Vitamin K dependent \(\gamma \)-carboxylation in chronic kidney disease

Inaugural-Dissertation

zur

Erlangung des Grades

Doktor der Ernährungswissenschaften
(\textit{Dr. troph})

der

Landwirtschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität

Bonn
vorgelegt im Juli 2013

von Nadine Kaesler

aus
Aachen
Referent:

Prof. Dr. rer. nat. Brigitte Schmitz

Koreferenten:

Prof. Dr. rer. nat. Simone Diestel
PD. Dr. med. Vincent Brandenburg

Tag der mündlichen Prüfung: 19.11.2013
Erscheinungsjahr: 2014
Veröffentlichungen im Rahmen dieser Arbeit

I Originalarbeiten

Kaesler N, Krüger T: Vitamin K, mehr als nur Koagulation, akzeptiert bei Ernährung und Medizin 03/2013

II Kongressbeiträge und Meetings

a) Vorträge

The Vitamin K cycle and vascular calcification
 - Fellows Meeting, Abbvie Symposium on behalf of the 50th ERA.EDTA, Istanbul, Turkey, 2013

“Gas6 protein and its role in vascular calcification”
 - 45th Annual Meeting of the American Society of Nephrology, Kidney Week, San Diego, USA, 2012

“Reduced γ-carboxylase Activity in Uremia - a Possible Mechanism of Uremic Vascular Calcification”
 - Fellows Meeting, Abbott Symposium on behalf of the 49th ERA-EDTA, Paris, France, 2012
4th Conference of Fat Soluble Vitamins, Kalabaka, Greece, 2012

b) Ausgewählte Poster

“Increased level of vitamin K in ApoE\(^{-/-}\) and LDL\(^{-/-}\) mice”, 20th Congress of Nutrition, Granada, Spain, 2013

“Gas6 protein and its role in vascular calcification”
- International Society of Nephrology (ISN) Nexus, Kidney and Bone, Copenhagen, Denmark, 2012

“Reduced Activity of the gamma-Carboxylase in Uremia – Possible Mechanism of Uremic Vascular Calcification”
- 49th ERA-EDTA, Paris, France, 2012; winner of Travel Grant
- 44th Annual Meeting of the American Society of Nephrology, Kidney Week, Philadelphia, USA, 2011
Summary
Vascular calcification is present in atherosclerosis, ageing, chronic kidney diseases and diabetes and is strongly associated with an increased morbidity and mortality. Calcification of arteries occurs at the tunica intima and the tunica media. Thereby, vascular smooth muscles cells (VSMC) transdifferentiate into an osteoblastic phenotype. In contrast to the antiquated opinion that calcification of soft tissues is a passive process it is now known that actively regulated processes play a major role. Modifiable calcification inhibitors were identified of which matrix gla protein (MGP) is regarded as the most potent one being expressed in the vascular wall. MGP gets posttranslationally gamma carboxylated at 5 glutamic acid residues, which achieve calcium binding properties. This carboxylation step requires reduced vitamin K as a cofactor. It is provided and recycled in the so called vitamin K cycle, which consists of the vitamin K epoxid reductase (VKOR), DT-diaphorase and γ-glutamyl carboxylase (GGCX). The VKOR is inhibitable by warfarin and other coumarins. High levels of uncarboxylated MGP (ucMGP) were found in VSMC after treatment with vitamin K antagonists like warfarin, which is frequently used for anticoagulation. Besides MGP, other vitamin K dependent proteins are known. One is the Gas6 protein, which is also expressed by VSMC, but its role is not yet fully understood. Gas6 binds to the Axl receptor, a receptor tyrosine kinase which gets autophosphorylated after binding to its ligand. Gas6 offers one n-terminal carboxylation site. The effects of uremia on vitamin K recycling via the vitamin K cycle are unknown.

Aim of this thesis was to characterize the activities of three enzymes of the vitamin K cycle and the role of vitamin K dependet Gas6 protein under uremic conditions.

First, a fluorescence method for the quantification of GGCX activity in vitro in tissue samples was developed. This method employs a fluorescein isothiocyanate (FITC) labelled Glu containing hexapeptide which gets carboxylated by the GGCX. The generated Gla-peptide can be easily quantified using a reversed phase HPLC setup. For further proteomic analysis mass spectrometry was applied.

