Morphometrische in-vivo-Untersuchungen des Hippocampus bei depressiven Patienten: Vergleich von frühem und spätem Krankheitsbeginn

Inaugural-Dissertation zur Erlangung des Doktorgrades der Hohen Medizinischen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Roland Karl Mühleder aus Erlangen

2014
Angefertigt mit Genehmigung der
Medizinischen Fakultät der Universität Bonn

1. Gutachter: Prof. Dr. med. F. Jessen
2. Gutachter: Prof. Dr. med. H. Boecker

Tag der Mündlichen Prüfung: 13. August 2014

Aus der Klinik für Psychiatrie und Psychotherapie
Direktor: Prof. Dr. med. W. Maier
Für meine Eltern.
Inhaltsverzeichnis

Abkürzungsverzeichnis ... 8

1. Einleitung .. 10

1.1 Historische Entwicklung des Depressionsbegriffes ... 10
1.2 Epidemiologie ... 11
1.3 Verlauf und Prognose .. 12
1.4 Klinisches Bild der Depression .. 13
1.4.1 Die Rolle demografischer und kultureller Faktoren ... 13
1.5 Diagnoseverfahren .. 14
1.6 Die Klassifikationssysteme DSM-IV und ICD-10 im Vergleich .. 14
1.7 Therapie .. 16
1.8 Ätiopathogenese .. 17
1.9 Genetik der Depression ... 19
1.10 Physiologische Erklärungsfaktoren der Entstehung einer Depression .. 20
1.10.1 Dysregulation der Hypothalamus-Hypophysen-Nebennieren-Achse .. 20
1.10.2 Die Cortisolhypothese ... 20
1.10.3 Die Serotoninhypothese .. 22
1.10.4 Die Glutamathypothese .. 23
1.10.5 Die Katecholaminhypothese .. 23
1.10.6 Die Dopaminhypothese .. 23
1.10.7 Beeinträchtigungen neurotropher Mechanismen durch Depression .. 24
1.10.8 Neuroanatomie der Depression .. 24
1.11 Der Hippocampus .. 25
1.12 Die Entwicklung der MRI-basierten Forschung zu affektiven Störungen 28
1.13 Ziel und Fragestellung der vorliegenden Studie .. 29
1.14 Hypothesen .. 30
2. Material und Methodik ... 31
 2.1 Beschreibung der Stichprobe .. 31
 2.2 Diagnosestellung .. 32
 2.3 Erstellung der MRI-Aufnahmen .. 32
 2.4 Datenanalyse der MRI-Aufnahmen .. 32
 2.5 Vermessung der Hippocampi .. 33
 2.6 Festlegung der AC-PC-Linie ... 37
 2.7 Segmentierung der MRI-Aufnahmen, intrakranielles Volumen 38
 2.8 Statistische Auswertung ... 39

3. Ergebnisse .. 40
 3.1 Übersicht der Rohdaten ... 40
 3.2 Intrarater-Reliabilität der ermittelten Hippocampusvolumina 40
 3.3 Interrater-Reliabilität .. 41
 3.4 Scannertypus, Alter, Geschlecht und Depressionsausprägung ... 42
 3.4.1 Verteilung der Studienpopulation nach Altersgruppe 42
 3.4.2 Verteilung der Patienten nach Scannertypus 43
 3.4.3 Geschlechtsverteilung .. 43
 3.5 Mehrfaktorielle Kovarianzanalysen 44
 3.5.1 Ergebnisse für das rechte Hippocampusvolumen 45
 3.5.2 Ergebnisse für das linke Hippocampusvolumen 46
 3.5.3 Ergebnisse für das gesamte Hippocampusvolumen 48
 3.6 Einflüsse der Dauer und Intensität der Depression auf das HC-Volumen . 50
 3.7 Zusammenfassung der Ergebnisse ... 53

4. Diskussion .. 55
 4.1 Ergebnisübersicht ... 55
 4.2 Allgemeines .. 55
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAO</td>
<td>Age at onset (Alter bei Krankheitsbeginn)</td>
</tr>
<tr>
<td>ACTH</td>
<td>adrenocortikotropes Hormon</td>
</tr>
<tr>
<td>AMG</td>
<td>Amygdala</td>
</tr>
<tr>
<td>ANCOVA</td>
<td>Analysis of covariance (Kovarianzanalyse)</td>
</tr>
<tr>
<td>APA</td>
<td>American Psychiatric Association (Vereinigung der amerikanischen Psychiatrie)</td>
</tr>
<tr>
<td>AC-PC-Linie</td>
<td>Comissura anterior-Comissura posterior-Linie</td>
</tr>
<tr>
<td>BDI</td>
<td>Beck Depression Inventory (Beck-Depressions-Inventar)</td>
</tr>
<tr>
<td>BDNF</td>
<td>brain-derived neurotrophic factor (Vom Gehirn stammender neurotropher Faktor)</td>
</tr>
<tr>
<td>CRH</td>
<td>Corticotropin-releasing-Hormone (Corticoliberin)</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid (Liquor)</td>
</tr>
<tr>
<td>DSM-V</td>
<td>Diagnostic and statistical manual of mental disorders (Standardwerk für psychiatrische Diagnostik, Version 2013)</td>
</tr>
<tr>
<td>EOD</td>
<td>Early onset of disease (Hier: Krankheitsbeginn vor 30. Lebensjahr)</td>
</tr>
<tr>
<td>FFE</td>
<td>Fast Field Echo (Gradientenecho mit Kleinwinkelanregung)</td>
</tr>
<tr>
<td>FLASH</td>
<td>Fast low-angle shot (MRT-Aufnahmeverfahren)</td>
</tr>
<tr>
<td>Flip</td>
<td>Flipwinkel</td>
</tr>
<tr>
<td>fMRI</td>
<td>Functional magnetic resonance imaging (funktionelle Magnetresonanztomographie)</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma-Aminobuttersäure</td>
</tr>
<tr>
<td>GLM</td>
<td>Generalized linear Model (Allgemeines lineares Modell)</td>
</tr>
<tr>
<td>HAMD</td>
<td>Hamilton Depression Scale (Hamilton-Depressions-Skala)</td>
</tr>
<tr>
<td>HC</td>
<td>Hippocampus</td>
</tr>
<tr>
<td>ICD-10</td>
<td>International Classification of Diseases (10.Ausgabe) (Internationale statistische Klassifikation der Krankheiten und verwandter Gesundheitsprobleme)</td>
</tr>
<tr>
<td>IPT</td>
<td>Interpersonelle Psychotherapie</td>
</tr>
<tr>
<td>KVT</td>
<td>Kognitive Verhaltenstherapie</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>LOD</td>
<td>Late onset of disease (Hier: Krankheitsbeginn nach 30. Lebensjahr)</td>
</tr>
<tr>
<td>MAO</td>
<td>Monoaminooxidase</td>
</tr>
<tr>
<td>MDD</td>
<td>Major depressive disorder (Depression)</td>
</tr>
<tr>
<td>MDE</td>
<td>Major depressive episode (depressive Episode)</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging (Magnetresonanztomographie)</td>
</tr>
<tr>
<td>NaSSA</td>
<td>Noradrenergic and specific serotonergic antidepressant (Serotonin-Noradrenalin-selektive Wiederaufnahmehemmer)</td>
</tr>
<tr>
<td>PET</td>
<td>Positronen-Emissionstomographie</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of Interest (Probenbereich)</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation (Standardabweichung)</td>
</tr>
<tr>
<td>SKID (I und II)</td>
<td>structured clinical interview, I und II (strukturiertes klinisches Interview)</td>
</tr>
<tr>
<td>SNRI</td>
<td>selektive Noradrenalin-Wiederaufnahmehemmer</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single-Photon-Emission-Tomography (Einzelphotonen-Emissionscomputertomographie)</td>
</tr>
<tr>
<td>SPM®</td>
<td>Statistic parametrical mapping (statistische parametrische Kartierung)</td>
</tr>
<tr>
<td>SPSS®</td>
<td>Statistical Package for the Social Sciences (Statistisches Paket für Sozialwissenschaften)</td>
</tr>
<tr>
<td>SSRI</td>
<td>selektive Serotonin-Wiederaufnahmehemmer</td>
</tr>
<tr>
<td>TE</td>
<td>Echozeit</td>
</tr>
<tr>
<td>TR</td>
<td>Time of repetition (Repetitionszeit)</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation (Weltgesundheitsorganisation)</td>
</tr>
</tbody>
</table>
1. **Einleitung**

1.1 **Historische Entwicklung des Depressionsbegriffes**

Quelle	biologische Depression	psychologische Depression
Hippocrates (5.Jh. v. Chr.) bis Kraeplin (1899) | Melancholie | Keine Definition
Kraeplin (seit 1908) | Endogene Depression Psychotische Depression | Exogene Depression Neurotische Depression Reaktive Depression Psychogene Depression
Freud (1917) | | |
Lange (1926) | | |
ICD-6 (1948) bis ICD-9 (1978) | | |
DSM-V (Seit 1980) | Major Depressive Episode, depressive Episode, Dysthymie | |
ICD-10 (seit 1992) | | |

Tab. 1: Wandel des Depressionsbegriffes von der Antike bis heute. Gegenüberstellung der verschiedenen Definitionsansätze. ICD-10 ist das Kürzel für „International Classification of Diseases“, ein in Deutschland gebräuchliches System zur Klassifizierung von Erkrankungen, DSM-V ist das „Diagnostic and statistical manual of mental disorders“, was die hierfür in den USA gebräuchliche Variante darstellt.

1.2 Epidemiologie

Etwa 12 bis 18 % der Gesamtbevölkerung in Deutschland erkranken im Laufe des Lebens an einer Depression unterschiedlichen Schweregrades (Angst et al., 1984). In der Praxis des Allgemeinarztes sind etwa 10 % Patienten entsprechend der Kriterien nach ICD-10 depressiv (Wittchen et al., 2002), somit ist die Depression eine der häufigsten Erkrankungen, mit denen der Hausarzt konfrontiert wird. In der Altersgruppe der 15 bis 35 Jahre steht der Suizid als Folge einer Depression nach den Unfällen an zweiter Stelle der Todesursachen, insgesamt gibt das Statistische Bundesamt ca. 10 000 Selbstmorde pro Jahr an, von denen allerdings nicht alle Depressionspatienten sind. Dabei weisen Frauen ein doppelt so hohes Erkrankungsrisiko auf wie Männer, wobei Frauen auch früher erkranken und die Inzidenz steiler ansteigt. Im höheren Alter erfolgt hier eine Angleichung (Hautzinger, 1998). In Tabelle 2 werden die verschiedenen Erscheinungsformen der Depression in ihrer Punktprävalenz und als Lebenszeitrisiko dargestellt. Auffällig ist, dass die depressive Episode mit Abstand am häufigsten auftritt.
Tab. 2: Prävalenzen der depressiven Episode, Dythymie und der bipolaren Störung (modifiziert nach Hautzinger M, 1998)

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Punktprävalenz</th>
<th>Lebenszeitrisiko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depressive Episode</td>
<td>1,5-4,9 %</td>
<td>4,4-18,0 %</td>
</tr>
<tr>
<td>Dysthymie</td>
<td>1,2-3,9 %</td>
<td>3,1-3,9 %</td>
</tr>
<tr>
<td>Bipolare Störung</td>
<td>0,1-2,3 %</td>
<td>0,6-3,3 %</td>
</tr>
</tbody>
</table>

Die Depression hat auch eine wirtschaftliche Dimension: In Deutschland liegen die Kosten infolge depressionsbedingter Frühberentungen bei ca. 1,5 Milliarden Euro jährlich. An Arbeitsunfähigkeit werden nach Angaben des Bundesministeriums für Gesundheit pro Jahr etwa elf Millionen Tage verursacht durch über 300.000 Erkrankungsfälle. In einer WHO-Studie wurde der Indikator YLD (Years Lived With Disability) verwendet, der die Jahre der Erkrankung pro Bevölkerung in einer Region sowie die Krankheitsintensität verwendete und sie für die jeweiligen Lebensumstände (gesundheitlich, wirtschaftlich, etc.) korrigierte mit dem Ergebnis, dass eine unipolare Depression die bedeutendste Volkskrankheit ist (Murray und Lopez, 1997).

