzelstiften bedarf einer sorgfältigen Risiken-
Nutzen-Abwägung, da durch die Stiftbohrung eine zusätzliche Schwächung der Zahnharzsubstanz und somit ein erhöhtes Frakturrisiko resultiert.
1.4 Ziel der Arbeit

2 Materialien und Methoden

Im Rahmen der Studie wurden ISO-genormte Wurzelkanallumina mit apikalem Wachsreservoir aus transparentem Kunststoff (Orthocryl, Dentaurum, Ispringen, Deutschland) hergestellt und anschließend mit dem experimentellen Wurzelfüllmaterial Guttaflow (Coltène/Whaledent GmbH + Co. KG, Langenau, Deutschland) durch verschiedene Applikations- und Fülltechniken obturiert.

2.1 Materialbeschreibung Guttaflow®

Arbeit wurde eine Herstellercharge des Materials verwendet, die nicht im Handel erhältlich war und unter der Bezeichnung „Guttafill“ geführt wurde.

2.2 Herstellung der ISO-genormten Wurzelkanäle mit apikalem Wachsreservoir

2.2.1 Herstellung des apikalen Wachsreservoirs

Zur Herstellung eines Wachsreservoirs im Apexbereich der Wurzelkanäle wurde zunächst ein Silikonblock aus kondensationsvernetzendem Silikon (Orbis Dental, Offenbach, Deutschland) mit ebenen Flächen hergestellt. Der ausgehärtete Silikonblock wurde dünn mit einem Trennmittel (Vaseline) versehen und Glaskopfstecknadeln (William Prym GmbH & Co. KG, Stolberg, Deutschland) in der Art und Weise eingebettet, dass nur der Nadelkopf aus dem Block herausragte. Die verbliebene Oberfläche des Silikonblocks sowie der Nadelköpfe wurde anschließend mit niedrigviskösem, additionsvernetzendem Silikon vollständig bedeckt (Abb.1).
Abb. 1: Schematische Darstellung der Einbettung von Glaskopfstecknadeln zur nachfolgenden Simulation eines apikalen Gewebepuffers.

Niedriginalös Silikon

Hochviskös Silikon

Abb. 1: Schematische Darstellung der Einbettung von Glaskopfstecknadeln zur nachfolgenden Simulation eines apikalen Gewebepuffers.
Nach Aushärtung der entstandenen obersten Schicht konnte diese vollständig abgezogen werden. Die auf diese Weise entstandenen Hohlformen wurden mit Plastodent U-Wachs (Degussa, Frankfurt, Deutschland) in erhitztem Zustand sukzessive gefüllt (Abb.2).

Nach Erkalten des Wachses konnten die entstandenen Wachskugeln gleicher Größe entnommen werden.

2.2.2 Befestigung des Wachsreservoirs an ISO-genormten Fingerspreadern

Zur Herstellung der ISO-genormten Wurzelkanäle dienten Fingerspreader (Maillefer, Ballaigues, Schweiz) der Größen 15-40 als Patrize. Durch kur-
Abb.3: Schematische Darstellung des Vorgangs der Verbindung von ISO-genormten Spreadern und zuvor hergestellten Wachskugeln:

a) Kunststoffvorrichtung (Positionierungshilfe) mit oberem Stop zur Aufnahme des Spreaders und unterer Mulde zur Positionierung der Wachskugel
b) Kunststoffvorrichtung mit positionierter Wachskugel
c) Erwärmen der Spitze des Spreaders über offener Flamme
d) Einbringen des erwärmten Spreaders in die mit Wachskugel vorbereitete Positionierungshilfe
e) Mit Wachskugel verbundener Spreader nach Entnahme aus der Positionierungshilfe
2.2.3 Einbetten der Fingerspreader in Kunststoff

Abb. 4: Über der Glasplatte mit Silikon berührungslos fixierter Spreader vor der Einbettung in Kunststoff

Abb. 5: Fertiger Kunststoffblock mit ISO-genormten Wurzelkanälen nach dem Ausbetten und der Bearbeitung mit rotierenden Instrumenten
2.3 Aufteilung der Versuchsgruppen

Im Rahmen der Studie wurden Applikationstechniken des kaltplastischen Gutta-percha-Sealers an insgesamt 630 ISO-genormten Wurzelkanälen untersucht. Die genormten Wurzelkanäle wurden entsprechend der Applikationsmethoden in sieben Hauptgruppen wie folgt unterteilt:

Applikationsmethoden des Gutta-percha-Sealers

- **Gruppe I:** Applikation mit der mitgelieferten Applikations- (Misch-) Kanüle
- **Gruppe II:** Applikation mit der mitgelieferten Applikations- (Misch-) Kanüle, anschließend einmaliges Nachkondensieren mit einem Endodontie-Fingerplugger (Maillefer, Ballaigues, Schweiz)
- **Gruppe III:** Applikation mit der mitgelieferten Applikations- (Misch-) Kanüle, anschließend einmaliges Nachkondensieren mit einer K-Feile
- **Gruppe IV:** Applikation mit der mitgelieferten Applikations- (Misch-) Kanüle, anschließend Einbringen eines Zentralstiftes
- **Gruppe V:** Applikation mit einer K-Feile
- **Gruppe VI:** Applikation mit einer K-Feile, anschließend Einbringen eines Zentralstiftes
- **Gruppe VII:** Applikation mit einer auf das Kanallumen abgestimmten Wurzelfüllspirale

Jede der Hautgruppen bestand aus je 15 Kanälen der ISO-Größen 15, 20, 25, 30, 35 und 40
2.4 Erläuterung der Fülltechniken

Im Anschluss an die Herstellung wurden die künstlichen Wurzelkanäle entsprechend ihrer Aufteilung in die Versuchsgruppen gefüllt. Hierbei kamen sowohl die reine Pastentechnik als auch die Zentralstifttechnik mit einem zentralen Guttaperchastift zum Einsatz:

- **Gruppe I**

- **Gruppe II**
• Gruppe III
Es wurde die gleiche Technik verwendet, wie unter Gruppe II beschrieben, jedoch wurde für die Kondensation eine auf das jeweilige Kanallumen abgestimmte K-Feile verwendet.

• Gruppe IV

• Gruppe V

• Gruppe VI
Es wurde die gleiche Vorgehensweise wie unter Gruppe V beschrieben gewählt. Zudem wurde, wie unter Gruppe IV beschrieben, ein Zentralstift eingebracht.
Gruppe VII

Beim Anmischen des Materials war darauf zu achten, dass der erste Anteil des Materials zu verwerfen war, da Inhomogenitäten des angemischten Versuchsmaterials zu beobachten waren.

2.5 Röntgendokumentation

Zur Kontrolle von Dichtigkeit und Länge der Wurzelfüllung wurden Röntgenbilder aller Kanäle angefertigt. Es wurden digitale Speicherfolien sowie die entsprechende Bildbearbeitungssoftware (Gendex Digora, Gendex Dental Systeme, Hamburg, Deutschland) verwendet. Jeweils 5 Kanäle konnten dabei auf einem Zahnfilm abgebildet werden. Hierzu wurden die Kunststoffblöcke (mit der glatten Seite dem Tubus zugewendet) auf ebener Unterlage über der Speicherfolie platziert und die Röntgenröhre orthograd auf den
Film ausgerichtet. Die Röhrenspannung für die Aufnahmen betrug 60kV und es wurde eine Belichtungszeit von 0,08 Sekunden gewählt. Mit Hilfe einer Bildbearbeitungssoftware wurden anschließend die Abbilder der einzelnen Kanäle freigestellt, so dass nur ein Wurzelkanal je Bild zu sehen war (Abb. 6).

Abb. 6: Röntgendarstellung eines gefüllten Wurzelkanals nach Freistellung mit einer digitalen Bildbearbeitungssoftware
2.5.1 Röntgenologische Auswertung

Die Auswertung der Röntgenbilder erfolgte nach den Kriterien Dichtigkeit und Länge der Wurzelfüllung.

Für die weitere Auswertung wurde der Mittelwert der Bewertungen durch die 6 Zahnärzte herangezogen, so dass jeder Fall mit einem Wert in die statistische Analyse einging.
Abb. 7: Präsentation der zu beurteilenden Röntgenbilder (mittig, groß dargestellt) mit Referenzwurzelfüllungen zur Dichtigkeit (linke Bildhälfte: Kategorien A, B, C, D) und zur Länge (rechte Bildhälfte: Kategorien -2, -1, 0, 1, 2)
2.5.1.1 Dichtigkeit

Die Dichtigkeit sei in dieser Untersuchung als Röntgenopazität des Wurzelfüllmaterials mit einer vollständigen Auskleidung des Wurzelkanallumens ohne Kontrastunregelmäßigkeiten definiert.

Kategorie D = maximale Dichtigkeit
Alle Wurzelfüllungen, welche dieses Kriterium auf der gesamten Länge des Wurzelkanals zu 100% oder nahezu 100% erfüllten, waren in Kategorie D einzuordnen.