Second, the influences of uremia and pharmacological doses of vitamin K supplementation on the activity of the vitamin K cycle and extraosseous calcification were investigated. Uremia was induced in rats by adenine diet, in part supplemented with vitamin K$_1$ or K$_2$ for 4 or 7 weeks. After 4 weeks of adenine, the activity of the vitamin-K cycle enzyme GGCX but not DT diaphorase or VKOR was reduced. Serum levels of ucMGP increased, indicating functional vitamin K deficiency. No histological calcification was detected at this stage but aortic and renal calcium content increased. Seven weeks of adenine induced histological
calcification in the aorta, heart and kidneys. The addition of vitamin K restored the intrarenal gamma-carboxylase activity and over-stimulated it in the liver and aorta. Moreover, vitamin K treatment decreased tissue calcium content. Uremic functional vitamin K deficiency, at least results from a reduction of the gamma-carboxylase activity which possibly contributes to calcification.

Third, the influence of Gas6 protein on vascular calcification was investigated in murine in vitro VSMC culture and different in vivo models using a) Warfarin diet, b) uninephrectomy or c) electrocautery of the kidney as well d) ageing mice.

In vitro VSMC exposed to warfarin calcified and showed increased apoptosis without differences between wildtype (WT) and Gas6-/- mice. In vivo, after electrocautery, serum calcium increased similarly in WT and Gas6-/- mice but no significant difference in aortic calcium content was observed between the groups. In all groups von Kossa staining revealed only a weak positive vascular staining in WT and Gas6-/- mice. In ageing mice no significant differences in vascular calcification could be identified between Gas6-/- and WT mice. No differences were found in left ventricular (LV) mass, stroke volume or pulse wave velocity (PWV) in all treatment groups. Gas6-/- mice showed no up regulation of MGP. This does not support a role of Gas6 in the pathogenesis of vascular calcification.
Zusammenfassung

Zweitens wurde der Einfluss einer Urämie sowie die Verabreichung pharmakologischer Dosen Vitamin K auf die Enzyme des Vitamin K Zyklus und extraossäre Kalzifikation untersucht. Durch Gabe von Adenin über einen Zeitraum von 4 oder 7 Wochen wurde in Ratten eine Urämie induziert, teilweise unter Supplemtentation mit Vitamin K\textsubscript{1} oder K\textsubscript{2}. Nach

Table of contents

I List of Tables 13
II List of Figures 14
III List of Formulas 17
IV Abbreviations 18

Chapter 1: INTRODUCTION
 1.1 General Introduction 20
 1.2 Aims 25

Chapter 2: MATERIALS AND METHODS
 2.1 Chemicals 26
 2.2 Instruments 29
 2.3 Materials 30
 2.4 Software 31
 2.5 Methods for aim 1 32
 2.5.1 Peptide design 32
 2.5.2 Animals 32
 2.5.3 Preparation of microsomes 32
 2.5.4 Protein determination 33
 2.5.5 GGCX activity assay 33
 2.5.6 Purification of FLELFK-FITC 34
 2.5.7 rp-HPLC 34
 2.5.8 MS by LC/ESI-MS 34
 2.5.9 14CO$_2$ incorporation 35
 2.6 Methods for aims 2-6
 2.6.1 Rats 36
 2.6.2 Blood Pressure 37
2.6.3 Biochemistry
2.6.4 ucMGP ELISA
2.6.5 Enzyme activites
 2.6.5.1 GGCX activity assay
 2.6.5.2 VKOR activity assay
 2.6.5.3 DT-diaphorase activity assay
2.6.6 Calcium measurement
2.6.7 Histochemistry
2.6.8 Real time PCR

2.7 Methods for aim 7
 2.7.1 Mice
 2.7.2 VSMC culture
 2.7.3 Protein determination
 2.7.3 TUNEL assay
 2.7.4 Mice: surgery and diets
 2.7.5 Genotyping
 2.7.6 Biochemistry
 2.7.7 Calcium measurement
 2.7.8 Echocardiography
 2.7.9 Histochemistry
 2.7.10 Real time PCR

2.8 Statistical analysis

Chapter 3: RESULTS

3.1 Results for aim 1
 3.1.1 Peptide design
3.1.1 Detection of the uncarboxylated FLEFLK-FITC
3.1.1.2 Characterization of the carboxylated FLELFK-FITC
3.1.2 GGCX activity
3.1.3 14CO$_2$ incorporation

3.2 Results for aims 2-6
3.2.1 Blood pressure
3.2.2 Biochemistry
3.2.3 Enzyme activities
3.2.3.1 GGCX activity
3.2.3.2 VKOR activity
3.2.3.3 DT-diaphorase activity
3.2.4 Calcium determination
3.2.5 Histochemistry
3.2.6 GGCX gene expression

3.3 Results for aim 7
3.3.1 In vitro calcification model: VSMC
3.3.2 In vivo calcification models
3.3.2.1 Genotyping
3.3.2.2 Biochemistry
3.3.2.3 Calcium measurements
3.3.2.4 Echocardiography
3.3.2.5 TUNEL assay
3.3.2.6 Collagen staining
3.3.2.7 RT-PCR for MGP