1.3 Verlauf und Prognose

1.4 Klinisches Bild der Depression

Die Depression ist laut ICD-10 ein Gemütszustand, der durch Entscheidungsunfähigkeit, Interesselosigkeit, starke Traurigkeit, Niedergeschlagenheit, vermindertes Selbstwertgefühl und Selbstvertrauen, Gefühle von Schuld und Wertlosigkeit, negative und pessimistische Zukunftsperspektiven bis hin zu Todesfantasien und tatsächlichen Suizidversuchen gekennzeichnet ist. Darüber hinaus werden noch Formen mit oder ohne psychotische Symptome, wie zum Beispiel Wahrnehmungsstörungen, wahnhaftes Denken oder Stupor sowie solche mit oder ohne körperliche Symptome wie Schlafstörungen, hier vor allem frühmorgendliches Erwachen, unfreiwillige Gewichtszunahme oder Gewichtsabnahme, körperliche Misempfindungen, unspezifische vegetative Beschwerden des Gastrointestinaltraktes, Verlust der Libido etc. unterschieden. Insgesamt ist die Symptomatik, aber auch die Schwere der Erkrankung sehr vielfältig und in den verschiedenen Ethnien und Geschlechtern der Weltbevölkerung unterschiedlich ausgeprägt (Karasz et al., 2010; Mellsop and Smith, 2007).

1.4.1 Die Rolle demografischer und kultureller Faktoren

Herausforderung des Therapeuten, aber auch des Forschers, diesem Phänomen gerecht zu werden.

1.5 Diagnoseverfahren

1.6 Die Klassifikationssysteme DSM-V und ICD-10 im Vergleich

<table>
<thead>
<tr>
<th>ICD-10</th>
<th>DSM-IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>F32: Depressive Episode</td>
<td>296: Major Depression</td>
</tr>
</tbody>
</table>

Diagnostische Kriterien:

Für eine Dauer von mindestens zwei Wochen mindestens zwei der vier Symptome der Gruppe eins:

- gedrückte Stimmung
- Interessenverlust
- Freudlosigkeit
- Verminderung des Antriebs

Zusätzlich mehrere Symptome bis zu einer Gesamtzahl von vier (leichte Episode) bis sieben (schwere Episode) der Gruppe 2:

- verminderte Konzentration und Aufmerksamkeit
- vermindertes Selbstwertgefühl und Selbstvertrauen
- Schuldgefühle und Gefühle von Wertlosigkeit
- Negative, pessimistische Zukunftsperspektiven
- Suizidgedanken, erfolgte Selbstverletzung oder Suizidhandlungen
- Schlafstörungen
- Verminderter Appetit

Für eine Dauer von mindestens zwei Wochen mindestens fünf der folgenden Symptome, dabei mindestens eines der zwei Hauptsymptome:

- Depressive Verstimmung (bei Kindern und Jugendlichen auch: Reizbarkeit)
- Interessenverlust

Nebenkriterien:

- Gewichtsverlust (> 5 % pro Monat, bei Kindern auch: Ausbleiben der Gewichtszunahme)
- Schlaflosigkeit
- Psychomotorische Unruhe oder Verlangsamung
- Müdigkeit oder Energieverlust
- Gefühle von Wertlosigkeit, unangemessene Schuldgefühle
- Verminderte Fähigkeit, zu denken oder sich zu konzentrieren
- Wiederkehrende Gedanken an den Tod

Tab. 3: ICD-10 und DSM-V, Ein Vergleich der Krankheitsklassifikationssysteme

1.7 Therapie

1.8 Ätiopathogenese

Abb. 1: Schema der Ätiopathogenese der Depression. Dargestellt werden die gegenseitigen Wechselwirkungen exo- und endogener Faktoren (modifiziert nach Wolfersdorff und Rupprecht, 2009)
1.9 Genetik der Depression

Unbestritten ist die höhere Inzidenz der Depression bei weiblichen Patienten (Hautzinger, 1998). Dies wird auch in einer Metaanalyse von 15493 Zwillingspaaren unterstellt, in der die Erblichkeit der Depression bei Frauen 42 % beträgt und bei Männern 29 % (Kendler et al., 2006). Dabei finden sich die höchsten Korrelationen bei eineigen weiblichen Zwillingen.

<table>
<thead>
<tr>
<th>Geschlecht und Zygotie</th>
<th>Paarzahl</th>
<th>Tetrachrorische Korrelation</th>
<th>95 %-CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weiblich-Weiblich monozygot</td>
<td>2317</td>
<td>0.44</td>
<td>0.38-0.50</td>
</tr>
<tr>
<td>Weiblich-Weiblich Dizygot</td>
<td>3185</td>
<td>0.16</td>
<td>0.10-0.22</td>
</tr>
<tr>
<td>Männlich-Männlich Monozygot</td>
<td>1774</td>
<td>0.31</td>
<td>0.20-0.41</td>
</tr>
<tr>
<td>Männlich-Männlich Dizygot</td>
<td>2584</td>
<td>0.11</td>
<td>0.01-0.20</td>
</tr>
<tr>
<td>Männlich-Weiblich Dizygot</td>
<td>5633</td>
<td>0.11</td>
<td>0.05-0.16</td>
</tr>
</tbody>
</table>

Tab. 4: Übersicht über die Ergebnisse der Metaanalyse von Kendler et al. (2006) einer Zwillingsdepressionsstudie, als Schätzwert der Maßrelation r wird die tetrachorische Korrelation verwendet; je höher die genetische Übereinstimmung ist, desto höher ist auch die gleichzeitige Inzidenz einer Depression.

Das Erkrankungsrisiko für eine MDD beträgt bei erstgradigen Verwandten von Patienten, die an einer unipolaren Depression erkranken, zwischen 5–25 % (Lesch et al., 2004). Man spricht von einer genetischen Komponente von 50 % (Hamet et al., 2005). Die Konkordanzrate für eineige monozygote Zwillinge liegt für den bipolaren Verlauf bei 80 %, bei monopolarem Verlauf bei 50 %. Bei zweieiigen Zwillingen liegt die Konkordanzrate für affektive Psychosen bei 20 % (Rice et al., 2002). Im Zuge des Vulnerabilitätskonzeptes (McFarlane et al., 2005) geht man heute davon aus, dass eine Anfälligkeit besteht, die entweder spontan oder durch einen belastenden Einfluss aus der Umwelt zu einer manifesten Depression führt. Möglicherweise überwiegen bei dem frühen Erkrankungsgipfel mehr die genetischen Faktoren, während bei späterem Erkrankungsalter die Umweltfaktoren eine größere Rolle spielen.
Andererseits gilt es als gesichert, dass Umweltfaktoren ihrerseits die Genexpression beeinflussen und dadurch zu funktionellen und strukturellen Änderungen im Gehirn führen können (Murphy et al., 2001; Kendler et al., 2005). Während sich die bisherigen Untersuchungen zu Kandidatengenen primär auf die Aminhypothesen der Depression bezogen, werden die neueren Untersuchungen am gesamten Genom vorgenommen (Lesch, 2004).

1.10 Physiologische Erklärungsfaktoren der Entstehung einer Depression

1.10.1 Dysregulation der Hypothalamus-Hypophysen-Nebennieren-Achse

1.10.2 Die Cortisolhypothese

Vor allem ein erhöhter Cortisolspiegel im Blut wurde für die Entstehung und Perpetuierung einer Depression verantwortlich gemacht. Es wird schon seit Längerem vermutet, dass erhöhte Cortisolspiegel neurotoxisch sind und daher eine Atrophie des Hippocampus herbeiführen können (Sapolsky et al., 2001). In einer Studie wur-

1.10.3 Die Serotoninhypothese
Coppen sah bereits 1967 einen Serotoninmangel als Ursache der Depression. Eine Tryptophanmangeldiät kann bei depressiven Patienten, die bereits erfolgreich mit einem SSRI vorbehandelt wurden, einen Rückfall verursachen, bei Gesunden hingegen lässt sich dadurch keine Depression auslösen (Smith et al., 1997). Bei depressiven Patienten sowie solchen mit Autoaggression bis hin zur Suizidalität ist die Liquorkonzentration von 5-Hydroxyindolessigsäure, einem der Hauptmetaboliten des Serotonins, im Vergleich zu nicht depressiven Probanden erniedrigt. Taylor et al. gelang es 2005, bei Patienten mit spätem Krankheitsbeginn und genetisch bedingtem Serotoninmangel (durch erhöhten Reuptake) einen kleineren Hippocampus nachzuweisen, jedoch konnten andere Einflussfaktoren als mögliche Ursache nicht ausgeschlossen werden, was die Ergebnisse relativiert. Bei einem Vergleich depressiver Patienten mit einem LL-homozygotem Genotyp für den Serotoninrezeptor, welcher ebenfalls zu einem geringerem Serotoninspiegel im Gehirn durch erhöhten Reuptake führt, konnte ein kleineres Volumen der grauen Masse des Hippocampus nachgewiesen werden (Frodl et al., 2004). Es gibt mittlerweile zahlreiche weitere Studien, die dies zu belegen scheinen. Allerdings lässt sich letztlich auch in neuesten Meta-
analysen kein eindeutiger Zusammenhang zwischen Serotoninmangel und Depression herstellen (Risch et al., 2009).

