Efficient Dense Registration, Segmentation, and Modeling Methods for RGB-D Environment Perception

Jörg-Dieter Stückler

Abstract

 

One perspective for artificial intelligence research is to build machines that perform tasks autonomously in our complex everyday environments. This setting poses challenges to the development of perception skills: A robot should be able to perceive its location and objects in its surrounding, while the objects and the robot itself could also be moving. Objects may not only be composed of rigid parts, but could be non-rigidly deformable or appear in a variety of similar shapes. Furthermore, it could be relevant to the task to observe object semantics. For a robot acting fluently and immediately, these perception challenges demand efficient methods.

This theses presents novel approaches to robot perception with RGB-D sensors. It develops efficient registration, segmentation, and modeling methods for scene and object perception. We propose multi-resolution surfel maps as a concise representation for RGB-D measurements. We develop probabilistic registration methods that handle rigid scenes, scenes with multiple rigid parts that move differently, and scenes that undergo non-rigid deformations. We use these methods to learn and perceive 3D models of scenes and objects in both static and dynamic environments.

For learning models of static scenes, we propose a real-time capable simultaneous localization and mapping approach. It aligns key views in RGB-D video using our rigid registration method and optimizes the pose graph of the key views. The acquired models are then perceived in live images through detection and tracking within a Bayesian filtering framework.

An assumption frequently made for environment mapping is that the observed scene remains static during the mapping process. Through rigid multi-body registration, we take advantage of releasing this assumption: Our registration method segments views into parts that move independently between the views and simultaneously estimates their motion. Within simultaneous motion segmentation, localization, and mapping, we separate scenes into objects by their motion. Our approach acquires 3D models of objects and concurrently infers hierarchical part relations between them using probabilistic reasoning. It can be applied for interactive learning of objects and their part decomposition.

Endowing robots with manipulation skills for a large variety of objects is a tedious endeavor if the skill is programmed for every instance of an object class. Furthermore, slight deformations of an instance could not be handled by an inflexible program. Deformable registration is useful to perceive such shape variations, e.g., between specific instances of a tool. We develop an efficient deformable registration method and apply it for the transfer of robot manipulation skills between varying object instances.

On the object-class level, we segment images using random decision forest classifiers in real-time. The probabilistic labelings of individual images are fused in 3D semantic maps within a Bayesian framework. We combine our object-class segmentation method with simultaneous localization and mapping to achieve online semantic mapping in real-time.

The methods developed in this thesis are evaluated in experiments on publicly available benchmark datasets and novel own datasets. We publicly demonstrate several of our perception approaches within integrated robot systems in the mobile manipulation context.

Table of contents Hier können Sie den Adobe Acrobat Reader downloaden
Complete version
(45 MB) Hier können Sie den Adobe Acrobat Reader downloaden
Complete version (with lower resolution: 8 MB) Hier können Sie den Adobe Acrobat Reader downloaden

back

© Universitäts- und Landesbibliothek Bonn | Published: 12.12.2014