Kategorie C = Dichtigkeit > 50%
Kategorie C umfasste alle Wurzelfüllungen, die Kontrastunregelmäßigkeiten oder weniger röntgendichte Areale aufwiesen, deren Bereiche maximaler Dichtigkeit jedoch mehr als 50% des gesamten Wurzelkanallumens umfassten. Die Lokalisation (Apexnähe oder koronal) der dichten Bereiche nahm hierbei keinen Einfluss auf die Zuordnung zur entsprechenden Kategorie.

Kategorie B = Dichtigkeit < 50%
Bei den unter Kategorie B einzuordnenden Wurzelfüllungen umfassten die dichten Bereiche weniger als 50% des gesamten Wurzelkanallumens. Auch hier spielte die Lokalisation der dichten und weniger dichten Bereiche für die Beurteilung keine Rolle.
Kategorie A = unzureichende Dichtigkeit

Unter Kategorie A fielen schließlich alle Wurzelfüllungen, bei denen praktisch keine dichten Bereiche auszumachen waren.
2.5.1.2 Länge

Die Länge sei in dieser Untersuchung definiert als röntgenologisch vom Wurzelfüllmaterial erkennbar erreichter Tiefenpunkt der Wurzelfüllung. Hierbei spielte die Dichtigkeit des Materials an der entsprechenden Stelle bei der Einschätzung keine Rolle.

Kategorie -2 = unzureichende Länge
In Kategorie –2 erfolgte die Zuordnung von Wurzelfüllungen, welche nicht bis in das untere Drittel des Wurzelkanals reichten.

Kategorie –1 = nahezu ausreichende Länge
Die Wurzelfüllungen, die das untere Kanaldrittel zwar erreichten, jedoch keine vollständige Wurzelfüllung darstellten, waren in Kategorie –1 einzu-stufen.

Kategorie 0 = ideale Länge
Alle Wurzelfüllungen, welche die nach klinischen Gesichtspunkten gewünschte Arbeitslänge exakt erreichten, sollten in Kategorie 0 eingegliedert werden.
Kategorie 1 = leichte Überfüllung
Fand eine leichte Überstopfung des Wurzelfüllmaterials in den periapikalen Bereich statt, welche diesen jedoch zu weniger als einem Drittel ausfüllte, erfolgte die Zuordnung zu Kategorie 1.

Kategorie 2 = massive Überfüllung
Eine massive Überfüllung und somit die Einteilung in Kategorie 2 hatte zu erfolgen, wenn das Lumen des periapikalen Gebietes zu mehr als einem Drittel mit Wurzelfüllmaterial ausgefüllt war.

2.6 Fotodokumentation
Abb. 8: fotografische Darstellung der gefüllten Wurzelkanäle
2.7 Zwischenfälle

2.8 Auswertung

Die gewonnenen Daten wurden in Excel-Tabellen erfasst und anschließend in Abhängigkeit von der betrachteten ISO-Größe und der gewählten Applikationsmethode statistisch ausgewertet und graphisch dargestellt. Um die Daten auszuwerten wurden sie zunächst umcodiert, d. h. den ermittelten Kategorien wurden numerische Werte zugeordnet, die in Excel-Tabellen verwertet werden konnten. Dabei galt für das Kriterium Dichtigkeit folgende Codierung:

<table>
<thead>
<tr>
<th>Ermittelte Kategorie</th>
<th>Zugeordneter Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
</tr>
</tbody>
</table>
Die Werte für das Kriterium Länge wurden wie folgt umcodiert:

<table>
<thead>
<tr>
<th>Ermittelte Kategorie</th>
<th>Zugeordneter Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Erfasst wurden jeweils Mittelwert, Standardabweichung, die absolute Anzahl erfasster Werte einer Kategorie (Anzahl A, B, C, D bzw. -2, -1, 0, 1, 2) sowie Median, oberes Quartil, unteres Quartil, Maximum und Minimum. Die fünf letztgenannten Werte wurden mit Hilfe eines Boxplot-Diagramms graphisch dargestellt. Es fasst verschiedene Maße der zentralen Tendenz, Streuung und Schiefe in einem Diagramm zusammen. Die Werte der Fünf-Punkte-Zusammenfassung, also Median, die zwei Quartile und die beiden Extremwerte, sind dargestellt. Als "Box" wird hierbei das durch die Quartile bestimmte Rechteck bezeichnet. Sie umfasst 50% der Daten. Durch die Länge der Box ist der Interquartilsabstand (interquartile range, IQR) abzulesen. Dies ist ein Maß der Streuung, welches durch die Differenz des obe-

Abschließend wurden die gewonnenen Daten mithilfe des Programms SPSS 12.0 für Windows® statistisch ausgewertet. Zu diesem Zweck wurden die Rohdaten aus Microsoft Excel® in den Daten-Editor von SPSS kopiert. Daraufhin wurde eine Umstrukturierung der ausgewählten Variablen in Fälle durchgeführt und anschließend aus den ausgegebenen Zielvariablen eine Rangfolge gebildet. Die so gewonnenen Werte wurden anschließend einer statistischen Auswertung mit einfaktorieller Varianzanalyse (ANOVA) und anschließendem Scheffé-Test ($\alpha = 0,05$) unterzogen.
3 Ergebnisse

3.1 Ergebnisse bezüglich der Dichtigkeit in Abhängigkeit von der ISO-Größe

3.1.1 Ergebnisse der Gruppe I

In Gruppe I (Applikation mit der mitgelieferten Applikations-(Misch-)Kanüle) zeigte die statistische Auswertung tendenziell eine Abnahme der Dichtigkeit mit steigender ISO-Größe (Abb. 9). Im Mittel wurde bei keiner ISO-Größe die maximale Dichtigkeit (Kategorie A) erreicht.

Abb. 9: Graphische Darstellung von Median, Maximum, Minimum, oberem Quartil und unterem Quartil der Werte für die Dichtigkeit U (Grad der Röntgenopazität des Wurzelfüllmaterials; dabei entspricht der Wert 4 einer Dichtigkeit von 100% und der Wert 1 einer Dichtigkeit von 0%) bei Untersuchungsgruppe I (Applikation mit der mitgelieferten Applikations-(Misch-)Kanüle) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle (n=90). Statistisch signifikant geringste Dichtigkeit in der ISO 25-Gruppe (p<0,05).
3.1.2 Ergebnisse der Gruppe II

Abb. 10: Graphische Darstellung von Median, Maximum, Minimum, oberem Quartil und unterem Quartil der Werte für die Dichtigkeit U (Grad der Röntgenopazität des Wurzelfüllmaterials; hierbei entspricht der Wert 4 einer Dichtigkeit von 100% und der Wert 1 einer Dichtigkeit von 0%) bei Untersuchungsgruppe II (Applikation mit der mitgelieferten Applikations-(Misch-)Kanüle, anschließend einmaliges Nachkondensieren mit einem Endodontie-Fingerplugger) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle (n=90). Kein statistisch signifikanter Unterschied zwischen den Gruppen.
3.1.3 Ergebnisse der Gruppe III

Bei Gruppe III (Applikation mit der mitgelieferten Applikations- (Misch-) Kanüle, anschließend einmaliges Nachkondensieren mit einer K-Feile) zeigte sich ebenfalls keine eindeutige Tendenz im Sinne einer Verbesserung oder Verschlechterung der Dichtigkeit in Abhängigkeit von der ISO-Größe (Abb. 11). Im Mittel wurden keine Dichtigkeiten von über 50% erreicht. Das signifikant beste Ergebnis wurde für ISO 40 erreicht (p<0,05). Die schlechtesten Werte waren bei den ISO-Größen 15 und 25 festzustellen, nicht signifikant besser war ISO 35. Signifikant besser waren die Größen ISO 30 und ISO 20 (p<0,05) (Tab. 3).
Gruppe III

![Graphische Darstellung von Median, Maximum, Minimum, oberem Quartil und unterem Quartil der Werte für die Dichtigkeit U (Grad der Röntgenopazität des Wurzelfüllmaterials; hierbei entspricht der Wert 4 einer Dichtigkeit von 100% und der Wert 1 einer Dichtigkeit von 0%) bei Untersuchungsgruppe III (Applikation mit der mitgelieferten Applikations-(Misch-)Kanüle, anschließend einmaliges Nachkondensieren mit einer K-Felle) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle (n=90). Größte Dichtigkeit in der ISO 40-Gruppe (p<0,05).]
3.1.4 Ergebnisse der Gruppe IV

Gruppe IV zeigte im Mittel maximale Dichtigkeit entsprechend der Kategorie D für alle untersuchten ISO-Größen (Abb. 12).
Abb. 12: Graphische Darstellung von Median, Maximum, Minimum, oberem Quartil und unterem Quartil der Werte für die Dichtigkeit U (Grad der Röntgenopazität des Wurzelfüllmaterials; hierbei entspricht der Wert 4 einer Dichtigkeit von 100% und der Wert 1 einer Dichtigkeit von 0%) bei Untersuchungsgruppe IV (Applikation mit der mitgelieferten Applikations-(Misch-)Kanüle, anschließend Einbringen eines Zentralstiftes) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle ($n=90$). Statistisch signifikant größere Dichtigkeit mit steigender ISO-Größe ($p<0.05$).
3.1.5 Ergebnisse der Gruppe V

Bei der Untersuchungsgruppe V wurden im Mittel für alle untersuchte ISO-Größen Dichtigkeiten von weniger als 50% entsprechend der Kategorie B erreicht (Abb. 13).