1.10.4 Die Glutamathypothese

1.10.5 Die Katecholaminhypothese

1.10.6 Die Dopaminhypothese
Depressive Symptome treten bei M. Parkinson gehäuft auf, ein Hinweis auf die Bedeutung des Dopamins bei der Genese der Depression. Der Antrieb und die Eigenchaft, Verhaltensweisen aufgrund positiver Impulse anzunehmen, wird über das do-

1.10.7 Beeinträchtigungen neurotropher Mechanismen durch Depression

1.10.8 Neuroanatomie der Depression

1.11 Der Hippocampus

1.12 Die Entwicklung der MRI-basierten Forschung zu affektiven Störungen

1.13 Ziel und Fragestellung der vorliegenden Studie

Es gilt mittlerweile als erwiesen, dass der HC bei depressiven Patienten verkleinert ist (McKinnon et al., 2009). Zu Beginn der Forschungsarbeiten zu dieser Studie war der Zusammenhang zwischen dem Alter bei Krankheitsbeginn und dem vorbestehenden Hippocampusvolumen in dieser Form noch nicht untersucht worden. Lediglich eine Studie, die sich allerdings mit dem Einfluss des Alters bei Krankheitsbeginn auf das Hippocampusvolumen ausschließlich bei geriatrischen Patienten, die 60 Jahre oder älter waren beschäftigte, lag vor (Lloyd et al., 2004).

Ziel dieser Kontrollstudie war es, die Zusammenhänge zwischen einer möglichen Hippocampusatrophie und verschiedener Einflussfaktoren in einer heterogenen, also nicht ausschließlich geriatrischen Patientenpopulation zu untersuchen wobei ein besonderes Interesse der Gegenüberstellung der Effekte eines frühen bzw. späten Krankheitsbeginnes galt, sowie des Einflusses der Krankheitsdauer, der anhand der Testscores und der Episodenzahl ermittelten Schwere der Erkrankung, dem Vorhandensein psychiatrischer Nebendiagnosen sowie Alter und Geschlecht auf das Hippocampusvolumen.

1.14 Hypothesen

(1) Das am intrakraniellen Volumen relativierte Hippocampusvolumen links, rechts und im Gesamten sollte bei unipolar depressiven Patienten statistisch signifikant geringer als in der nicht depressiven Kontrollgruppe ausfallen.

(2) Ein frühes Eintrittsalter in eine depressive Episode sollte mit einem signifikant geringeren Hippocampusvolumen im Vergleich zu einem späten Krankheitsbeginn einhergehen, wiederum am intrakraniellen Volumen relativiert. Dies könnte ein Hinweis auf eine angeborene Prädisposition sein, an einer Depression zu erkranken. Das Ergebnis sollte jeweils für das linke, rechte und das gesamte Hippocampusvolumen gelten.
2. Material und Methodik

2.1 Beschreibung der Stichprobe

Das Vorliegen von psychiatrischen Nebendiagnosen (Somatisierungsstörung, Angst- bzw. Zwangsstörung, Borderline-Störung, Persönlichkeitsstörung und Kombinationen davon) galt nicht als Ausschlusskriterium, solange eine unipolare Depression als Erstdiagnose gestellt war. 42 der unipolar depressiven Patienten hatten eine psychiatrische Nebendiagnose. Als Nebendiagnosen traten auf: Somatisierungsstörung (n=8), Angst- bzw. Zwangsstörung (n=22), Borderlinestörung (n=1), Persönlichkeitsstörung (n=2), eine Kombination von beiden (n=1) sowie Alkohol- oder Drogenmissbrauch (n=8). Im Einzelnen war die Studie dreiarmig angelegt mit folgenden Studiengruppen:

2.2 Diagnosestellung

2.3 Erstellung der MRI – Aufnahmen

Die magnetresonanztomographischen Aufnahmen wurden in der Radiologischen Klinik der Rheinischen Friedrich-Wilhelms-Universität in Bonn erstellt. Die Aufnahmen wurden mithilfe vier verschiedener Scanner der Firma Philips erstellt, dem 1,5 T Achieva Ganzkörpersystem System (NR) mit einer 3D FFE Sequenz (TE/TR/FLIP: 3.6/15 ms/30°), dem 3 T Achieva (3T) mit einer 3D FFE Sequenz (TE/TR/FLIP: 3.7/8.1 ms/8°), dem Gyroscan Intera (INTERA) mit einer T1 FFE Sequenz (TE/TR/FLIP: 1,675/25 ms/30°) und dem Gyroscan NT Intera (NT) mit einer T1 FFE Sequenz (TE/TR/FLIP: 3,6/15,3565 ms/30°). Daraus resultierten im Durchschnitt 140 Sagittalschnitte ohne Gap mit einer Dicke von 1 mm und einer isotropen Voxelgröße von 1x1x1 mm.

2.4 Datenanalyse der MRI – Aufnahmen

Die MRI-Scans wurden anschließend auf einem Personalcomputer weiterverarbeitet. Das Gesamtvolumen jedes einzelnen Hippocampus wurde ermittelt als Summe der Flächenergebnisse in mm² der einzelnen Schichten, multipliziert mit der Schichtdicke von 1 mm. Zur Segmentierung und der anschließenden Berechnung des intrakraniellen Volumens der Gehirne wurde das Programm SPM5 (Statistical Parametrical
33

Mapping, Wellcome Department of Cognitive Neurology, London, UK) verwendet. Um Geschlechtsunterschiede zu berücksichtigen, wurden die Hippocampusvolumina nun am intrakraniellen Schädelvolumen relativiert.

2.5 Vermessung der Hippocampi

Abb. 6: Hippocampus in Sagittalansicht. Dargestellt ist der Hippocampus einer eigenen Messung. Man sieht Cauda (A), Corpus (B) und Caput (C). Die zu vermessenden Anteile sind rot umfahren.

Abb. 7: Cauda und Caput des Hippocampus. Dargestellt ist eine eigene Messung in sagittaler Ansicht, weiter medial als in der vorangegangenen Messung gelegen. Innerhalb der rot markierten Felder ist ein Teil der Cauda (A) zu sehen und das Caput des HC (C)

In der weiteren Bewegung nach medial teilte sich der Hippocampus in zwei separate Strukturen, dorsal in das Caput des HC, wieder vom temporalen Cornu des lateralen Ventrikels umschrieben, und ventral in die Cauda, die sich als graue Substanz im Trigonum des lateralen Ventrikels verfolgen ließ. Die Cauda setzt sich in die Fasciola cinerea fort, eine feine, spitz zulaufende Ausziehung, die nach Duvernoy (1998) zum Hippocampus dazugezählt wird, aber hier nicht mitgemessen wurde, da sie auf den MRI-Aufnahmen in dieser Auflösung nicht immer ohne Weiteres von der Umgebung
abzugrenzen war. Ebenfalls ausgeschlossen wurden der Gyrus fasciolaris und der Anders-Retzius-Gyrus.

Abb. 8: Das Corpus des Hippocampus. Eigene Messung, lateral von dem sagittalen Abschnitt gelegen. In diesem Anschnitt ist das Corpus (B) vom Liquor des lateralen Ventrikels umschlossen

Nachdem die Messungen von der initialen Sagittalansicht nach medial hin abgeschlossen waren, wurde erneut von der ursprünglichen Sagittalansicht ausgehend, nun nach lateral hin der Hippocampus vermessen. Das Corpus war dabei gut vom im MRI dunklen Liquor abzugrenzen.

2.6 Festlegung der AC-PC-Linie

Abb. 9: Ausrichtung der MRI-Aufnahmen in der AC-PC-Linie. Dargestellt sind die transversale, die sagittale und die coronare Ansicht des Gehirns. Anhand des Fadenkreuzes wird das Gehirn manuell ausgerichtet, im Fadenkreuz erkennt man die vordere Komissur (modifiziert nach Brett und Rorden, 1999)
2.7 Segmentierung der MRI-Aufnahmen, intrakranielles Volumen

Um die Gesamtvolumina der Gehirne zu bestimmen, wurden die Datensätze mithilfe des Programms SPM segmentiert. Dabei wurde das Gehirn in einer linearen und in einer nichtlinearen Normalisierung auf ein Standardgehirn projiziert, wobei die Wahrscheinlichkeit berechnet wird, dass die Teilbereiche der grauen Substanz, weißen Substanz und CSF des untersuchten Gehirns an der beim Standardgehirn erwarteten Stelle sind (Ashburner und Friston, 2000).

ergibt sich hieraus das intrakranielle Volumen (modifiziert nach Zivadinov und Bakshi, 2004)

2.8 Statistische Auswertung

3. Ergebnisse

3.1 Übersicht der Rohdaten

Zum Überblick werden hier die erhobenen Messdaten vom linken, rechten und dem gesamten Hippocampusvolumen sowie dem intrakraniellen Volumen in cm³ aufgeführt. Das kleinste HC-Volumen wird beim linken Hippocampus in der EOD-Gruppe gemessen, das größte HC-Volumen im linken Hippocampus der Kontrollgruppe.

<table>
<thead>
<tr>
<th></th>
<th>EOD (M=39,5 J)</th>
<th>LOD (M=54,3 J)</th>
<th>Kontrollgruppe (M=35,2 J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hippocampus links</td>
<td>2,24 0,39</td>
<td>2,35 0,37</td>
<td>2,48 0,34</td>
</tr>
<tr>
<td>Hippocampus rechts</td>
<td>2,25 0,34</td>
<td>2,33 0,36</td>
<td>2,47 0,27</td>
</tr>
<tr>
<td>Hippocampus gesamt</td>
<td>4,5074 0,66</td>
<td>4,6975 0,69</td>
<td>4,95 0,53</td>
</tr>
<tr>
<td>Intrakran. Volumen</td>
<td>1622,66 202,30</td>
<td>1611,25 193,84</td>
<td>1637,06 110,20</td>
</tr>
</tbody>
</table>

3.2 Intrarater-Reliabilität der ermittelten Hippocampusvolumina

Zur Überprüfung des eigenen Messverfahrens wurden insgesamt 10 zufällig ausgewählte verblindete MRI-Datensätze nach 3 Wochen erneut vermessen, wobei stets die Gesamtvolumina verglichen wurden. Dabei zeigte sich eine gute Übereinstimmung bei den Messungen der 2. Sitzung, kein Trend zu größerem oder kleinerem Volumen (Korr n. Pearson: 0,967), was eine hohe Test-Retest-Reliabilität bedeutet.
Abb. 11: Diagramm der Retest-Ergebnisse bei den Hippocampusvolumina. Im Balkendiagramm sind jeweils die erste mit der zweiten Messung zusammen aufgeführt, es wurde jeweils das gesamte Hippocampusvolumen verglichen.

3.3 Interrater-Reliabilität

3.4 Scannertypus, Alter, Geschlecht und Depressionsausprägung

3.4.1 Verteilung der Studienpopulation nach Altersgruppe

Um zu überprüfen, ob das Alter in EOD, LOD und der Kontrollgruppe statistisch signifikant unterschiedlich war, wurde ein Chi-Quadrat-Test durchgeführt, der einen systematischen und signifikanten Zusammenhang zwischen den drei Studienpopulationen und der Altersgruppe belegt (Chi²=37,218, df=4, p <0,05). Insbesondere die Kontrollgruppe war deutlich jünger als die beiden Patientengruppen.