Chapter 4: DISCUSSION
I List of Tables

Table 1: Composition of diets for rats and treatment duration

Table 2: Molecular weights of MS fragments

Table 3: Biochemical results of rat serum at the end of the experiment

Table 4: VKOR activity in rat kidney and liver

Table 5: Baseline biochemical and functional characteristics of healthy wildtype and Gas6$^{-/-}$ mice at different ages

Table 6: Baseline biochemical characteristics of healthy WT and Gas6$^{-/-}$ mice at different ages

Table 7: Biochemical haematology and 24h urine characteristics of WT and Gas6$^{-/-}$ after different treatments

Table 8: Functional characteristics of healthy WT and Gas6$^{-/-}$ mice at different ages

Table 9: Functional characteristics of WT and Gas6$^{-/-}$ mice after different treatments
II List of Figures

Figure 1: Chemical structure of phylloquinone
Figure 2: Chemical structure of menaquinone 4
Figure 3: Chemical structure of warfarin
Figure 4: Schematic illustration of the γ-carboxylation
Figure 5: Chemical structure of dicoumarol
Figure 6: The vitamin K cycle
Figure 7: Structure of the FITC labelled hexapeptide FLEFLK
Figure 8: Overview of the 8 different rat treatment groups.
Figure 9: Principle of the DT diaphorase activity assay
Figure 10: Pipetting scheme of the 96-well plate for DT-diaphorase activity assay
Figure 11: Experimental design of the in vivo mouse experiments.
Figure 12: Electrocoagulation of the right kidney
Figure 13: Echocardiographic M-mode picture of the long axis view
Figure 14: Short axis view of the diastole
Figure 15: Assessment of the pulse wave velocity in the common carotid artery
Figure 16: Rp-HPLC chromatogram of the purified reaction mixture at t=0
Figure 17: MS chromatogram of unmodified FLEFLK-FITC peptide solution
Figure 18: Linear correlation of the peak area and the uncarboxylated FLEFLK-FITC
Figure 19: Mass spectrum at 19.55 min of FLEFLK-FITC
Figure 20: HPLC chromatogram of the reaction mixture at t = 30 min
Figure 21: LC/MS chromatogram of the carboxylated peptide at t = 60 min
Figure 22: Mass spectrum of the carboxylated peptide at t = 60 min at 15.76 min
Figure 23: Linear correlation between time and GGCX activity
Figure 24: Linear correlation between the amount of microsomal protein and GGCX activity
Figure 25: Measurement of the activity of GGCX from rat liver and kidney without and with NEM inhibition

Figure 26: 14CO$_2$ incorporation of FLEFLK-FITC

Figure 27: Effect of acetonitrile on GGCX activity

Figure 28: Systolic blood pressure in CKD rats

Figure 29: Creatinine level in rat serum after 4 weeks of treatment

Figure 30: Phosphate level in rat serum after 4 weeks of treatment

Figure 31: GFR in rats at the end of the experiment

Figure 32: UcMGP measured in rat serum a) after 4 weeks; b) after 7 weeks of treatment.

Figure 33: GGCX activity (mean ± SD) in rat kidneys [a) after 4 weeks, b) after 7 weeks] and liver [c) after 4 weeks, d) after 7 weeks]

Figure 34: GGCX activity in rat aortas after 7 weeks (mean ± SD) of treatment

Figure 35: *In vitro* incubation with 50 mM urea prior GGCX activity assay

Figure 36: Vitamin K$_1$ peak at 8.7 min in rp-HPLC

Figure 37: Linear correlation of Vitamin K$_1$ and area under the curve in rp-HPLC setup

Figure 38: DT-diaphorase activity (mean ± SD) in kidneys [a) after 4 weeks, b) after 7 weeks] and liver [c) after 4 weeks, d) after 7 weeks]

Figure 39: Calcium content in rat aorta [a) after 4 weeks; b) after 7 weeks], heart [c) after 4 weeks; d) after 7 weeks] and kidney [e) after 4 weeks; f) after 7 weeks]

Figure 40: Quantification of *von Kossa* staining in rat aortic tissue (mean ± SD)

Figure 41: *Von Kossa* and uCMGP staining in rat aortic tissue (100 x)

Figure 42: Relative expression of GGCX in rat liver

Figure 43: a) Ca$^{2+}$ deposition in VSMC culture derived from Gas6$^{-/-}$ and WT mice after 168 hours (h) of exposure to phosphate and calcium enriched cell culture medium. b) TUNEL positive VSMC of Gas6$^{-/-}$ and WT mice after exposure to phosphate and calcium enriched cell culture medium.