Es waren signifikante Unterschiede zwischen den einzelnen ISO-Größen erkennbar ohne eine eindeutige Tendenz zu besseren oder schlechteren Ergebnissen in Abhängigkeit von der ISO-Größe (Tab. 5). Die Werte für ISO 15, 20 und 25 waren signifikant besser als die für ISO 30, 35 und 40 (p<0,05). Die Werte für ISO 40, 35 und 15 waren signifikant besser als für ISO 30 und signifikant schlechter als die für ISO 25 und 20 (p<0,05) (Tab. 5).
Abb.13: Graphische Darstellung von Median, Maximum, Minimum, oberem Quartil und unterem Quartil der Werte für die Dichtigkeit U (Grad der Röntgenopazität des Wurzelfüllmaterials; hierbei entspricht der Wert 4 einer Dichtigkeit von 100% und der Wert 1 einer Dichtigkeit von 0%) bei Untersuchungsgruppe V (Applikation mit einer K-Feile) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle(n=90). Signifikant geringere Dichtigkeit mit steigender ISO-Größe(p<0,05).
3.1.6 Ergebnisse der Gruppe VI

Abb. 14: Graphische Darstellung von Median, Maximum, Minimum, oberem Quartil und unterem Quartil der Werte für die Dichtigkeit U (Grad der Röntgenopazität des Wurzelfüllmaterials; hierbei entspricht der Wert 4 einer Dichtigkeit von 100% und der Wert 1 einer Dichtigkeit von 0%) bei Untersuchungsgruppe VI (Applikation mit einer K-Feile, anschließend Einbringen eines Zentralstiftes) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle(n=90). Signifikant größere Dichtigkeit bei steigender ISO-Größe(p<0,05).
3.1.7 Ergebnisse der Gruppe VII

Bei der Untersuchungsgruppe VII wurden im Mittel für alle untersuchte ISO-Größen Dichten von weniger als 50% entsprechend der Kategorie B erreicht (Abb. 15).
Abb. 15: Graphische Darstellung von Median, Maximum, Minimum, oberem Quartil und unterem Quartil der Werte für die Dichtigkeit U(Grad der Röntgenopazität des Wurzelfüllmaterials; hierbei entspricht der Wert 4 einer Dichtigkeit von 100% und der Wert 1 einer Dichtigkeit von 0%) bei Untersuchungsgruppe VII (Applikation mit einer auf das Kanallumen abgestimmten Wurzelfüllspirale) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle(n=90). Keine deutliche Abhängigkeit zwischen Dichtigkeit und ISO-Größe des Kanals.
3.2 Ergebnisse bezüglich der Länge in Abhängigkeit von der ISO-Größe

3.2.1 Ergebnisse der Gruppe I

Abb. 16: Graphische Darstellung von Median, Maximum, Minimum, oberem Quartil und unterem Quartil der Werte für die Länge U (Röntgenologisch erkennbarer Tiefenpunkt des Wurzelfüllmaterials; hierbei entspricht der Wert 3 einer idealen Länge, der Wert 1 einer maximalen Unterfüllung und der Wert 5 einer maximalen Überfüllung) bei Untersuchungsgruppe I (Applikation mit der mitgelieferten Applikations-(Misch-)Kanüle) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle (n=90). Exaktes Erreichen der Aufbereitungslänge (Kodierung 3) bei größer aufbereiteten Kanälen.
3.2.2 Ergebnisse der Gruppe II

Bei Untersuchungsgruppe II zeigte sich eine eindeutige Tendenz hin zu einem steigenden Ausmaß des Überfüllens mit steigender ISO-Größe (Abb. 17).

Bei ISO 15 und ISO 20 waren im Mittel entsprechend der Kategorie 1 eine leichte Überfüllung des Wurzelfüllmaterials erkennbar. Der Unterschied zwischen ISO 15 und ISO 20 war dabei signifikant (p<0,05) (Tab. 9). Bei den ISO-Größen 25, 30, 35 und 40 fand im Mittel eine massive Überfüllung des Wurzelkanals entsprechend der Kategorie 5 statt. Der Unterschied der vier letztgenannten Größen war sowohl zu ISO 15 als auch zu ISO 20 signifikant (p<0,05).
Abb. 17: Graphische Darstellung von Median, Maximum, Minimum, oberem Quartil und unterem Quartil der Werte für die Länge (Röntgenologisch erkennbarer Tiefenpunkt des Wurzelfüllmaterials; hierbei entspricht der Wert 3 einer idealen Länge, der Wert 1 einer maximalen Unterfüllung und der Wert 5 einer maximalen Überfüllung) bei Untersuchungsgruppe II (Applikation mit der mitgelieferten Applikations-(Misch-)Kanüle, anschließend einmaliges Nachkondensieren mit einem Endodontie-Fingerplugger) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle (n=90). Überstopfen des Wurzelfüllmaterials mit steigender ISO-Kanalgröße (p<0,05).
3.2.3 Ergebnisse der Gruppe III

Die Werte für die Größe ISO 15 unterschieden sich signifikant von den Werten für ISO 20, 25, 30 und 35 (p<0,05). Die vier letztgenannten Größen wiederum wiesen einen signifikanten Unterschied zu ISO 40 auf (p<0,05) (Tab. 10).
3.2.4 Ergebnisse der Gruppe IV

Abb. 19: Graphische Darstellung von Median, Maximum, Minimum, oberem Quartil und unterem Quartil der Werte für die Länge (Röntgenologisch erkennbarer Tiefenpunkt des Wurzelfüllmaterials; hierbei entspricht der Wert 3 einer idealen Länge, der Wert 1 einer maximalen Unterfüllung und der Wert 5 einer maximalen Überfüllung) bei Untersuchungsgruppe IV (Applikation mit der mitgelieferten Applikations-(Misch-)Kanüle, anschließend Einbringen eines Zentralstiftes) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle (n=90). Größte Überfüllungen bei großen Kanallumina (p<0,05).
3.2.5 Ergebnisse der Gruppe V

Abb. 20: Graphische Darstellung von Median, Maximum, Minimum, oberem Quartil und unterem Quartil der Werte für die Länge (Röntgenologisch erkennbarer Tiefenpunkt des Wurzelfüllmaterials; hierbei entspricht der Wert 3 einer idealen Länge, der Wert 1 einer maximalen Unterfüllung und der Wert 5 einer maximalen Überfüllung) bei Untersuchungsgruppe V (Applikation mit einer K-Feile) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle (n=90). Keine Abhängigkeit der Füll-Länge von der ISO-Größe (p<0,05).
3.2.6 Ergebnisse der Gruppe VI

Abb. 21: Graphische Darstellung von Median, Maximum, Minimum, oberem Quartil und unterem Quartil der Werte für die Länge (Röntgenologisch erkennbarer Tiefenpunkt des Wurzelfüllmaterials; hierbei entspricht der Wert 3 einer idealen Länge, der Wert 1 einer maximalen Unterfüllung und der Wert 5 einer maximalen Überfüllung) bei Untersuchungsgruppe VI (Applikation mit einer K-Feile, anschließend Einbringen eines Zentralstiftes) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle (n=90). Lediglich bei ISO 15-Kanälen konnte eine ideale Länge erreicht werden (p<0,05).
3.2.7 Ergebnisse der Gruppe VII

3.3 Ergebnisse bezüglich der Dichtigkeit in Abhängigkeit von der gewählten Applikationstechnik

Der Vergleich der verschiedenen Applikationstechniken ohne Bedrucksichtigung der ISO-Größen ergab bei den Gruppen IV und VI im Mittel eine maximale Dichtigkeit (Abb.23), entsprechend der Kategorie D. Die Unterschiede zu den anderen Gruppen waren hierbei signifikant (p<0,05) (Tab.15). Alle weiteren Applikationsmethoden zeigten im Mittel, der Kategorie B entsprechend, eine Dichtigkeit von <50% (Abb.37).

