Hinweis zum Urheberrecht | Allgemeine Informationen | FAQ
Beim Zitieren dieses Dokumentes beziehen Sie sich bitte immer auf folgende URN: urn:nbn:de:hbz:5n-41033

 

Mathematisch-Naturwissenschaftliche Fakultät - Jahrgang 2015

 

Titel Numerical calculation of automorphic functions for finite index subgroups of triangle groups
Autor Stefan Krämer
Publikationsform Dissertation
Abstract We present a new method to calculate automorphic functions for finite index subgroups of triangle groups. Since automorphic functions are holomorphic, it is well known that the real and the imaginary part are both harmonic. The central idea of my advisor Monien was to look at the two parts separately. We solve the Laplace equation to find the real and imaginary part of an automorphic function. This solution can be calculated using numerical methods.
To each finite index subgroup of a triangle group we can associate a Belyi function and a dessin d'enfant. The zeros of this Belyi function are the values of the automorphic function we calculated at elliptic points. Hence, we can find an approximation for the coefficients of the Belyi function. The precision of this approximation is increased by the use of Newton's method. Once we have an approximation with high accuracy, we find the correct algebraic number using the LLL algorithm. From the exact Belyi function we can reconstruct the exact automorphic function.
In order to handle finite index subgroups of triangle groups, we introduce the notion of generalized Farey symbols. These symbols are a generalization of the classical Farey symbols for the modular group. They are used to do efficient calculations with subgroups of Hecke groups.
Inhaltsverzeichnis pdf-Dokument Hier können Sie den Adobe Acrobat Reader downloaden
Komplette Version pdf-Dokument (8,5 MB) Hier können Sie den Adobe Acrobat Reader downloaden
© Universitäts- und Landesbibliothek Bonn | Veröffentlicht: 20.08.2015