<table>
<thead>
<tr>
<th>Studienpopulation</th>
<th>Gesunde Kontrolle</th>
<th>EOD</th>
<th>LOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>31</td>
<td>29</td>
<td>46</td>
</tr>
<tr>
<td>Durchschnittsalter</td>
<td>35,2</td>
<td>39,5</td>
<td>54,3</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>14,3</td>
<td>11,0</td>
<td>10,8</td>
</tr>
</tbody>
</table>

3.4.2 Verteilung der Patienten nach Scannertypus

In der Verteilung der Scannertypen auf die beiden Patientengruppen LOD und EOD sowie die nicht depressive Kontrolle zeigt sich, dass die Probanden der Kontrollgruppe ausschließlich mit dem Intera-Scanner gemessen wurden. Mit dem Chi²-Test wurde die Verteilung des Scannertyps in den Studienpopulationen untersucht, er ergab ein signifikantes Ergebnis: (Chi²=48,820, df=6, p<0,001). Daher muss zunächst davon ausgegangen werden, dass die Volumenmessungen der Hippocampi möglicherweise durch die Verwendung verschiedener Scannertypen beeinflusst wurden und somit in den multivariaten Analysen auf den Scannertypus kontrolliert werden müssen.

<table>
<thead>
<tr>
<th>Studienpopulationen</th>
<th>Scannertypus</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intera</td>
<td>NT</td>
</tr>
<tr>
<td>Nicht depressive Kontrolle</td>
<td>Anzahl</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>In % der Gesamtzahl</td>
<td>29,2</td>
</tr>
<tr>
<td>EOD</td>
<td>Anzahl</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>In % der Gesamtzahl</td>
<td>7,5</td>
</tr>
<tr>
<td>LOD</td>
<td>Anzahl</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>In % der Gesamtzahl</td>
<td>12,3</td>
</tr>
<tr>
<td>Gesamt</td>
<td>Anzahl</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>In % der Gesamtzahl</td>
<td>49,1</td>
</tr>
</tbody>
</table>

3.4.3 Geschlechtsverteilung

In einem Chi²-Test wurde die Hypothese überprüft, dass es keine unterschiedliche Geschlechterverteilung in den Studienpopulationen gab (Chi²=6,212, df=2, p=0,045). Es gab somit signifikante Unterschiede in der Geschlechtsverteilung der Studienpopulation, wobei in der Kontrollgruppe mehr männliche Probanden waren. Bei den beiden Patientengruppen überwog dagegen der Frauenanteil.

<table>
<thead>
<tr>
<th>Studienpopulation</th>
<th>Geschlecht</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>männlich</td>
<td>weiblich</td>
</tr>
<tr>
<td>Nicht depressive Kontrolle</td>
<td>Anzahl</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>In % der Gesamtzahl</td>
<td>17,0</td>
</tr>
<tr>
<td>EOD</td>
<td>Anzahl</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>In % der Gesamtzahl</td>
<td>7,5</td>
</tr>
<tr>
<td>LOD</td>
<td>Anzahl</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>In % der Gesamtzahl</td>
<td>16,0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>Anzahl</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>In % der Gesamtzahl</td>
<td>40,6</td>
</tr>
</tbody>
</table>

3.5 Mehrfaktorielle Kovarianzanalysen

Mit mehrfaktoriellen Kovarianzanalysen sollten nun Faktoren identifiziert werden, die zu einem möglicherweise verminderten Hippocampusvolumen bei unipolar depressiven Patienten gegenüber der Kontrollgruppe der nicht depressiven Probanden führen könnten. Die abhängigen Variablen waren somit:

1) Linkes HC-Volumen, am intrakraniellen Volumen relativiert
2) Rechtes Hippocampusvolumen, am intrakraniellen Volumen relativiert
3) HC-Volumen gesamt, am intrakraniellen Volumen relativiert.

Als Faktoren wurden das Geschlecht, der Scannertypus und als Kovariate das Alter bei der ersten MRI-Messung einbezogen.
3.5.1 Ergebnisse für das rechte Hippocampusvolumen
Es zeigen sich keine signifikanten Mittelwertunterschiede zwischen den drei Studienpopulationen, lediglich die Kontrollgruppe der nicht depressiven Probanden weist tendenziell ein größeres rechtes HC-Volumen auf.

<table>
<thead>
<tr>
<th></th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrollgruppe</td>
<td>1,5115</td>
<td>1,16804</td>
<td>0,03018</td>
</tr>
<tr>
<td>EOD</td>
<td>1,4065</td>
<td>1,25703</td>
<td>0,04773</td>
</tr>
<tr>
<td>LOD</td>
<td>1,4777</td>
<td>1,25958</td>
<td>0,03870</td>
</tr>
</tbody>
</table>

Abb. 13: Boxplot des rechten HC-Volumens der Studienpopulationen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B</th>
<th>SD</th>
<th>T</th>
<th>P-Wert</th>
<th>95 % Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>konstanter Term</td>
<td>1,666</td>
<td>.113</td>
<td>14,681</td>
<td>.000</td>
<td>1,440 - 1,891</td>
</tr>
<tr>
<td>Alter</td>
<td>-.001</td>
<td>.002</td>
<td>-.431</td>
<td>.667</td>
<td>-.005 - .003</td>
</tr>
<tr>
<td>Kontrollgruppe</td>
<td>.123</td>
<td>.079</td>
<td>1,554</td>
<td>.123</td>
<td>-.034 - .281</td>
</tr>
<tr>
<td>EOD</td>
<td>-.071</td>
<td>.063</td>
<td>-1,140</td>
<td>.257</td>
<td>-.196 - .053</td>
</tr>
<tr>
<td>MED=>30 J</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>Keine Nebendiagnose</td>
<td>.038</td>
<td>.048</td>
<td>.785</td>
<td>.434</td>
<td>-.058 - .134</td>
</tr>
<tr>
<td>Nebendiagnose vorhanden</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>Mann</td>
<td>-.111</td>
<td>.047</td>
<td>-2,361</td>
<td>.020</td>
<td>-.205 - -.018</td>
</tr>
<tr>
<td>Frau</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>Intera</td>
<td>-.213</td>
<td>.074</td>
<td>-2,862</td>
<td>.005</td>
<td>-.360 - -.065</td>
</tr>
<tr>
<td>NT</td>
<td>-.136</td>
<td>.070</td>
<td>-1,927</td>
<td>.057</td>
<td>-.275 - .004</td>
</tr>
<tr>
<td>NR</td>
<td>-.175</td>
<td>.098</td>
<td>-1,797</td>
<td>.075</td>
<td>-.369 - .018</td>
</tr>
<tr>
<td>3T</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td></td>
<td>.</td>
</tr>
</tbody>
</table>

3.5.2 Ergebnisse für das linke Hippocampusvolumen

Das Ergebnis der Kovarianzanalyse mit dem linken HC-Volumen als abhängiger Variable und Einbezug der Haupeffekte der Studienpopulation, des Geschlechts, des

<table>
<thead>
<tr>
<th></th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrollgruppe</td>
<td>1,5185</td>
<td>.20737</td>
<td>.03724</td>
</tr>
<tr>
<td>EOD</td>
<td>1,3996</td>
<td>.27696</td>
<td>.05143</td>
</tr>
<tr>
<td>LOD</td>
<td>1,4854</td>
<td>.25006</td>
<td>.03728</td>
</tr>
</tbody>
</table>

48

Abb. 14: Boxplot des linken HC-Volumens der Studienpopulationen, am intrakraniellen Volumen relativiert

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B</th>
<th>SD</th>
<th>T</th>
<th>P-Wert</th>
<th>95 % Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>konstanter Term</td>
<td>1,632</td>
<td>.119</td>
<td>13,672</td>
<td>.000</td>
<td>1,395 - 1,869</td>
</tr>
<tr>
<td>Alter</td>
<td>.000</td>
<td>.002</td>
<td>.135</td>
<td>.893</td>
<td>-.004 - .004</td>
</tr>
<tr>
<td>Kontrollgruppe</td>
<td>.149</td>
<td>.084</td>
<td>1,785</td>
<td>.077</td>
<td>-.017 - .315</td>
</tr>
<tr>
<td>EOD</td>
<td>-.078</td>
<td>.066</td>
<td>-1,176</td>
<td>.243</td>
<td>-.208 - .053</td>
</tr>
<tr>
<td>MED=>30 J</td>
<td>0</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>keine Nebendiagnose</td>
<td>.015</td>
<td>.051</td>
<td>.304</td>
<td>.762</td>
<td>-.085 - .116</td>
</tr>
<tr>
<td>Nebendiagnose vorhanden</td>
<td>0</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mann</td>
<td>-.107</td>
<td>.050</td>
<td>-2,151</td>
<td>.034</td>
<td>-.205 - .008</td>
</tr>
<tr>
<td>Frau</td>
<td>0</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interia</td>
<td>-.223</td>
<td>.078</td>
<td>-2,850</td>
<td>.005</td>
<td>-.378 - .068</td>
</tr>
<tr>
<td>NT</td>
<td>-.166</td>
<td>.074</td>
<td>-2,240</td>
<td>.027</td>
<td>-.313 - .019</td>
</tr>
<tr>
<td>NR</td>
<td>-.133</td>
<td>.103</td>
<td>-1,293</td>
<td>.199</td>
<td>-.337 - .071</td>
</tr>
<tr>
<td>3T</td>
<td>0</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.5.3 Ergebnisse für das gesamte Hippocampusvolumen

In Tabelle 13 werden Mittelwerte, Standardabweichungen und Standardfehler des Mittelwertes für das gesamte Hippocampusvolumen nach Studienpopulation angegeben.

<table>
<thead>
<tr>
<th>Studienpopulation</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrollgruppe</td>
<td>3,0300</td>
<td>.31474</td>
<td>.05653</td>
</tr>
<tr>
<td>EOD</td>
<td>2,8142</td>
<td>.49945</td>
<td>.09275</td>
</tr>
<tr>
<td>LOD</td>
<td>2,9701</td>
<td>.49256</td>
<td>.07343</td>
</tr>
</tbody>
</table>

Abb. 15: Boxplot des gesamten HC-Volumens, am intrakraniellen Volumen relativiert, nach Studienpopulationen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B</th>
<th>SD</th>
<th>T</th>
<th>P-Wert</th>
<th>95 % Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Untergrenze</td>
</tr>
<tr>
<td>konstanter Term</td>
<td>3,324</td>
<td>.215</td>
<td>15,463</td>
<td>.000</td>
<td>2,897</td>
</tr>
<tr>
<td>Alter</td>
<td>-.001</td>
<td>.004</td>
<td>-.198</td>
<td>.844</td>
<td>-.008</td>
</tr>
<tr>
<td>Kontrollgruppe</td>
<td>.260</td>
<td>.150</td>
<td>1,730</td>
<td>.087</td>
<td>-.038</td>
</tr>
<tr>
<td>EOD</td>
<td>-.150</td>
<td>.119</td>
<td>-1,265</td>
<td>.209</td>
<td>-.386</td>
</tr>
<tr>
<td>MED=>30 J</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>keine Nebendiagnose</td>
<td>.045</td>
<td>.091</td>
<td>.492</td>
<td>.624</td>
<td>-.136</td>
</tr>
<tr>
<td>Nebendiagnose</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Mann</td>
<td>-.217</td>
<td>.089</td>
<td>-2,434</td>
<td>.017</td>
<td>-.394</td>
</tr>
<tr>
<td>Frau</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Intera</td>
<td>-.437</td>
<td>.141</td>
<td>-3,106</td>
<td>.002</td>
<td>-.717</td>
</tr>
<tr>
<td>NT</td>
<td>-.315</td>
<td>.133</td>
<td>-2,363</td>
<td>.020</td>
<td>-.580</td>
</tr>
<tr>
<td>NR</td>
<td>-.323</td>
<td>.185</td>
<td>-1,746</td>
<td>.084</td>
<td>-.690</td>
</tr>
<tr>
<td>3T</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Tab. 14: ANCOVA zum gesamten Hippocampusvolumen als abhängiger Variablen, am intrakraniellen Volumen relativiert. Kovarianten sind Scannertyp, Geschlecht und Alter.