Die schlechtesten Werte wurden für die Gruppen III und V ermittelt (Abb.23), signifikant besser waren die Werte für Gruppe II und Gruppe VII (p<0,05) (Tab.15). Gruppe I schnitt wiederum signifikant besser ab als die vorgenannten Gruppen (p<0,05) (Tab.15).
Vergleich der Applikationsmethoden

Abb. 23: Graphische Darstellung von Median, Maximum, Minimum, oberem Quartil und unterem Quartil der zusammengefassten Werte für die Dichtigkeit U (Grad der Röntgenopazität des Wurzelfüllmaterials; hierbei entspricht der Wert 4 einer Dichtigkeit von 100% und der Wert 1 einer Dichtigkeit von 0%) der ISO-Größen 15-40 in Abhängigkeit von der gewählten Applikationstechnik (n=540). Bestes Ergebnisse unter Verwendung eines zusätzlichen Zentralstiftes (p<0,05).
3.4 Ergebnisse bezüglich der Länge in Abhängigkeit von der gewählten Applikationstechnik

Eine im Mittel ideale Länge entsprechend der Kategorie 3 war bei Gruppe III und Gruppe V festzustellen (Abb.24). Gruppe V unterschied sich dabei jedoch nicht signifikant von Gruppe I (Tab.16), bei welcher im Mittel nur eine nahezu ausreichende Länge (Kategorie –2) vorhanden war (Abb.24). Die Ergebnisse für Gruppe III dagegen waren signifikant besser als für die Gruppen I und V (p<0,05) (Tab.16). Wiederum einen signifikanten Unterschied zu den vorgenannten Gruppen wiesen Gruppe IV und Gruppe VI auf (p<0,05) (Tab.16), im Mittel wiesen diese Gruppen eine leichte Überfüllung (Kategorie 4) auf (Abb.24). Auch Gruppe VII zeigte im Mittel eine leichte Überfüllung (Abb.24) ohne signifikanten Unterschied zu Gruppe VI (Tab.16). Der Unterschied zu Gruppe IV dagegen war signifikant (p<0,05) (Tab.16). Das größte Maß an Überfüllung (Kategorie 5 im Mittel) wurde bei Gruppe II erreicht (Abb.24). Der Unterschied zu den anderen Gruppen war dabei statistisch signifikant (p<0,05) (Tab.16).
Vergleich der Applikationsmethoden

Abb. 24: Graphische Darstellung von Median, Maximum, Minimum, oberem Quartil und unterem Quartil der zusammengefassten Werte für die Länge (Röntgenologisch erkennbarer Tiefenpunkt des Wurzelfüllmaterials; hierbei entspricht der Wert 3 einer idealen Länge, der Wert 1 einer maximalen Unterfüllung und der Wert 5 einer maximalen Überfüllung) der ISO-Größen 15-40 in Abhängigkeit von der gewählten Applikationstechnik (n=540). Stärkste Überfüllung nach einmaligem Nachkondensieren mit einem Fingerplugger (p<0,05) (Gruppe II).
4 Diskussion

In der vorliegenden Studie galt es unter anderem die Fragestellung zu erörtern, ob es mit dem untersuchten Material aufgrund seiner Eigenschaften möglich ist, eine Wurzelfüllung herzustellen, welche nach den klinisch zur Verfügung stehenden Kriterien Dichtigkeit und Länge auf dem Röntgenbild als ideal einzustufen ist.

4.1 Dichtigkeit

Dem in dieser Studie untersuchten Wurzelfüllmaterial wurde in Studien für die Anwendung der Zentralstifttechnik bereits gute Ergebnisse bezüglich des Abdichtungsverhaltens bescheinigt (Roggendorf et al., 2001; Roggendorf et al., 2005; Taranu et al., 2005). Einige Untersuchungen gaben jedoch auch Anlass zu der Annahme, dass eine suffiziente Wurzelfüllung mit Guttafill auch als reine Pastenfüllung ohne zusätzliche Guttaperchastifte zu erzielen sei (Whitworth et al., 2005; Roggendorf et al., 2003; ElAyouti et al., 2005). Die Ergebnisse der genannten Studien konnten in der vorliegenden Untersuchung jedoch nicht ohne Einschränkung bestätigt werden, da die mit Zentralstifttechnik hergestellten Wurzelfüllungen signifikant bessere Ergebnisse lieferten als die mit reiner Pastentechnik obturierten Kanäle. Ein direkter Vergleich der Ergebnisse ist jedoch nicht zulässig, da die genannten Arbeiten zum einen extrahierte Zähne für die Wurzelfüllungen verwendeten, zum anderen wurden Leakage-Untersuchungen durchgeführt und nicht allein eine röntgenologische Beurteilung der gefüllten Wurzelkanäle als Basis für die Auswertung genommen.

In der vorliegenden Arbeit wurden normierte, in Kunststoff gebettete Kanäle verwendet. Dies bietet gegenüber extrahierten Zähnen den Vorteil standar-

Dichtigkeit (maximal, >50%, <50%, unzureichend) und Länge (unzureichend, nahezu ausreichend, ideal, leichte Überfüllung, massive Überfüllung) zu erfolgen hatte.

Bei der Bewertung der Ergebnisse bezüglich der Dichtigkeit muss auch in Betracht gezogen werden, dass möglicherweise die Röntgenopazität des Guttaflow geringer ist als die der verwendeten Guttaperchastifte. Somit würden bei einer rein visuellen Beurteilung die Wurzelfüllungen mit Zentralstift bei gleichem Volumen grundsätzlich als dichter bewertet werden. Es kann also kein Rückschluss darauf gezogen werden, ob auch die Penetration von Bakterien und Flüssigkeiten bei den in der vorliegenden Arbeit als dichter bewerteten Wurzelfüllungen wirksamer verhindert werden kann als bei den als weniger dicht beurteilten Pastenfüllungen.

Lässt man die Gruppen mit der Zentralstifttechnik, welche die signifikant dichtesten Wurzelfüllungen lieferten, außen vor, so zeigt sich durchaus ein Einfluß der Applikationstechnik auf die röntgenologische Dichtigkeit der Wurzelfüllung. Die Applikation mit der mitgelieferten Kanüle alleine zeigte bessere Ergebnisse als bei einem Nachkondensieren mit Plugger oder auch als die Applikation mit Hilfe eines Lentulos. Aus den hier gewonnenen Ergebnissen Schlußfolgerungen für die Praxis zu ziehen ist jedoch außerordentlich schwierig, da andere Autoren bei vergleichbaren Untersuchun-

Auch andere Faktoren sind äußerst variabel. So wurden teilweise extrahierte Zähne für solche Untersuchungen verwendet, wobei sich auch hier Aufbereitungsgrößen und Konizitäten unterschieden, teilweise fanden normier-
te Wurzelkanäle Verwendung, jedoch ebenfalls mit differierenden Größen, Konizitäten und Krümmungen.

Die zu Beginn formulierte Hypothese, dass die röntgenologische Dichtigkeit der Wurzelfüllung abhängig von der Wurzelfülltechnik und der Aufbereitungsgröße ist, lässt sich nur hinsichtlich der Wurzelfülltechnik voll bestätigen. Die Aufbereitungsgröße lässt keinen unmittelbaren Zusammenhang zur röntgenologischen Dichtigkeit erkennen.

4.2 Länge

sofern wäre zu prüfen, ob die in den Gruppen IV und VI erzielten guten Ergebnisse für die Dichtigkeit mit einer im Mittel leichten Überfüllung nicht auch klinisch zu Erfolgen führen können.

Die Hypothese, dass das exakte Erreichen der Arbeitslänge von den Faktoren Wurzelfülltechnik und Aufbereitungsgröße abhängt, konnte in der vorliegenden Studie bestätigt werden.

Zusammenfassend lässt sich festhalten, dass eine ausreichende röntgenologische Dichtigkeit bei der Verwendung eines kaltplastischen Wurzelfüllmaterials auf Guttaperchabasis nur unter Verwendung eines zusätzlichen Zentralstiftes zu erreichen ist. Hierbei sollte keine übermäßig großvolumige Aufbereitung erfolgen, da sich hierdurch die Gefahr des Überpressens der Wurzelfüllung erhöht.
Zusammenfassung

Bei der vorliegenden Studie war die Zielsetzung der Vergleich verschiedener Applikationstechniken eines kaltplastischen Wurzelfüllmaterials auf Guttaperchabasis im Hinblick auf die Länge (apikaler Endpunkt) und Dichtigkeit der Wurzelfüllungen in Abhängigkeit von der ISO-Größe genormter Wurzelkanallumina.

(Lentulo) gekennzeichnet. Zur Bestimmung der Dichtigkeit wurden die Kategorien A bis D (geringste bis größte Dichtigkeit) und zur Bestimmung der Länge (apikaler Endpunkt der Wurzelfüllung) die Kategorien A bis E (Unterfüllung bis Überfüllung) festgesetzt. Von den gefüllten Kanallumina angefertigte digitale Röntgenbilder sollten durch 6 erfahrene Zahnärzte bewertet und den genannten Kategorien zugeordnet werden.

