Hinweis zum Urheberrecht | Allgemeine Informationen | FAQ
Beim Zitieren dieses Dokumentes beziehen Sie sich bitte immer auf folgende URN: urn:nbn:de:hbz:5n-37289

 

Mathematisch-Naturwissenschaftliche Fakultät - Jahrgang 2014

 

Titel Methods for Learning Structured Prediction in Semantic Segmentation of Natural Images
Autor Andreas Christian Müller
Publikationsform Dissertation
Abstract Automatic segmentation and recognition of semantic classes in natural images is an important open problem in computer vision. In this work, we investigate three different approaches to recognition: without supervision, with supervision on level of images, and with supervision on the level of pixels. The thesis comprises three parts.
The first part introduces a clustering algorithm that optimizes a novel information-theoretic objective function. We show that the proposed algorithm has clear advantages over standard algorithms from the literature on a wide array of datasets. Clustering algorithms are an important building block for higher-level computer vision applications, in particular for semantic segmentation.
The second part of this work proposes an algorithm for automatic segmentation and recognition of object classes in natural images, that learns a segmentation model solely from annotation in the form of presence and absence of object classes in images.
The third and main part of this work investigates one of the most popular approaches to the task of object class segmentation and semantic segmentation, based on conditional random fields and structured prediction. We investigate several learning algorithms, in particular in combination with approximate inference procedures. We show how structured models for image segmentation can be learned exactly in practical settings, even in the presence of many loops in the underlying neighborhood graphs. The introduced methods provide results advancing the state-of-the-art on two complex benchmark datasets for semantic segmentation, the MSRC-21 Dataset of RGB images and the NYU V2 Dataset or RGB-D images of indoor scenes. Finally, we introduce a software library that al- lows us to perform extensive empirical comparisons of state-of-the-art structured learning approaches. This allows us to characterize their practical properties in a range of applications, in particular for semantic segmentation and object class segmentation.
Zusammenfassung Methoden zum Lernen von Strukturierter Vorhersage in Semantischer Segmentierung von Natürlichen Bildern
Automatische Segmentierung und Erkennung von semantischen Klassen in natür- lichen Bildern ist ein wichtiges offenes Problem des maschinellen Sehens. In dieser Arbeit untersuchen wir drei möglichen Ansätze der Erkennung: ohne Überwachung, mit Überwachung auf Ebene von Bildern und mit Überwachung auf Ebene von Pixeln.
Diese Arbeit setzt sich aus drei Teilen zusammen. Im ersten Teil der Arbeit schlagen wir einen Clustering-Algorithmus vor, der eine neuartige, informationstheoretische Zielfunktion optimiert. Wir zeigen, dass der vorgestellte Algorithmus üblichen Standardverfahren aus der Literatur gegenüber klare Vorteile auf vielen verschiedenen Datensätzen hat. Clustering ist ein wichtiger Baustein in vielen Applikationen des machinellen Sehens, insbesondere in der automatischen Segmentierung.
Der zweite Teil dieser Arbeit stellt ein Verfahren zur automatischen Segmentierung und Erkennung von Objektklassen in natürlichen Bildern vor, das mit Hilfe von Supervision in Form von Klassen-Vorkommen auf Bildern in der Lage ist ein Segmentierungsmodell zu lernen.
Der dritte Teil der Arbeit untersucht einen der am weitesten verbreiteten Ansätze zur semantischen Segmentierung und Objektklassensegmentierung, Conditional Random Fields, verbunden mit Verfahren der strukturierten Vorhersage. Wir untersuchen verschiedene Lernalgorithmen des strukturierten Lernens, insbesondere im Zusammenhang mit approximativer Vorhersage. Wir zeigen, dass es möglich ist trotz des Vorhandenseins von Kreisen in den betrachteten Nachbarschaftsgraphen exakte strukturierte Modelle zur Bildsegmentierung zu lernen. Mit den vorgestellten Methoden bringen wir den Stand der Kunst auf zwei komplexen Datensätzen zur semantischen Segmentierung voran, dem MSRC-21 Datensatz von RGB-Bildern und dem NYU V2 Datensatz von RGB-D Bildern von Innenraum-Szenen. Wir stellen außerdem eine Software-Bibliothek vor, die es erlaubt einen weitreichenden Vergleich der besten Lernverfahren für strukturiertes Lernen durchzuführen. Unsere Studie erlaubt uns eine Charakterisierung der betrachteten Algorithmen in einer Reihe von Anwendungen, insbesondere der semantischen Segmentierung und Objektklassensegmentierung.
Inhaltsverzeichnis pdf-Dokument Hier können Sie den Adobe Acrobat Reader downloaden
Komplette Version pdf-Dokument (3,5 MB) Hier können Sie den Adobe Acrobat Reader downloaden
© Universitäts- und Landesbibliothek Bonn | Veröffentlicht: 15.09.2014