3.6 Einflüsse der Dauer und Intensität der Depression auf das HC-Volumen

In einem zweiten Analyseschritt soll der Einfluss der Anzahl der Depressionsepi-
soden und der Krankheitsintensität, gemessen zum einen mit dem BDI und zum an-
deren mit dem HAMD, in den beiden Patientengruppen auf das gesamte am intra-
kranialen Volumen relativierte HC-Volumen analysiert werden.

Es ergeben sich keine deutlichen Unterschiede, lediglich der BDI-Wert ist im Mittel etwas höher bei den Patienten mit früherem Eintrittsalter.
<table>
<thead>
<tr>
<th>Studienpopulation</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAMD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EOD</td>
<td>26,24</td>
<td>5,786</td>
</tr>
<tr>
<td>LOD</td>
<td>25,71</td>
<td>6,092</td>
</tr>
<tr>
<td>BDI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EOD</td>
<td>28,08</td>
<td>10,315</td>
</tr>
<tr>
<td>LOD</td>
<td>23,80</td>
<td>11,609</td>
</tr>
<tr>
<td>Anzahl MDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EOD</td>
<td>2,95</td>
<td>1,687</td>
</tr>
<tr>
<td>LOD</td>
<td>2,85</td>
<td>2,082</td>
</tr>
</tbody>
</table>

Tab. 15: HAMD (Hamilton Depression Scale), BDI (Beck Depression Inventory) und Anzahl der MDE (Depressionsepisoden) nach Patientengruppe. Die Aufteilung der unipolar depressiven Patienten erfolgt je nach einem Eintrittsalter in die Depression von unter bzw. über 30 Jahren.

Tabelle 16 zeigt die Ergebnisse der multivariaten Analysen. Da nicht davon ausgegangen werden kann, dass die Voraussetzung gleicher Regressionssteigungen erfüllt ist, wird hier auf ein verallgemeinertes lineares Modell mit Maximum-likelihood-Schätzung zurückgegriffen. Die Analysen werden für den BDI und die HAMD getrennt berechnet, um den relativ hohen Korrelationen zwischen beiden Skalen Rechnung zu tragen und damit Kollinearitätsprobleme zu vermeiden. Das Modell erreicht mit einem Likelihood Ratio Chi-Square von 22,065 und 8 Freiheitsgraden mit p= 0,005 im Vergleich zu einem Modell ohne Einflussfaktoren eine gute Anpassung an die Daten. Eindeutig sind hier die Effekte des Geschlechtes (p=0,019) und ebenso der Scannertypen Intera (p=0,019) und NT (p=0,04), wie das auch aus den vorherigen Kovarianzanalysen ersichtlich war. Keine statistisch signifikanten Effekte lassen sich für das Alter bei der ersten MRI-Messung, der Anzahl der Depressionsepisoden und der Krankheitsschwere, gemessen auf der HAMD, nachweisen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B</th>
<th>SD</th>
<th>95% Wald-Konfidenzintervall</th>
<th>Hypothesen-</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unterer Wert</td>
<td>Oberer Wert</td>
<td>Chi²</td>
<td>df</td>
<td>Sig.</td>
<td></td>
</tr>
<tr>
<td>(Konstanter Term)</td>
<td>3,314</td>
<td>3,364</td>
<td>2,601</td>
<td>4,028</td>
<td>82,883</td>
<td>1</td>
</tr>
<tr>
<td>Mann</td>
<td>-0,304</td>
<td>0,1303</td>
<td>-0,559</td>
<td>-0,048</td>
<td>5,437</td>
<td>1</td>
</tr>
<tr>
<td>Frau</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Intera</td>
<td>-0,421</td>
<td>0,1778</td>
<td>-0,769</td>
<td>-0,072</td>
<td>5,600</td>
<td>1</td>
</tr>
<tr>
<td>NT</td>
<td>-0,308</td>
<td>0,1485</td>
<td>-0,599</td>
<td>-0,016</td>
<td>4,289</td>
<td>1</td>
</tr>
<tr>
<td>NR</td>
<td>-0,241</td>
<td>0,1966</td>
<td>-0,626</td>
<td>0,144</td>
<td>1,502</td>
<td>1</td>
</tr>
<tr>
<td>3T</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Alter in Jahren</td>
<td>-0,001</td>
<td>0,0061</td>
<td>-0,013</td>
<td>0,011</td>
<td>0,013</td>
<td>1</td>
</tr>
<tr>
<td>Anzahl MDE</td>
<td>-0,050</td>
<td>0,0365</td>
<td>-0,121</td>
<td>0,022</td>
<td>1,842</td>
<td>1</td>
</tr>
<tr>
<td>HAMD</td>
<td>0,007</td>
<td>0,0085</td>
<td>-0,010</td>
<td>0,023</td>
<td>0,648</td>
<td>1</td>
</tr>
<tr>
<td>MDE <30 Jahren</td>
<td>-0,241</td>
<td>0,1844</td>
<td>-0,603</td>
<td>0,120</td>
<td>1,713</td>
<td>1</td>
</tr>
<tr>
<td>MDE >=30 Jahren</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>keine Nebendiagnose</td>
<td>0,037</td>
<td>0,1103</td>
<td>-0,179</td>
<td>0,253</td>
<td>0,114</td>
<td>1</td>
</tr>
<tr>
<td>Nebendiagnose vorhanden</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>(Skala)</td>
<td>0,161</td>
<td>0,0292</td>
<td>0,113</td>
<td>0,230</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 16: Verallgemeinertes lineares Modell mit Maximum-likelihood-Schätzung (GLM), mit HAMD (Hamilton Depression Scale) und der Anzahl MDE (Major depressive episode) als Einflussfaktoren auf das am intrakraniellen Volumen relativierte gesamte Hippocampusvolumen.

Die Analysen unter Einbezug der BDI-Werte (Tabelle 17) zeigen wiederum den Einfluss des Scannertypus, des Geschlechtes und hier ein tendenziell niedrigeres Gesamtvolumen bei EOD-Patienten mit unipolaren Depressionen, wobei auch hier das konventionelle Signifikanzniveau von 5 % nicht erreicht wird (p= 0.08). Die Krankheitsschwere gemessen am BDI und auch die Anzahl der MDE-Episoden haben keinen statistisch nachweisbaren Einfluss auf das relativierte HC-Gesamtvolumen.
<table>
<thead>
<tr>
<th></th>
<th>fidenzintervall</th>
<th>test</th>
<th></th>
<th>Chi²</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unterer Wert</td>
<td>Oberer Wert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Konstanter Term)</td>
<td>3,669</td>
<td>.3832</td>
<td>2,918</td>
<td>4,420</td>
<td>91,646</td>
<td>1</td>
</tr>
<tr>
<td>Mann</td>
<td>-.323</td>
<td>.1613</td>
<td>-.639</td>
<td>-.007</td>
<td>4,005</td>
<td>1</td>
</tr>
<tr>
<td>Frau</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Intera</td>
<td>-.571</td>
<td>.1861</td>
<td>-.935</td>
<td>-.206</td>
<td>9,399</td>
<td>1</td>
</tr>
<tr>
<td>NT</td>
<td>-.300</td>
<td>.1668</td>
<td>-.627</td>
<td>.027</td>
<td>3,232</td>
<td>1</td>
</tr>
<tr>
<td>NR</td>
<td>-.227</td>
<td>.2029</td>
<td>-.624</td>
<td>.171</td>
<td>1,251</td>
<td>1</td>
</tr>
<tr>
<td>3T</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Alter in Jahren</td>
<td>-.004</td>
<td>.0069</td>
<td>-.018</td>
<td>.009</td>
<td>.365</td>
<td>1</td>
</tr>
<tr>
<td>Anzahl MDE</td>
<td>-.027</td>
<td>.0380</td>
<td>-.101</td>
<td>.048</td>
<td>.503</td>
<td>1</td>
</tr>
<tr>
<td>HAMD</td>
<td>-.370</td>
<td>.2095</td>
<td>-.781</td>
<td>.040</td>
<td>3,122</td>
<td>1</td>
</tr>
<tr>
<td>MDE <30 Jahren</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>MDE >=30 Jahren</td>
<td>.001</td>
<td>.0069</td>
<td>-.012</td>
<td>.015</td>
<td>.025</td>
<td>1</td>
</tr>
<tr>
<td>keine Nebendiagnose</td>
<td>.015</td>
<td>.1222</td>
<td>-.224</td>
<td>.254</td>
<td>.015</td>
<td>1</td>
</tr>
<tr>
<td>Nebendiagnose vorhanden</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>(Skala)</td>
<td>.182</td>
<td>.0341</td>
<td>.126</td>
<td>.263</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 17: Verallgemeinertes lineares Modell mit Maximum-likelihood-Schätzung (GLM) mit dem BDI (Beck depression inventar) und der Anzahl der MDE (Major depressive episode), der Scannertypen und des Geschlechts sowie des Vorhandenseins von psychiatrischen Nebendiagnosen als Einflussfaktoren auf das am intrakraniellen Volumen relativierte gesamte Hippocampusvolumen.