Für die Verwendung eines kaltplastischen Wurzelfüllmaterials auf Guttaperchabasis empfiehlt sich das zusätzliche Einbringen mindestens eines Guttapercha-Zentralstifts, wodurch im Vergleich zu reinen Pastenfüllungen im Hinblick auf Dichtigkeit der Wurzelfüllung ein gleichmäßiges Ergebnis erzielbar ist. Hierbei sollten keine übermäßig großvolumigen Aufbereitungen vorgenommen werden, da diese ein Überpressen des Wurzelfüllmaterials begünstigen.
6 Anhang

6.1 Tabellen zur statistischen Auswertung

6.1.1 Homogene Untergruppen für Dichtigkeit Gruppe I

<table>
<thead>
<tr>
<th>Index1</th>
<th>N</th>
<th>Untergruppe für Alpha = .05.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 25</td>
<td>90</td>
<td>183,73333</td>
</tr>
<tr>
<td>ISO 40</td>
<td>90</td>
<td>247,93889 247,93889</td>
</tr>
<tr>
<td>ISO 30</td>
<td>90</td>
<td>268,20000 268,20000</td>
</tr>
<tr>
<td>ISO 35</td>
<td>90</td>
<td>280,26111 280,26111</td>
</tr>
<tr>
<td>ISO 15</td>
<td>90</td>
<td>307,50556 307,50556</td>
</tr>
<tr>
<td>ISO 20</td>
<td>90</td>
<td>335,36111</td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td>,096 ,154 ,069</td>
</tr>
</tbody>
</table>

Tab.1: Statistische Auswertung (Scheffé-Prozedur) für die Dichtigkeit bei Untersuchungsgruppe I (Applikation mit der mitgelieferten Applikations-(Misch-)Kanüle) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle

6.1.2 Homogene Untergruppen für Dichtigkeit Gruppe II

<table>
<thead>
<tr>
<th>Index1</th>
<th>N</th>
<th>Untergruppe für Alpha = .05.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 40</td>
<td>90</td>
<td>249,00000</td>
</tr>
<tr>
<td>ISO 30</td>
<td>90</td>
<td>264,04444</td>
</tr>
<tr>
<td>ISO 25</td>
<td>90</td>
<td>271,32222</td>
</tr>
<tr>
<td>ISO 20</td>
<td>90</td>
<td>277,23889</td>
</tr>
<tr>
<td>ISO 35</td>
<td>90</td>
<td>277,98333</td>
</tr>
<tr>
<td>ISO 15</td>
<td>90</td>
<td>283,41111</td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td>,702</td>
</tr>
</tbody>
</table>

Tab. 2: Statistische Auswertung (Scheffé-Prozedur) für die Dichtigkeit bei Untersuchungsgruppe II (Applikation mit der mitgelieferten Applikations-(Misch-)Kanüle, anschließend einmaliges Nachkondensieren mit einem Endodontie-Fingerplugger) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle
6.1.3 Homogene Untergruppen für Dichtigkeit Gruppe III

<table>
<thead>
<tr>
<th>Index1</th>
<th>N</th>
<th>Untergruppe für Alpha = .05.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ISO 15</td>
<td>90</td>
<td>206,56667</td>
</tr>
<tr>
<td>ISO 25</td>
<td>90</td>
<td>212,50556</td>
</tr>
<tr>
<td>ISO 35</td>
<td>90</td>
<td>264,59444</td>
</tr>
<tr>
<td></td>
<td></td>
<td>264,59444</td>
</tr>
<tr>
<td>ISO 30</td>
<td>90</td>
<td>281,82778</td>
</tr>
<tr>
<td>ISO 20</td>
<td>90</td>
<td>292,75556</td>
</tr>
<tr>
<td>ISO 40</td>
<td>90</td>
<td>364,75000</td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td>.133 .849 1,000</td>
</tr>
</tbody>
</table>

Tab. 3: Statistische Auswertung (Scheffé-Prozedur) für die Dichtigkeit bei Untersuchungsgruppe III (Applikation mit der mitgelieferten Applikations-(Misch-)Kanüle, anschließend einmaliges Nachkondensieren mit einer K-Feile) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle

6.1.4 Homogene Untergruppen für Dichtigkeit Gruppe IV

<table>
<thead>
<tr>
<th>Index1</th>
<th>N</th>
<th>Untergruppe für Alpha = .05.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ISO 15</td>
<td>90</td>
<td>217,46111</td>
</tr>
<tr>
<td>ISO 20</td>
<td>90</td>
<td>229,37778</td>
</tr>
<tr>
<td>ISO 25</td>
<td>90</td>
<td>274,81667</td>
</tr>
<tr>
<td></td>
<td></td>
<td>274,81667</td>
</tr>
<tr>
<td>ISO 40</td>
<td>90</td>
<td>283,76667</td>
</tr>
<tr>
<td>ISO 30</td>
<td>90</td>
<td>304,65000</td>
</tr>
<tr>
<td>ISO 35</td>
<td>90</td>
<td>312,92778</td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td>.990 .159 .346</td>
</tr>
</tbody>
</table>

Tab. 4: Statistische Auswertung (Scheffé-Prozedur) für die Dichtigkeit bei Untersuchungsgruppe IV (Applikation mit der mitgelieferten Applikations-(Misch-)Kanüle, anschließend Einbringen eines Zentralstiftes) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle
6.1.5 Homogene Untergruppen für Dichtigkeit Gruppe V

<table>
<thead>
<tr>
<th>Index1</th>
<th>N</th>
<th>Untergruppe für Alpha = .05.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ISO 30</td>
<td>90</td>
<td>206,1000</td>
</tr>
<tr>
<td>ISO 40</td>
<td>90</td>
<td>245,60556</td>
</tr>
<tr>
<td>ISO 35</td>
<td>90</td>
<td>246,58889</td>
</tr>
<tr>
<td>ISO 15</td>
<td>90</td>
<td>285,46667</td>
</tr>
<tr>
<td>ISO 25</td>
<td>90</td>
<td>312,52222</td>
</tr>
<tr>
<td>ISO 20</td>
<td>90</td>
<td>326,71667</td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td>,379</td>
</tr>
</tbody>
</table>

Tab. 5: Statistische Auswertung (Scheffé-Prozedur) für die Dichtigkeit bei Untersuchungsgruppe V (Applikation mit einer K-Feile) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle

6.1.6 Homogene Untergruppen für Dichtigkeit Gruppe VI

<table>
<thead>
<tr>
<th>Index1</th>
<th>N</th>
<th>Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Untergruppe für Alpha = .05.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ISO 15</td>
<td>90</td>
<td>182,50000</td>
</tr>
<tr>
<td>ISO 20</td>
<td>90</td>
<td>246,17778</td>
</tr>
<tr>
<td>ISO 25</td>
<td>90</td>
<td>258,15556</td>
</tr>
<tr>
<td>ISO 30</td>
<td>90</td>
<td>303,07222</td>
</tr>
<tr>
<td>ISO 40</td>
<td>90</td>
<td>309,06111</td>
</tr>
<tr>
<td>ISO 35</td>
<td>90</td>
<td>324,03333</td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td>1,000</td>
</tr>
</tbody>
</table>

Tab. 6: Statistische Auswertung (Scheffé-Prozedur) für die Dichtigkeit bei Untersuchungsgruppe VI (Applikation mit einer K-Feile, anschließend Einbringen eines Zentralstiftes) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle
6.1.7 Homogene Untergruppen für Dichtigkeit Gruppe VII

<table>
<thead>
<tr>
<th>Index</th>
<th>N</th>
<th>Untergruppe für Alpha = .05.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ISO30</td>
<td>90</td>
<td>209,60000</td>
</tr>
<tr>
<td>ISO 35</td>
<td>90</td>
<td>222,33889</td>
</tr>
<tr>
<td>ISO 15</td>
<td>90</td>
<td>258,55556 258,55556</td>
</tr>
<tr>
<td>ISO 20</td>
<td>90</td>
<td>303,62778 303,62778</td>
</tr>
<tr>
<td>ISO 40</td>
<td>90</td>
<td>308,68333 308,68333</td>
</tr>
<tr>
<td>ISO 25</td>
<td>90</td>
<td>320,19444</td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td>,194</td>
</tr>
</tbody>
</table>

Tab. 7: Statistische Auswertung (Scheffé-Prozedur) für die Dichtigkeit bei Untersuchungsgruppe VII (Applikation mit einer auf das Kanallumen abgestimmten Wurzelfüllspirale) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle

6.1.8 Homogene Untergruppen für Länge Gruppe I

<table>
<thead>
<tr>
<th>Index</th>
<th>N</th>
<th>Untergruppe für Alpha = .05.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ISO 20</td>
<td>90</td>
<td>97,55556</td>
</tr>
<tr>
<td>ISO 15</td>
<td>90</td>
<td>130,65000</td>
</tr>
<tr>
<td>ISO 25</td>
<td>90</td>
<td>232,67222</td>
</tr>
<tr>
<td>ISO 40</td>
<td>90</td>
<td>377,48333</td>
</tr>
<tr>
<td>ISO 35</td>
<td>90</td>
<td>378,70556</td>
</tr>
<tr>
<td>ISO 30</td>
<td>90</td>
<td>405,93333</td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td>,263</td>
</tr>
</tbody>
</table>

Tab. 8: Statistische Auswertung (Scheffé-Prozedur) für die Länge bei Untersuchungsgruppe I (Applikation mit der mitgelieferten Applikations-(Misch-)Kanüle) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle
6.1.9 Homogene Untergruppen für Länge Gruppe II

<table>
<thead>
<tr>
<th>Index</th>
<th>N</th>
<th>Untergruppe für Alpha = .05.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ISO 15</td>
<td>90</td>
<td>114,94444</td>
</tr>
<tr>
<td>ISO 20</td>
<td>90</td>
<td>207,96111</td>
</tr>
<tr>
<td>ISO 25</td>
<td>90</td>
<td>311,94444</td>
</tr>
<tr>
<td>ISO 30</td>
<td>90</td>
<td>314,51111</td>
</tr>
<tr>
<td>ISO 35</td>
<td>90</td>
<td>315,77778</td>
</tr>
<tr>
<td>ISO 40</td>
<td>90</td>
<td>357,86111</td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td>1,000</td>
</tr>
</tbody>
</table>

Tab. 9: Statistische Auswertung (Scheffé-Prozedur) für die Länge bei Untersuchungsgruppe II (Applikation mit der mitgelieferten Applikations-(Misch-)Kanüle, anschließend einmaliges Nachkondensieren mit einem Endodontie-Fingerplugger) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle.

6.1.10 Homogene Untergruppen für Länge Gruppe III

<table>
<thead>
<tr>
<th>Index</th>
<th>N</th>
<th>Untergruppe für Alpha = .05.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ISO 15</td>
<td>90</td>
<td>166,98889</td>
</tr>
<tr>
<td>ISO 20</td>
<td>90</td>
<td>256,44444</td>
</tr>
<tr>
<td>ISO 25</td>
<td>90</td>
<td>261,11667</td>
</tr>
<tr>
<td>ISO 35</td>
<td>90</td>
<td>262,31667</td>
</tr>
<tr>
<td>ISO 30</td>
<td>90</td>
<td>283,59444</td>
</tr>
<tr>
<td>ISO 40</td>
<td>90</td>
<td>392,53889</td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td>1,000</td>
</tr>
</tbody>
</table>

Tab. 10: Statistische Auswertung (Scheffé-Prozedur) für die Länge bei Untersuchungsgruppe III (Applikation mit der mitgelieferten Applikations-(Misch-)Kanüle, anschließend einmaliges Nachkondensieren mit einer K-Feile) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle.
6.1.11 Homogene Untergruppen für Länge Gruppe IV

<table>
<thead>
<tr>
<th>Index1</th>
<th>N</th>
<th>Untergruppe für Alpha = .05.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ISO 15</td>
<td>90</td>
<td>126,06667</td>
</tr>
<tr>
<td>ISO 25</td>
<td>90</td>
<td>231,97222</td>
</tr>
<tr>
<td>ISO 20</td>
<td>90</td>
<td>253,48333</td>
</tr>
<tr>
<td>ISO 30</td>
<td>90</td>
<td>312,14444</td>
</tr>
<tr>
<td>ISO 40</td>
<td>90</td>
<td>345,63889</td>
</tr>
<tr>
<td>ISO 35</td>
<td>90</td>
<td>353,69444</td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td>1,000</td>
</tr>
</tbody>
</table>

Tab. 11: Statistische Auswertung (Scheffé-Prozedur) für die Länge bei Untersuchungsgruppe IV (Applikation mit der mitgelieferten Applikations-(Misch-)Kanüle, anschließend Einbringen eines Zentralstiftes) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle

6.1.12 Homogene Untergruppen für Länge Gruppe V

<table>
<thead>
<tr>
<th>Index1</th>
<th>N</th>
<th>Untergruppe für Alpha = .05.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ISO 40</td>
<td>90</td>
<td>210,40000</td>
</tr>
<tr>
<td>ISO 30</td>
<td>90</td>
<td>213,40000</td>
</tr>
<tr>
<td>ISO 20</td>
<td>90</td>
<td>264,81111</td>
</tr>
<tr>
<td>ISO 35</td>
<td>90</td>
<td>269,82222</td>
</tr>
<tr>
<td>ISO 15</td>
<td>90</td>
<td>271,05556</td>
</tr>
<tr>
<td>ISO 25</td>
<td>90</td>
<td>393,51111</td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td>,103</td>
</tr>
</tbody>
</table>

Tab. 12: Statistische Auswertung (Scheffé-Prozedur) für die Länge bei Untersuchungsgruppe V (Applikation mit einer K-Feile) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle
6.1.13 Homogene Untergruppen für Länge Gruppe VI

<table>
<thead>
<tr>
<th>Index1</th>
<th>N</th>
<th>Untergruppe für Alpha = .05.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ISO 15</td>
<td>90</td>
<td>111,36667</td>
</tr>
<tr>
<td>ISO 20</td>
<td>90</td>
<td>239,55556</td>
</tr>
<tr>
<td>ISO 25</td>
<td>90</td>
<td>288,47222</td>
</tr>
<tr>
<td>ISO 35</td>
<td>90</td>
<td>313,76111</td>
</tr>
<tr>
<td>ISO 40</td>
<td>90</td>
<td>330,43889</td>
</tr>
<tr>
<td>ISO 30</td>
<td>90</td>
<td>339,40556</td>
</tr>
<tr>
<td>Signifikanz</td>
<td>1,000</td>
<td>,216</td>
</tr>
</tbody>
</table>

Tab. 13: Statistische Auswertung (Scheffé-Prozedur) für die Länge bei Untersuchungsgruppe VI (Applikation mit einer K-Feile, anschließend Einbringen eines Zentralstiftes) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle

6.1.14 Homogene Untergruppen für Länge Gruppe VII

<table>
<thead>
<tr>
<th>Index1</th>
<th>N</th>
<th>Untergruppe für Alpha = .05.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ISO 15</td>
<td>90</td>
<td>124,42222</td>
</tr>
<tr>
<td>ISO 20</td>
<td>90</td>
<td>245,65556</td>
</tr>
<tr>
<td>ISO 40</td>
<td>90</td>
<td>299,84444</td>
</tr>
<tr>
<td>ISO 30</td>
<td>90</td>
<td>301,31111</td>
</tr>
<tr>
<td>ISO 35</td>
<td>90</td>
<td>305,75000</td>
</tr>
<tr>
<td>ISO 25</td>
<td>90</td>
<td>346,01667</td>
</tr>
<tr>
<td>Signifikanz</td>
<td>1,000</td>
<td>,082</td>
</tr>
</tbody>
</table>

Tab. 14: Statistische Auswertung (Scheffé-Prozedur) der Werte für die Länge bei Untersuchungsgruppe VII (Applikation mit einer auf das Kanallumen abgestimmten Wurzelfüllspirale) in Abhängigkeit von der ISO-Größe der genormten Wurzelkanäle
6.1.15 Homogene Untergruppen für Dichtigkeit ISO 15 bis 40

<table>
<thead>
<tr>
<th>Index 1</th>
<th>N</th>
<th>Untergruppe für Alpha = .05.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Gruppe III</td>
<td>540</td>
<td>1124,17963</td>
</tr>
<tr>
<td>Gruppe V</td>
<td>540</td>
<td>1195,94815</td>
</tr>
<tr>
<td>Gruppe II</td>
<td>540</td>
<td>1476,96852</td>
</tr>
<tr>
<td>Gruppe VII</td>
<td>540</td>
<td>1496,40556</td>
</tr>
<tr>
<td>Gruppe I</td>
<td>540</td>
<td>1706,89074</td>
</tr>
<tr>
<td>Gruppe VI</td>
<td>540</td>
<td>3104,25370</td>
</tr>
<tr>
<td>Gruppe IV</td>
<td>540</td>
<td>3128,85370</td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td>,793</td>
</tr>
</tbody>
</table>

Tab.15: Statistische Auswertung (Scheffé-Prozedur) der zusammengefassten Werte für die Dichtigkeit der ISO-Größen 15-40 in Abhängigkeit von der gewählten Applikationstechnik

6.1.16 Homogene Untergruppen für Länge ISO 15 bis 40

<table>
<thead>
<tr>
<th>Index 1</th>
<th>N</th>
<th>Untergruppe für Alpha = .05.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Gruppe I</td>
<td>540</td>
<td>1029,30093</td>
</tr>
<tr>
<td>Gruppe V</td>
<td>540</td>
<td>1175,58148</td>
</tr>
<tr>
<td>Gruppe III</td>
<td>540</td>
<td>1780,17500</td>
</tr>
<tr>
<td>Gruppe IV</td>
<td>540</td>
<td>2013,15648</td>
</tr>
<tr>
<td>Gruppe VI</td>
<td>540</td>
<td>2192,56759</td>
</tr>
<tr>
<td>Gruppe VII</td>
<td>540</td>
<td>2217,45556</td>
</tr>
<tr>
<td>Gruppe II</td>
<td>540</td>
<td>2825,26296</td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td>,276</td>
</tr>
</tbody>
</table>

Tab.16: Statistische Auswertung (Scheffé-Prozedur) der zusammengefassten Werte für die Länge der ISO-Größen 15-40 in Abhängigkeit von der gewählten Applikationstechnik
7 Literaturverzeichnis

25. DGZMK (Gemeinsame Stellungnahme der DGZMK und DGZ). Wurzelkanalfüllpasten und –füllstifte. Dtsch Zahnärztl Z 1999; 55

27. DGZMK (Gemeinsame Stellungnahme der DGZ und DGZMK). Die maschinelle Wurzelkanalaufbereitung. Dtsch Zahnärztl Z 2005; 60

Homogeneity and Adaption of a New Gutta-Percha Paste to Root Canal Walls.
JOE 2005; 31: 687-690

30. **El Deeb M, Zucker KJ, Messer H.**
Apical leakage in relation to radiographic density of gutta-percha using different obturation techniques.
J Endod 1985; 11: 25-29

Assessment of antibacterial activity of EndoREZ.