3.7 Zusammenfassung der Ergebnisse

Nachdem die Rohdaten der vermessen Hippocampi am intrakraniellen Volumen relativiert worden waren, wies lediglich die Kontrollgruppe der nicht depressiven Probanden tendenziell ein größeres rechtes und linkes HC-Volumen auf. Männliche depressive Patienten hatten einen signifikant kleineren Hippocampus beidseits. Auch die Scanner, mit denen die MRIs erstellt wurden, hatten einen signifikanten Einfluss auf das Hippocampusvolumen, was in den Berechnungen berücksichtigt wurde. Niedrigere HC-Volumina werden in dieser Reihenfolge gemessen: Intera, NT, NR und schließlich der 3T-Scanner. Zwischen Episodenzahl und Krankheitsschwere ließ sich
kein Zusammenhang zu einem verringerten HC-Volumen herstellen. Bezüglich des intrakraniellen Volumens gab es in den drei Gruppen keine signifikanten Unterschiede; ein Hinweis darauf, dass auch die manuellen Messergebnisse nicht zu stark durch die verschiedenen Scannertypen verfälscht wurden.
4. Diskussion

4.1 Ergebnisübersicht

4.2 Allgemeines

Es gilt als gesichert, dass der Hippocampus depressiver Patienten neben anderen Hirnstrukturen im Vergleich mit nicht depressiven Probanden verkleinert ist (Videbech und Ravnkilde, 2004; Campbell et al., 2004; McKinnon et al., 2009, Koolschijn et al., 2009). Dabei gab es jedoch in ersten volumetrischen MRI-Studien oft noch widersprüchliche Ergebnisse, was vor allem einem unterschiedlichen methodischen Vorgehen geschuldet sein dürfte. In der vorliegenden Dissertation wurde mittels kernspintomographischen Aufnahmen der Zusammenhang zwischen morphologischen Veränderungen des HC und Krankheitsbeginn, Geschlecht und Alter zum Untersuchungszeitpunkt an einer MDD leidenden Patienten untersucht. Die vorliegende Arbeit war unseres Wissens nach die erste Studie, bei der das Hippocampusvolumen im Zusammenhang mit dem Alter bei Krankheitsbeginn bei einer heterogenen Gruppe unipolar depressiver Patienten untersucht wurde. Lediglich Steffens veröffentlichte bereits 2000 eine ähnliche Arbeit, allerdings wurden ausschließlich Patienten mit geriatrischer Depression untersucht, bei denen die Altersatrophie und weitere Faktoren wie Komorbiditäten eine zunehmend wichtige Rolle spielten. Mittlerweile liegen mehrere ähnliche Studien vor, mit inhomogenen Ergebnissen.

4.3 Methodik

4.3.1 Messverfahren

Die Ergebnisse des Retests und des Interraters der in dieser Studie verwendeten Protokolle zeigen, dass diese Strukturen präzise und zuverlässig vermessen werden
konnten. Die Test-Rest-Korrelation nach Pearson betrug 0,967, die Interrater-
Reliabilität wurde mit 0,931 ermittelt. Damit sind Test-Rest-Reliabilität und Interrater-
Reliabilität hoch und belegen die Zuverlässigkeit der Messergebnisse. Aus diesem
Grund werden Gruppenunterschiede mit hoher Wahrscheinlichkeit einer Varianz zwi-
schens beiden Gruppen entsprechen und nicht auf Messungenaigkeiten oder Aus-
wertungsabweichungen zurückzuführen sein.

4.3.2 Patientenpopulation
Für die statistische Auswertung konnten 75 Patienten herangezogen werden, sowie
31 nicht depressive Probanden. Die Patientenpopulation wurde aufgeteilt in 29 uni-
polar depressive Patienten mit einem Eintrittsalter in die Depression unter 30 Jahren
sowie 46 unipolar depressive Patienten mit einem Eintrittsalter in die Depression von
über 30 Jahren. Das Hippocampusvolumen wurde anhand von MRI unter Verwen-
dung verschiedener Scanner manuell vermessen und am automatisch berechneten
intrakraniellen Volumen relativiert, um geschlechtsspezifische Abweichungen zu
kompensieren.

4.3.3 Vergleich mit Messergebnissen anderer Studien
McKinnon et al. (2009) verglichen in einer Metaanalyse eine Vielzahl neuerer Studi-
den, der die folgende Übersicht in Tabelle 18 leicht verändert entnommen ist. Die
meisten dieser Studien berichten von einem Volumenverlust des Hippocampus bei
Patienten, die an einer MDD leiden. Ausgeschlossen wurden Studien, in denen keine
unipolar depressiven, sondern zyklothyme oder bipolare Patienten untersucht wur-
den. Die Daten beziehen sich auf die Volumina der erkrankten Patienten. Auffällig
sind die enorm großen Unterschiede zwischen den gemessenen Volumina der ein-
zelnen Studien. Der Grund für die teilweise relativ großen Abweichungen der Ergeb-
nisse der Volumenminderungen der Hippocampi kann zumindest teilweise darauf zu-
rückgeführt werden, dass in den Studien unterschiedliche Protokolle zur Volumen-
bestimmung verwendet wurden (McKinnon et al., 2009). In einer Studie wurde nur
das Corpus Hippocampi gemessen, was ein Gesamtvolumen von lediglich 1922 mm³
zur Folge hatte (Bremner et al., 2000). Andere Studien, in denen unter anderem die
Amygdala mit einbezogen wurde und mit zumeist erheblich geringerer MRI-Auflö-
sung, gaben wesentlich größere Volumina an (Frodl et al., 2000; Axelson et al.,

<table>
<thead>
<tr>
<th>Studie</th>
<th>HC Probanden in mm³.</th>
<th>HC Kontrollgruppe in mm³.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Links</td>
<td>Rechts</td>
</tr>
<tr>
<td>Sheline et al., 2009</td>
<td>2230</td>
<td>2264</td>
</tr>
<tr>
<td>Bremner et al., 2000</td>
<td>940</td>
<td>982</td>
</tr>
<tr>
<td>Mervaala et al., 2000</td>
<td>3104</td>
<td>3462</td>
</tr>
<tr>
<td>Steffens et al., 2000</td>
<td>2920</td>
<td>2980</td>
</tr>
<tr>
<td>Vakili et al., 2000</td>
<td>2640</td>
<td>2610</td>
</tr>
<tr>
<td>VonGunten et al., 2000</td>
<td>2499</td>
<td>2598</td>
</tr>
<tr>
<td>Rush et al., 2001</td>
<td>2170</td>
<td>2290</td>
</tr>
<tr>
<td>Frodl et al., 2002</td>
<td>3681</td>
<td>3847</td>
</tr>
<tr>
<td>Vythilingam et al., 2002</td>
<td>2705</td>
<td>2690</td>
</tr>
<tr>
<td>Vythilingam et al., 2002</td>
<td>3292</td>
<td>3078</td>
</tr>
<tr>
<td>MacMillan et al., 2003</td>
<td>3150</td>
<td>3170</td>
</tr>
<tr>
<td>MacQueen et al., 2003</td>
<td>2738</td>
<td>2793</td>
</tr>
<tr>
<td>MacQueen et al., 2003</td>
<td>2381</td>
<td>2392</td>
</tr>
<tr>
<td>Posener et al., 2003</td>
<td>2546</td>
<td>2948</td>
</tr>
<tr>
<td>Sheline et al., 2003</td>
<td>2171</td>
<td>2203</td>
</tr>
<tr>
<td>Caetano et al., 2004</td>
<td>3320</td>
<td>3220</td>
</tr>
<tr>
<td>Frodl et al., 2004</td>
<td>3700</td>
<td>3800</td>
</tr>
<tr>
<td>Frodl et al., 2004</td>
<td>3720</td>
<td>3770</td>
</tr>
<tr>
<td>Jansen et al., 2004</td>
<td>3100</td>
<td>2840</td>
</tr>
<tr>
<td>Lange et al., 2004</td>
<td>2790</td>
<td>2670</td>
</tr>
<tr>
<td>Lloyd et al., 2004</td>
<td>2700</td>
<td>2800</td>
</tr>
<tr>
<td>MacMaster et al., 2004</td>
<td>2530</td>
<td>2540</td>
</tr>
<tr>
<td>O’Brien et al., 2004</td>
<td>2720</td>
<td>2830</td>
</tr>
<tr>
<td>Vythilingam et al., 2004</td>
<td>3350</td>
<td>3132</td>
</tr>
<tr>
<td>Xia et al., 2004</td>
<td>3110</td>
<td>3487</td>
</tr>
<tr>
<td>Hickie et al., 2005</td>
<td>2900</td>
<td>3000</td>
</tr>
<tr>
<td>Neumeister et al., 2005</td>
<td>3325</td>
<td>3433</td>
</tr>
<tr>
<td>Taylor et al., 2005</td>
<td>2950</td>
<td>3090</td>
</tr>
<tr>
<td>Frodl et al., 2006</td>
<td>2870</td>
<td>2990</td>
</tr>
<tr>
<td>Saylam et al., 2006</td>
<td>2639</td>
<td>2696</td>
</tr>
<tr>
<td>Weniger et al., 2006</td>
<td>2700</td>
<td>2700</td>
</tr>
<tr>
<td>Frodl et al., 2007</td>
<td>3560</td>
<td>3716</td>
</tr>
<tr>
<td>Frodl et al., 2007</td>
<td>3642</td>
<td>3765</td>
</tr>
<tr>
<td>Hickie et al., 2007</td>
<td>2890</td>
<td>3040</td>
</tr>
<tr>
<td>Monkul et al., 2007</td>
<td>3440</td>
<td>3350</td>
</tr>
<tr>
<td>MacMaster et al., 2008</td>
<td>2950</td>
<td>3000</td>
</tr>
<tr>
<td>Eig. Messungen, EOD</td>
<td>2275</td>
<td>2322</td>
</tr>
<tr>
<td>Eig. Messungen, LOD</td>
<td>2382</td>
<td>2339</td>
</tr>
<tr>
<td>Durchschnitt</td>
<td>2618</td>
<td>2916</td>
</tr>
</tbody>
</table>
4.3.4 Gesamthirnvolumen

Die Gehirne der untersuchten Patienten in dieser Studie wurden mittels Segmentierung automatisiert gemessen. Es ergab sich für das Gesamthirnvolumen (graue und weiße Substanz unter Ausschluss des CSF) ein durchschnittliches Volumen von 1191,19 ml. Für das intrakranielle Volumen (graue Substanz, weiße Substanz und CSF) ergab sich ein durchschnittliches Volumen von 1618,19 ml. In einigen Studien wurde überhaupt kein Gehirnvolumen angegeben (MacQueen et al., 2003; Marsala et al., 2000; Steffens et al., 2000), andere benutzten das Gesamthirnvolumen, also die graue und die weiße Substanz ohne das CSF (Bremner et al., 2000) oder das intrakranielle Volumen. Die Gehirnvolumina wurden dabei teils manuell, teils automatisiert ermittelt. Das Gehirnvolumen, mit dem der HC relativiert wurde, variierte also sehr stark, insgesamt lag das Mittel bei diesen Studien bei Werten um 1400 ml, was dem normalen Gesamthirnvolumen, bestehend aus grauer und weißer Substanz beim Mann entspricht, Frauen haben durchschnittlich ein um etwa 100 ml geringeres Hirnvolumen. Die größten Volumina resultierten hierbei daraus, wenn das intrakranielle Volumen gemessen wurde, also alles im Inneren des Schädels (CSF, graue und weiße Substanz) eingeschlossen wurde, und die kleinsten, wenn man die graue und die weiße Substanz in die Messungen einbezog und alle CSF-haltigen Regionen und Weichteile ausschloss. In dieser Studie wurden die Hippocampusvolumina anhand des intrakraniellen Volumens relativiert, um Geschlechtsunterschiede auszugleichen. Studien belegen, dass sich hierdurch die durch individuelle Varianten bedingte Fehlerrate am ehesten reduzieren lässt (Whitwell et al., 2001).
4.4 Ergebnisse der multivariaten Analysen, Schlussfolgerungen

4.4.1 Einfluss des Geschlechts auf die morphometrischen Befunde
In den mehrfaktoriellen Kovarianzanalysen unter Einbezug des Geschlechts fanden sich bei weiblichen depressiven Patienten signifikant größere HC-Volumina. Dieser Befund deckt sich nicht mit den Ergebnissen einer Metaanalyse von 32 MRI-Studien über Patienten, die an einer Depression leiden (Hildebrandt et al., 2003). Auch in einer weiteren Metaanalyse konnte diesbezüglich kein Zusammenhang hergestellt werden (McKinnon et al., 2009). In einer Studie waren die Hippocampusvolumina bei nicht depressiven männlichen Patienten dagegen im Vergleich zu weiblichen Patienten ebenfalls erhöht und das unabhängig vom Alter, was als Hinweis auf eine bereits während der Geburt determinierte Hippocampusgröße und weniger als Alterseffekt gewertet wurde (Lupien et al., 2007).