32. **Eldeniz A, Mustafa K, Ørstavik D, Dahl JE.**
Cytotoxicity of new resin-, calcium hydroxide- and silicone- based root canal sealers on fibroblasts derived from human gingiva and L929 cell lines.
Int Endod J 2007; 40: 329-337

33. **Eldeniz A, Ørstavik D.**
A laboratory assessment of coronal bacterial leakage in root canals filled with new and conventional sealers.
Int Endod J 2009; 42 : 303-312

34. **Estrela C, Mamede Neto I, Lopes HP, Estrela CR, Pécora JD.**
Root canal filling with calcium hydroxide using different techniques.
Brazilian Dent J 2002; 13: 53-56
35. Fehr B, Huwyler T, Wüthrich B.
Formaldehyd- und Paraformaldehydallergie.

36. Feiglin B.
Effect of some endodontic sealers on cell migration in experimental granulomas.

37. Flax M, Barnett F, Tronstad L.
In vivo solubility of calcium hydroxide-containing root canal sealers (Abstract 1162).
J Dent Res 1986; 65: 298

Comparison of biocompatibility and cytotoxicity of two new root canal sealers.
Int Endod J 2005; 38: 943

39. Gençoglu N, Türkmen C, Ahiskali R.
A new silicon-based root canal sealer (Roekoseal®-Automix).

Int Endod J 2003; 36 : 953 (Abstract)
41. Geurtsen W, Leyhausen G.
Biological aspects of root canal filling materials – histocompatibility, cytotoxicity and mutagenity.
Clin Oral Invest 1997; 1: 5-11

42. Goodman A, Schilder H, Aldrich W.
The thermomechanical properties of gutta-percha. Part II. The history and molecular chemistry of gutta-percha.
Oral Surg 1974; 37: 954-961

43. Grade AC.
Eugenol in Wurzelkanalzementen als mögliche Ursache für die Entstehung einer Urtikaria.
Endodontie 1995; 4: 121

44. Grossman L, Oliet S, DelRio C.
Endodontic Practice, 11. Auflage
Philadelphia: Lea & Febiger, 1988

45. Guelmann M, McEachern M, Turner C.
Pulpectomies in primary incisors using three delivery systems: an in vitro study.
J of clinical pediatric dentistry 2004; 28: 323-326
46. Guelzow A, Stamm O, Martus P, Kielbassa AM.
Comparative study of six rotary nickel-titanium systems and hand instrumentation for root canal preparation.
Int Endod J 2005; 38: 743-752

47. Guigand M, Pellen-Mussi P, Vulcain JM, Bonnaure-Mallet M.
Evaluation of the cytocompatibility of three endodontic materials.
J Endod 1999; 25: 419

48. Guldener PAH
Die Stifttechnik in der Endodontie
Schweiz Mschr Zahnheilk 1971; 81: 311

49. Guldener PAH.
Endodontie: Wurzelkanalaufbereitung und –füllung.
Schweiz Monatsschr Zahnmed 1989; 99: 1019- 1028

50. Guldener PAH, Langeland K.
Endodontologie
Stuttgart: Thieme, 1993 (3. Auflage)

Microscope and scanning electron microscope examination of silver points corrosion caused by endodontic materials.
J Endodont 1982; 8: 301
52. Habl C, Bodenwinkler A, Stürzlinger H.
Wurzelbehandlung an Molaren.
Schriftenreihe Health Technology Assessment 2005; VOL 18 (1. Auflage)

Korrosionerscheinungen an Silberstiften im Wurzelkanal (I).
Dtsch Zahnärztl Z 1987; 42: 362-367

54. Heidemann D.
Die Wurzelfüllung-manuell-maschinell.
Dtsch Zahnärztl Z 1989; 44: 414-416

Apical quality and adaption of Resilon, EndoREZ and Guttaflow root canal fillings in combination with a noncompaction technique.
J Endod 2009; 35: 261-264

56. Holland R, De Souza V.
Ability of a new calcium hydroxide root filling material to introduce hard tissue formation.
J Endodont 1985; 11: 535-543

57. Hülsmann M.
Die maschinelle Aufbereitung des Wurzelkanals.
In APW (Hrsg.) Endodontie. Hanser-Verlag, München 1993.
58. Hülsmann M.
Die Wurzelkanalfüllung mit Silberstiften.
Endodontie 1995; 4: 49-62

59. Hülsmann M.
Entwicklung einer Methodik zur standardisierten Überprüfung verschiedener Aufbereitungsparameter und vergleichende in-vitro-Untersuchung unterschiedlicher Systeme zur maschinellen Wurzelkanalaufbereitung.
Quintessenz-Verlag, Berlin 2000

60. Hülsmann M.
Guttapercha- Geschichte, Chemie, Eigenschaften und Verarbeitung.
Endodontie 1993; 2: 115-125

61. Huumonen S, Lenander-Lumikari M, Sigurdsson A, Ørstavik D.
Healing of apical periodontitis after endodontic treatment: a comparison between a silicone-based and a zinc oxide-eugenol-based sealer.
Int Endod J 2003; 36: 296-301

62. Jeffrey IW, Saunders WP.
An investigation into bond strength between a root canal sealer and root-filling points.
Int Endod J 1987; 20: 217-222
63. Kantorowicz A.
Klinische Zahnheilkunde
Berlin: Hermann Meuser Verlag, 1924

64. Kersten HW, Fransman R, Thoden van Velzen SK.
Thermomechanical compaction of gutta-percha. II. A comparison with lateral condensation in curved root canals.
Int Endod J 2007; 19: 134-140

Toxizitätsbestimmung von Wurzelfüllmaterialien und deren einzelnen Komponenten in der Zellkultur.
Dtsch Zahnärztl Z 1981; 36: 212

66. Koch A, Hülsmann M.
Kieferhöhlenaspergillose und Wurzelkanalbehandlung.
Endodontie 1993; 2: 181

67. Koçkapan C.
Curriculum Endodontie
Berlin: Quintessenz Verlag, 2003

68. Kolokuris I, Beltes P, Economides N, Vlemmas I.
Experimental study of the biocompatibility of a new glass-ionomer root canal sealer (Ketac-Endo).
69. **Kozam G.**
The effect of eugenol on nerve transmission.

70. **Langeland K, Olsson B, Pascon E.**
Biological evaluation of Hydron.
J Endodont 1981; 7: 196-204

71. **Lares C, elDeeb ME.**
The sealing ability of the Thermafil obturation technique.
J Endod 1990; 16: 474-479

72. **Limkangwalmongkol S, Abbott PV, Sandler AB.**
Apical dye penetration with four root canal sealers and gutta-percha using longitudinal sectioning.

73. **Lindemann W, Handtmann S, Hüttemann H, Schulte W.**
Korrosionserscheinungen an Silberstiften im Wurzelkanal (III).
Dtsch Zahnärzt Z 1987; 42: 639-646

74. **Lussi A.**
Die Reinigung und Obturation des Wurzelkanalsystems ohne konventionelle Instrumente.
Schweiz Monatsschr Zahnmed 2000; 110: 249-258
75. Lussi A, Imwinkelried S, Stich H.
Obturation of root canals with different sealers using the non-instrumentation technology (NIT).
Int Endod J 1999; 32: 17-23

76. Lussi A, Nussbächer U, Grosrey J.
A novel noninstrumented technique for cleansing the root canal system.
J Endod 1993; 19: 549-553

Influence of sealer placement on apical extrusion of two root canal sealers
Int Endod J 2005; 38: 928

78. McMurtrey L, Krell K, Wilcox L.
A comparison between Thermafil and lateral condensation in highly curved canals.
J Endod 1992; 18: 68-71

79. Mc Spadden JT.
Self study course for the thermical condensation of gutta-percha
Form no. 337, 10/80 (1980)

80. Messing JJ.
The use of titanium cones and apical tips as a root canal filling material: a clinical evaluation.
Br Dent J 1980; 148: 41-44
Efficacy of Two Contemporary Single-cone Filling Techniques in Preventing Bacterial Leakage
JOE 2007; 33: 310-313

82. Morse DR, Martell B, Pike CG, Fantasia J, Esposito JV, Furst ML.
A comparative tissue toxicity evaluation of gutta-percha root canal sealers.
Part II. Forty-eight hour findings.
J Endodont 1984; 10: 484-486

83. Nolden R.
Zahnerhaltungskunde
Stuttgart- New York: Thieme Verlag, 1994 (6. Auflage)

84. Olson B, Wennberg A.
Early tissue reaction to endodontic filling materials.
Endod Dent Traumatol 1985; 1: 138

85. Ørstavik D, Kerekes K, Eriksen HM.
Clinical performance of three endodontic sealers.
Endod Dent Traumatol 1987; 3:178
86. **Osins BA, Carter PR, Shih-Levine M.**
Mikroleakage of four root canal sealer cements as determined by an electrochemical technique.

87. **Peng L, Ye L, Tan H, Zhou Y.**
Outcome of root canal obturation by warm guttapercha versus cold lateral condensation: a meta-analysis.
J Endod 2007; 33: 106-109

88. **Peters CI, Koka RS, Highsmith S, Peters OA.**
Calcium hydroxide dressings using different preparation and application modes: density and dissolution by simulated tissue pressure.
Int Endod J 2005; 38: 889-895

89. **Portmann P, Imwinkelried S, Lussi A.**
Obturation quality after four years of storage using the non-instrumentation technique.
Schweiz Monatsschr Zahnmed 2005; 115: 431-436

90. **Rappaport HM, Lilly GE, Kapsimalis P.**
Toxicity of endodontic filling materials.
91. Ray H, Seltzer S.
A new glass ionomer root canal sealer.
J Endod 1991; 17: 598

92. Regan JD, Gutmann JL, Witherspoon DE.
Comparison of Diaket and MTA when used as root-end filling materials to support regeneration of periradikular tissues.
Int Endod J 2002; 35: 840-847

93. Roggendorf MJ.
Wurzelkanalfüllmaterialien up-to-date
BZB 2004; 9: 32-34

Apikale Dichtigkeit von Wurzelkanalfüllungen unter Kontamination mit verschiedenen Spüllflüssigkeiten.
Dtsch Zahnärztl Z 60. Jahrgang Supplement 2005; Sonderheft, S. A 161
Jahrestagung der DGZMK 2005

95. Roggendorf MJ, Ebert J, Petschelt A.
Mikroleakage of a new gutta-percha root canal filling material.
Int Endod J 2001; P.17 (Abstract)
The 10th Biennial Congress ESE 4-6 October 2001 Munich, Germany
96. **Roggendorf MJ, Ebert J, Schulz C, Petschelt A.**
The 32nd Annual Meeting of the AADR March 12-15, 2003 San Antonio, USA

97. **Sachs W.**
Sofortige Wurzelfüllung
Dtsch Mschr Zahnheilk 1894; 9: 325-334

98. **Sattapan B, Palamara JE, Messer HH.**
Torque during canal instrumentation using rotary nickel-titanium files.
J Endod 2000; 26: 156-160

99. **Schäfer E, Lohmann D.**
Efficiency of rotary nickel-titanium FlexMaster instruments compared with stainless steel hand K-Flexofile-Part 2. Cleaning effectiveness and instrumentation results in severley curved root canals of extracted teeth.
Int Endod J 2002; 35: 514-521

100. **Schäfer E, Olthoff G.**
Effect of three different sealers on the sealing ability of both thermafil obturators and cold laterally compacted Gutta-Percha.
J Endod 2002; 28: 638-642
101. Schäfer E, Tepel J.
Formveränderungen gekrümmter Wurzelkanäle nach standardisierter Aufbereitung.
Dtsch Zahnärztl Z 1993; 48: 653-658

102. Schäfer E, Schulz-Bongert U, Tulus G.
Comparison of Hand Stainless Steel and Nickel Titanium Rotary Instrumentation: A Clinical Study.
J Endod 2004; 30: 432-435

103. Schilder H.
Filling root canals in three dimensions.

104. Schilder H, Goodman A, Aldrich W.

105. Schirrmeister JF, Kielbassa AM.
Apikale Dichtigkeit von Wurzelkanalsealern auf Calciumphosphat-Basis im Vergleich zu marktüblichen Füllpasten.
DZZ 2005; 60: 446-456
106. Schroeder A.
Mitteilungen über die Abschlussdichtigkeit von Wurzelfüllmaterialien und erster Hinweis auf ein neuartiges Wurzelfüllmittel.
Schweiz Monatsschr Zahnheilk 1954; 64: 921

107. Schweikl H, Schmalz G.
Evaluation of the mutagenic potential of root canal sealers using the Salmonella/microsome assay.

108. Serene TP, Vesely J, Boackle RJ.
Complement activation as a possible in vitro indication of the inflammatory potential of endodontic materials.

109. Shipper G, Ørstavik D, Teixeira F, Trope M.
An Evaluation of Microbial Leakage in Roots Filled with a Thermoplastic Synthetic Polymer-Based Root Canal Filling Material (Resilon).
J Endod 2004; 30: 342-347

110. Sjögren U, Sundqvist G, Ramachandran Nair PN.
Tissue reaction to gutta-percha particles of various sizes when implanted subcutaneously in guinea pigs.
Eur J Oral Sci 1995; 103: 313
111. Sonntag D, Guntermann A, Kim SK, Stachniss V.
Root canal shaping with manual stainless steel files and rotary Ni-Ti files performed by students.
Int Endod J 2003; 36: 246-255

112. Spangberg LSW, Barbosa SV, Lavigne GD.
AH26 releases formaldehyde.
J Endod 1993; 19: 596

113. Spangberg LSW, Langeland K.

114. Staehle HJ, Thoma C, Müller HP.
Comparative in vitro investigation of different methods for temporary root canal filling with aqueous suspensions of calcium hydroxide.
Dental Traumatol 2006; 13: 106-112

115. Stock CJR, Walker RT, Gulabivala K.
Endodontie.
München: Urban & Fischer, 2005

Zur Qualität der Applikation von Wurzelkanalmedikationen in Gelform und als Paste in Abhängigkeit von der Aufbereitungsgröße.
Dtsch Zahnärztl Z 2008; 63: 544-549
117. Swartz DB, Skidmore AE, Griffin JA.
Twenty years of endodontic success and failures.

118. Tagger M, Katz A, Tamse A.
Apical seal using the GPlI method in straight canals compared with lateral condensation with or without sealer.

119. Tagger M, Tamse A, Katz A, Korzen BH.
Evaluation of the apical seal produced by a hybrid root canal filling method, combining lateral condensation and the thermatic compaction.
J Endod 1984; 10: 299-303

120. Tansili JP, Nevins AJ, Borden BG.
Thr reaction of rat connective tissue to polyethylene tube implants filled with Hydron or gutta-percha.

Leakage analysis of three modern root filling materials after 90 days of storage.
Int Endod J 2005; 38: 928
122. Teixeira FB, Levin LG, Trope M.
Investigation of pH at different dentinal sites after placement of calcium hydroxide dressing by two methods.

123. Tepel J, Hoppe W, Darwisch M.
Der Einfluss von Wurzelfüllpasten auf das periapikale Gewebe bei tierexperimenteller apikaler Parodontitis.
Endodontie 1994; 2: 131

124. Timpawat S, Jensen J, Feigal RJ, Messer HH.
An in vitro study of the comparative effectiveness of obturating curved root canals with gutta-percha cones, silver cones and stainless steel files.

125. Torres CP, Apicella MJ, Yancich PP, Parker MH.
Intracanal placement of calcium hydroxide: a comparison of techniques, revisited.
J Endod 2004; 30: 225-227

126. Waltimo TM, Boiesen J, Eriksen HM, Ørstavik D.
Clinical performance of 3 endodontic sealers.

127. Wesselink PR.
Die Wurzelkanalfüllung (I).
Endodontie 1995; 4: 181
128. Wiener AD, Schilder H.
A comparative study of important physical properties of various root canal sealers. II. Evaluation of dimensional changes.

129. Wilson AD, Clinton DJ, Miller RP.
Zink oxide-eugenol cements: IV. Microstructure and hydrolysis.
J Dent Res 1973; 52: 253

130. Whitworth JM, Baco L.
Coronal leakage of sealer-only backfill: an in vitro evaluation.
JOE 2005; 31: 280-282

131. Woods RL, Kildea PM, Gabriel SA, Freilich LS.
A histologic comparison of Hydron and zinc oxide-eugenol as endodontic filling materials in the primary teeth of dogs.

132. Wollard RR, Brough SO, Maggio J.
Scanning electron microscopic examination of root canal filling materials.

133. Wong M, Peters DD, Lorton I, Bernier WE.
Comparison of gutta-percha filling techniques: three chloroform-gutta-percha filling techniques. Part 2.
J Endodont 1982; 8: 4
134. Wu MK, DeGee AJ, Wesselink PR.
Leakage of four root canal sealers at different thickness.
Int Endod J 1994; 27:304

135. Wu MK, Tigos E, Wesselink PR.
An 18-month longitudinal study on a new silicon-based sealer, RSA RoekoSeal: A leakage study in vitro.

136. Wu MK, van der Sluis LW, Wesselink PR.
A 1-year follow-up study on leakage of single-cone fillings with RoekoRSA sealer.

137. Wu MK, van der Sluis LW, Ardila CN, Wesselink PR.
Fluid movement along the coronal two-thirds of root fillings placed by three different gutta-percha techniques.
Int Endod J 2003; 36: 533-540

138. Wu MK, Wesselink PR.
Endodontic leakage studies reconsidered. Part I. Methodology, application and relevance.
Int Endod J 1993; 26: 37-43
139. Zielka DR, Brady PR, del Rio CE.
Corrosion of silver cones in bone: a scanning electron microscope and microprobe analysis.
J Endodont 1975; 1: 356

140. Zmener O, Pameijer CH, Serrano SA, Vidueira M, Machi RL.
Significance of moist root canal dentin with the use of methacrylate-based endodontic sealers: an in vitro coronal dye leakage study.
J Endodont 2008; 34: 76-79
8 Danksagungen

Mein besonderer Dank gilt Herrn OA Priv.-Doz. Dr. Andreas Braun für die geduldige Unterstützung bei der Anfertigung der Arbeit, insbesondere bei der statistischen Auswertung sowie der Begutachtung des Manuskripts.

Ferner möchte ich mich bei meiner Frau Verena bedanken, welche mich stets motiviert und mir im zeitraubenden Alltag immer wieder Freiräume für diese Arbeit geschaffen hat.