4.4.2 Einfluss des Alters auf die morphometrischen Befunde
Das Alter bei der ersten MRI-Messung hat keinen nachweisbaren Einfluss auf das HC-Volumen, was die nicht signifikanten Beta-Koeffizienten für das Alter unter statistischer Kontrolle des Geschlechtes, des Scannertypus und des Eintrittsalters in die erste Depressionsepisode belegen. Dies kann sicherlich auch mit dem vergleichsweise niedrigen Alter der beiden zugrundeliegenden Patientengruppen zusammenhängen, denn bei geriatrischer Depression zeigten sich durchaus kleinere Hippocampusvolumina (Steffens et al., 2000), wobei hier altersbedingte Prozesse wie Gefäßsklerose eine Rolle spielen könnten (Bell-McGinty, 2002). Diese Theorie wird auch in einer der neuesten Studien unterstützt (Sheline et al., 2010).

4.5 Ergebnisse der Hypothesentests

4.5.1 Vergleich Kontrolle versus unipolar depressive Patienten
Wie erwartet (Hypothese 1) lagen die HC-Volumina bei der Kontrollgruppe auf den ersten Blick höher als bei den beiden Patientengruppen mit Eintrittsalter in die Depression unter 30 Jahren bzw. über 30 Jahren. Deskriptiv waren Mittelwertunterschiede im rechten HC-Volumen insbesondere zwischen der Kontrollgruppe der nicht depressiven Probanden (2470 mm³) und den beiden unipolar depressiven Patienten-
gruppen mit frühem Eintrittsalter (2322 mm³) bzw. spätem Eintrittsalter (2339 mm³) in die Depression vorhanden. Beim linken HC-Volumen lagen die Mittelwerte bei der Kontrollgruppe bei 2482 mm³, in der EOD-Gruppe bei 2275 mm³ und in der LOD-Gruppe bei 2382 mm³. Das Gesamtvolumen des HC betrug im Durchschnitt 4951 mm³ in der Kontrollgruppe, bei den Patientengruppen mit Krankheitsbeginn vor dem 30. Lebensjahr 4611 mm³ und bei der Patientengruppe mit Krankheitsbeginn ab dem 30. Lebensjahr 4730 mm³. Das lässt zunächst eine Bestätigung der Hypothese (1) erwarten. Unter Einbezug der Haupeffekte des Geschlechts, des zur Messung herangezogenen Scannertypus, des Vorhandenseins von psychiatrischen Nebendiagnosen und des Alters bei der ersten MRI-Messung als Kovariate lässt sich kein geringeres HC-Volumen bei unipolar depressiven Patienten mit einem Krankheitsbeginn unter 30 Jahren gegenüber den Patienten mit spätem Eintrittsalter in die Depression nachweisen. Das Gleiche gilt auch unter Einbezug der Krankheitsschwere, gemessen mit dem BDI.

In anderen Studien gelang es nicht, bei depressiven Patienten ein reduziertes HC-Volumen nachzuweisen. So in einer Studie mit 38 Patienten, die an einer erstmalig aufgetretenen depressiven Episode litten und 20 gesunden Kontrollen, dabei ließ sich im Vergleich zur Kontrollgruppe kein reduziertes HC-Volumen nachweisen (Vakili et al., 2000). In einer weiteren Studie wurden 38 MDD-Patienten und 33 ge-
sunde Kontrollen untersucht, 31 der 38 Patienten hatten multiple Episoden. Nachdem die Messergebnisse am Gesamthirnvolumen relativiert und für Alter und Geschlecht korrigiert waren, ließ sich kein signifikanter Unterschied zwischen den beiden Gruppen nachweisen (Vythilingam et al., 2004).

Die Mehrzahl bisheriger Studien kommt in der Zusammenschau jedoch zu dem Ergebnis eines reduzierten HC-Volumens bei unipolar depressiven Patienten gegenüber einer nicht depressiven Kontrollgruppe, was zahlreiche Metaanalysen belegen (Videbech und Ravnlilde, 2004; Campbell et al., 2004; McKinnon et al., 2009, Koolschijn et al., 2009). Diese Ergebnisse werden insofern durch die hier vorgelegten Befunde insbesondere aus den multivariaten Kovarianzanalysen nicht unterstützt.

4.5.2 Eintrittsalter in die Depression und HC-Volumen

In einer früheren Studie von Steffens et al. (2000), bei der allerdings ausschließlich die geriatrische Depression und deren Einfluss auf das Hippocampusvolumen bei 66 Patienten und 18 gesunden Kontrollen untersucht worden war, zeigte sich ebenfalls ein statistischer Trend zu einem kleineren Hippocampusvolumen bei frühem Krankheitsbeginn, insbesondere des rechten HC. Zudem wiesen die ausschließlich geriatrischen Patienten allerdings auch entsprechende altersbedingte Veränderungen auf, auch war die Voxelgröße mit 3 mm³ deutlich größer und die Messungen somit ungenauer. In den folgenden Jahren entstanden weitere Studien, deren Fokus auf einen Vergleich des Hippocampusvolumens von Patienten mit frühem und spätem Krankheitsbeginn gerichtet war.

2004 publizierte Janssen eine Studie mit 28 weiblichen geriatrischen Patienten (AOD 45 Jahre oder jünger) und 41 nicht depressiven Kontrollen. Hier war der rechte Hippocampus bei der früh erkrankten Patientengruppe signifikant kleiner, ohne dass gleichzeitig Läsionen der weißen Substanz nachweisbar waren, was darauf hinweist, dass ein vorbestehend kleiner Hippocampus den frühen Krankheitsbeginn bedingt haben könnte und nicht eine generalisierte Atrophie.

In einer weiteren Studie mit ausschließlich weiblichen Patienten über 60 Jahren (17 früh erkrankte Probanden, 15 spät erkrankte Probanden und 22 gesunde Kontrollen), die an einer Depression erkrankt waren, war das Gesamthirn- und das Hippocampusgesamtvolumen bei Patienten mit frühem Krankheitsbeginn ebenfalls
verminderter (Janssen et al., 2007). Allerdings wird auch hier die Aussagekraft durch die relativ kleine Anzahl an Probanden limitiert. 2010 verglichen Rao et al. 30 depressive Patienten mit 22 Probanden einer High-Risk-Gruppe für Depression und 35 nicht erkrankten Probanden. Es zeigte sich eine signifikante bilaterale Volumenminderung bei den depressiven Patienten, insbesondere bei frühem Krankheitsbeginn sowie in der Risikogruppe. Die Tatsache, dass einige früh erkrankte Patienten im höheren Alter HC-Volumenverlust und Gedächtnisschwächen aufweisen, ohne dass diese eindeutig durch vasculäre oder genetische Risikofaktoren nachvollziehbar sind, spricht für ein reduziertes Hippocampusvolumen als Risikofaktor bei der Entstehung einer Depression. Dies belegt auch eine weitere Studie mit 66 depressiven Patienten und 20 gesunden Kontrollen, in der die Volumenreduktion des Hippocampus bei der Patientengruppe älterer Menschen mit spätem Krankheitsbeginn am ausgeprägtesten war (Hickie et al., 2005). Andererseits ist eine zunehmende generalisierte Hirnatrophie im Alter ebenfalls ein Risikofaktor dafür, an einer Depression zu erkranken (Pantel et al., 1997), was möglicherweise auf eine unterschiedliche Ätiologie einer juvenilen und einer geriatrischen Depression hinweist. In den aktuellen Metaanalysen ist keine endgültige Aussage über das HC-Volumen bei frühem Krankheitsbeginn zu treffen, insbesondere da sich damit bisher nur wenige Studien mit sehr unterschiedlicher Vorgehensweise befasst haben, wobei insgesamt ein Trend zu einem kleineren HC-Volumen bei frühem Krankheitsbeginn in der Metaanalyse beobachtet wird (McKinnon et al., 2009).

4.5.3 Schweregrad der Depression und Episodenzahl

4.5.4 Einfluss des Vorhandenseins von psychiatrischen Nebendiagnosen

Das Vorhandensein bzw. die Abwesenheit von psychiatrischen Nebendiagnosen zeigten keinen signifikanten Einfluss auf das HC-Volumen. Auch McKinnon et al. (2009) konnten in ihrer Metaanalyse keinen Einfluss von Komorbiditäten auf das Hippocampusvolumen depressiver Patienten nachweisen. Erschwerend kam die starke Heterogenität und die geringe Anzahl der Studien hinzu, die diesen Faktor berücksichtigt.
4.5.5 Einordnung der vorliegenden Ergebnisse in den Forschungsstand

4.5.6 Beschränkungen der vorliegenden Studie

In den vorliegenden Analysen wurden Hinweise auf verringerte Hippocampusvolumina bei unipolar depressiven Patienten gegenüber einer nicht depressiven Kontrollgruppe vorgefunden, die jedoch unterhalb der konventionellen Signifikanzgrenze von 95 % lagen. Das kann auch an der Zusammensetzung der Studienpopulation selbst liegen, denn die historische Kontrolle war signifikant jünger als die beiden Patientengruppen und wies einen wesentlich höheren Anteil an männlichen Probanden auf (rund 58 % gegenüber 28 % bzw. 37 % bei den Studienpopulationen mit einem Eintrittsalter unter bzw. über 30 Jahren). Die nicht depressiven Kontrollen wurden zudem nur mit einem Scannertypus gemessen, die Studienpopulation der unipolar depressiven Patienten jedoch mit einem breiteren Spektrum, sodass hier nicht ohne Weiteres Vergleiche angestellt werden können. Die historische Kontrolle, deren Messwerte aus einer anderen Studie in demselben Zeitraum und der gleichen Klinik erhoben wurden, wurde jedoch explizit auf das niedrigere Alter, das Geschlecht sowie den Scannertypus kontrolliert, um die Einflüsse unterschiedlicher Stichprobenzusammensetzungen zu vermeiden.

Mögliche Effekte vorheriger Medikation auf das HC-Volumen konnten in der vorliegenden Studie nicht berücksichtigt werden. So können Behandlungen mit Antidepressiva erhöhte BDNF-Spiegel nach sich ziehen (Chen et al., 2001), die wiederum helfen könnten, vom Stress geschädigte Neurone des Hippocampus zu reparieren und somit einem Volumenverlust entgegenzuwirken. Unterschiedliche Therapieansätze bei der Behandlung einer MDE können daher auch differenzielle Einflüsse auf das HC-Volumen ergeben.

4.5.7 Ausblick

schwereren Krankheitsverlauf und eine schlechtere Prognose aufweisen, was sich bestätigte. In der 3-Jahres-Kontrolle ließ jedoch sich kein weiterer Volumenverlust nachweisen, was gegen neurotoxische Effekte der MDD spricht und somit eher die genetische Komponente hervorhebt. Aktuelle Studien verwenden verkleinerte Hippocampusvolumina mittlerweile erstmals als Prognosefaktoren zur Einschätzung des Risikos, an einer Depression zu erkranken (Chen et al., 2010), wobei eine klinische Relevanz dieser Prognosemodelle abzuwarten ist.
5. Zusammenfassung

Bei der Anwendung des nach Duvernay erstellten Messprotokolls vom HC zeigte sich im Retest und im Interrater-Vergleich eine hohe Reliabilität.

Für die relativierten HC-Volumina bei MDD-Patienten im Vergleich zur nicht depressiven Kontrollgruppe ergaben sich keine statistisch signifikanten Mittelwertunterschiede auf dem konventionellen 5 %-Niveau der Sicherheitswahrscheinlichkeit zwischen den Patientengruppen und den Kontrollen, wenn die Kovariaten mit berücksichtigt wurden.

Bei der weiteren Auswertung ergab sich ein signifikanter Einfluss bezüglich Scannertypus und Geschlecht (kleineres HC-Volumen bei Männern) für das linke, rechte und das gesamte HC-Volumen. Es war kein Zusammenhang zwischen Anzahl der Episoden und Schwere der Erkrankung nachweisbar.

Hypothese 1, die ein geringeres HC-Volumen bei MDD-Patienten unter Berücksichtigung der einbezogenen Kovariaten annahm, war nicht signifikant abzusichern. Die statistische Überprüfung der Hypothese 2, die ein geringeres HC-Volumen bei MDD-Patienten mit EOD postuliert, zeigte ebenfalls unter Kontrolle des Geschlechts, des Scannertypus, des Alters, der Anzahl der MDE-Episoden sowie der Krankheitswichtigkeit nur einen Trend in der EOD-Gruppe, bezüglich der HC-Volumina von EOD- und LOD-Patienten wird die statistische Signifikanz mit p=0,06 knapp verfehlt.
Ein Beleg der Hypothesen gelang nicht, es ließ sich sowohl bezüglich der Diagnose einer Depression als auch bei EOD lediglich ein statistischer Trend zu einem kleineren HC-Volumen im Vergleich mit der Kontrollgruppe nachweisen. Der Vergleich mit anderen Studien lässt somit zum Teil ähnliche Ergebnisse erkennen, die für eine erhöhte Vulnerabilität bei verkleinerten HC-Volumina, an einer MDE zu erkranken, sprechen.
6. Abbildungsverzeichnis

Abb. 1: Schema der Ätiopathogenese der Depression .. 18
Abb. 2: Lage des Hippocampus im Großhirn ... 26
Abb. 3: Hippocampus mit Amygdala ... 27
Abb. 4: Aufbau und Signalwege des Hippocampus ... 27
Abb. 5: Hippocampus mit Umgebungsstrukturen ... 38
Abb. 6: Hippocampus in Sagittalansicht ... 37
Abb. 7: Cauda und Caput des Hippocampus ... 37
Abb. 8: Das Corpus des Hippocampus .. 35
Abb. 9: Ausrichtung der MRI-Aufnahmen in der AC-PC-Linie 35
Abb. 10: Darstellung eines segmentierten Gehirns ... 36
Abb. 11: Diagramm der Retest-Ergebnisse bei den Hippocampusvolumina 36
Abb. 12: Diagramm der Interrater-Ergebnisse bei den Hippocampusvolumina 36
Abb. 13: Boxplot des rechten HC-Volumens der Studienpopulationen 45
Abb. 14: Boxplot des linken HC-Volumens der Studienpopulationen 48
Abb. 15: Boxplot des gesamten HC-Volumens. .. 49
7. Tabellenverzeichnis

Tab. 1: Wandel des Depressionsbegriffes von der Antike bis heute 11
Tab. 2: Prävalenzen der MDD, Dythymie und der bipolaren Störung 12
Tab. 3: ICD-10 und DSM-V, ein Vergleich der Krankheitsklassifikationssysteme 15
Tab. 4: Übersicht über die Ergebnisse der Metaanalyse von Kendler et al. (2006). 19
Tab. 5: Übersicht der Messergebnisse für HC- und intrakranielle Volumina 42
Tab. 6: Studienpopulation nach Altersgruppe .. 42
Tab. 7: Studienpopulation nach Scannertypus .. 43
Tab. 8: Studienpopulation, Verteilung nach Geschlecht 44
Tab. 9: Mittelwerte, Standardabweichung und -fehler des rechten HC-Volumens ... 45
Tab. 10: ANCOVA zum rechten HC-Volumen als abhängiger Variable 45
Tab. 11: Mittelwerte, Standardabweichung und -fehler des linken HC-Volumens 47
Tab. 12: ANCOVA zum linken HC-Volumen als abhängiger Variable 45
Tab. 13: Mittelwerte, Standardabweichung und -fehler des HC-Gesamtvolumens . 48
Tab. 14: ANCOVA zum gesamten HC-Volumen als abhängiger Variable 45
Tab. 15: HAMD, BDI und Anzahl der MDI nach Patientengruppe 51
Tab. 16: GLM mit Maximum-likelihood-Schätzung für HAMD und Anz. MDE 52
Tab. 17: GLM für BDI und Anz. MDE, Scanner, Geschlecht und Nebendiagnosen. 52
Tab. 18: Übersicht über HC-Volumina nach McKinnon et al., 2009 58
8. Literaturverzeichnis

Axelson DA, Dorisaway PM, McDonald WM, Boyko OB, Tupler LA, Patterson LJ, Nemeroff CB, Ellinwood EH Jr, Krishan KR. Hypercortisolemia and hippocampal changes in depresssion. Psychiatry Res. 1993; 47: 163-173

Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001; 15: 260-265

Chen MC, Hamilton JP, Gotlib IH. Decreased hippocampal volume in healthy girls at risk of depression. Arch Gen Psychiatry 2010; 67: 270-276

Coppen A. The biochemistry of affective disorders. The British Journal of Psychiatry 1967; 113: 1237-1264

Delay J, Deniker P, Ropert R. Study of 300 case histories of psychotic Patients treated with chlorpromazine in closed wards since 1952. Encephale 1956; 45: 528-535

Drevets WC. Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res 2000; 126: 413-431

Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry 1997; 54: 597-606

Hildebrandt MG, Steyersberg EW, Stage KB, Passchier J, Kragh-Soerenssen P. Are gender differences important for the clinical effects of antidepressants? Am J Psychiatry 2003; 160: 1643-1650

Holsboer F. Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord 2001; 62: 77-91

Kolb B, Whishaw IQ, Neuropsychologie. Heidelberg: Spektrum Akademischer Verlag, 1993

Lyons DM, Yang C, Sawyer-Glover AM, Moseley ME, Schatzberg AF. Early life stress and inherited variation in monkey hippocampal volumes. Arch Gen Psychiatry 2001; 58: 1145-1151

the hippocampus and amygdala in severe depression. Psychol Med 2000; 30: 117-125

Nelson MD, Saykin AJ, Flashman LA, Riordan HJ. Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Arch Gen Psychiatry 2000; 57: 511-512

Neumeister A, Wood S, Bonne O, Nugent AC, Luckenbaugh DA, Young T, Bain EE, Charne DS, Drevets WC. Reduced Hippocampal Volume in Unmedicated Remitted
Patients with Major Depression Versus Control Subjects. Biol Psychiatry 2005; 57: 935-937

Rossmann P. Depressionstest für Kinder. Göttingen: Belz Test, 2005

Sapolsky RM. Depression, antidepressants, and the shrinking hippocampus. Proc Natl Acad Sci U S A 2001; 98: 12320-12322

Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry. 2000; 57: 925-935

Saylam C, Ucerler H, Kitis O, Ozand E, Gönnül AS. Reduced hippocampal volume in drug-free depressed patients. Surg Radiol Anat 2006; 28: 82-87

Schneider S, Margraf J. Diagnostisches Interview bei psychischen Störungen (DIPS) Berlin: Springer, 2006

Sheline YI, Sanghavi M, Mintun MA, Gado MH. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression J Neurosci 1999; 19: 5034-5043

Smith KA, Fairburn CG, Cowen PJ. Relapse of depression after rapid depletion of tryptophan. Lancet 1997; 349: 915-919

Steffens DC, Byrum CE, McQuoid DR, Greenberg DL, Payne ME, Blitchington TF, MacFall JR, Krishan KR. Hippocampal volume in geriatric depression. Biol Psychiatry 2000; 48: 68-69

Taylor WD, Steffens DC, Payne ME, MacFall JR, Marchuk DA, Svenson IK, Krishnan KR. Influence of serotonin transporter promoter region polymorphisms on hippocampal volumes in late-life depression. Arch Gen Psychiatry 2005; 62: 537-544

Vythilingam M, Heim C, Newport J, Miller AH, Anderson E, Bronen R, Brummer M, Staib L, Vermetten E, Charney DS, Nemeroff CB, Bremner JD. Childhood trauma
associated with smaller hippocampal volume in women with major depression. Am J Psychiatry 2002; 159: 2072-2080

Wolffersdorf M, Rupprecht U. Bei 60% aller Suizide spielen Depressionen eine Rolle. MMW Fortschritte der Medizin 2009; 14: 107-110

9. Danksagung

Besonderer Dank gilt meinen Doktorvater Herrn Prof. Dr. med. Frank Jessen, der freundlicherweise die Verantwortung und Leitung dieser Forschungsarbeit und Patientenuntersuchung übernommen hatte und mir dadurch ermöglichte, die Dissertation abzuschließen.

Auch Frau Cieslak und Frau Suhre vom Studiendekanat waren eine große Hilfe und standen mir stets mit Rat und Tat zur Seite.

Den Patienten gebührt Dank für ihre freiwillige Teilnahme an dieser wissenschaftlichen Studie.

Dank schulde ich auch meinen initialen Betreuern Prof. Dr. Dr. Kai Vogeley, Dr. Ralf Tepe, Fr. Dr. Freymann sowie vielen anderen für meine direkte Betreuung und Unterstützung bei der Datengewinnung und Auswertung.