Figure 44: TUNEL and DAPI staining in VSMC from WT after 0 and 5 days of calcification medium plus warfarin

Figure 45: Kaplan-Meier curve after electrocautery surgery in WT and Gas6$^{-/-}$

Figure 46: DNA gel for Gas6 gene
Figure 47: Ca$^{2+}$ content in mice aortas after warfarin diet, UniNx, EC or in healthy aging WT (C57BL/6) and Gas6$^{-/-}$ mice

Figure 48: Von Kossa staining of aorta, heart and kidney after uninephrectomy in WT compared to Gas6$^{-/-}$ mice

Figure 49: Collagen staining by sirius red in warfarin treated WT and Gas6$^{-/-}$ mice

Figure 50: MGP gene expression in WT versus Gas6$^{-/-}$ mice
III List of Formulas

Formula 1: Michaleis Menten equation
Formula 2: Glomerular Filtration Rate (GFR)
Formula 3: Difference of extinction of reduced MTT
Formula 4: Extinction of the specific DT-diaphorase activity
Formula 5: Beer Lambert Law
Formula 6: DT diaphorase activity
Formula 7: Devereux formula for LV mass
Formula 8: Ejection fraction
Formula 9: Stroke volume
Formula 10: Pulse wave velocity
IV Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adenine</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>B-mode</td>
<td>Brightness mode</td>
</tr>
<tr>
<td>C</td>
<td>Cytosine</td>
</tr>
<tr>
<td>CAPS</td>
<td>N-cyclohexyl-3-aminopropanesulfonic acid</td>
</tr>
<tr>
<td>CKD</td>
<td>Chronic Kidney Disease</td>
</tr>
<tr>
<td>DAPI</td>
<td>4’,6-Diamidino-2-Phenylindole</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonucleic Acid</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiotreitol</td>
</tr>
<tr>
<td>E</td>
<td>Extinction</td>
</tr>
<tr>
<td>EC</td>
<td>Electrocautery</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamintetraacetate</td>
</tr>
<tr>
<td>EDV</td>
<td>(left ventricular) end diastolic volume</td>
</tr>
<tr>
<td>EF</td>
<td>Ejection Fraction</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>ESD</td>
<td>(left ventricular) end systolic volume</td>
</tr>
<tr>
<td>FAD</td>
<td>Flavin Adenine Dinucleotide</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein Isothiocyanate</td>
</tr>
<tr>
<td>FLEEL</td>
<td>Phe-Leu-Glu-Glu-Leu</td>
</tr>
<tr>
<td>FLEFLK-FITC</td>
<td>Phe-Leu-Glu-Phe-Leu-Lys-Fluorescein Isothiocyanate</td>
</tr>
<tr>
<td>G</td>
<td>Guanine</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glycerinaldehyde-3-phosphat dehydrogenase</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomerular Filtration Rate</td>
</tr>
<tr>
<td>GGCX</td>
<td>Gamma Glutamyl Carboxylase</td>
</tr>
<tr>
<td>Gla</td>
<td>Gamma-carboxy glutamic acid</td>
</tr>
<tr>
<td>Glu</td>
<td>Glutamic acid</td>
</tr>
<tr>
<td>HEPES</td>
<td>2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfon acid</td>
</tr>
<tr>
<td>K<sub>1</sub>O</td>
<td>Vitamin K<sub>1</sub> epoxide</td>
</tr>
<tr>
<td>kcat</td>
<td>catalytic production of product</td>
</tr>
<tr>
<td>KM</td>
<td>Michaelis constant</td>
</tr>
<tr>
<td>LVID</td>
<td>Left Ventricular Inner Diameter</td>
</tr>
<tr>
<td>LVM</td>
<td>Left Ventricular Mass</td>
</tr>
<tr>
<td>LVPW</td>
<td>Left Ventricular Posterior Wall</td>
</tr>
<tr>
<td>LVSW</td>
<td>Left Ventricular Septal Wall</td>
</tr>
<tr>
<td>MGP</td>
<td>Matrix Gla Protein</td>
</tr>
<tr>
<td>MK4</td>
<td>Menaquinone 4</td>
</tr>
<tr>
<td>M-mode</td>
<td>Motion mode</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide Adenine Dinucleotide Phosphate</td>
</tr>
<tr>
<td>NEM</td>
<td>N-Ethylmaleimide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Ocn</td>
<td>Osteocalcin</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PIVKA</td>
<td>Prothrombin/ Protein Induced by Vitamin K Absence</td>
</tr>
<tr>
<td>PWV</td>
<td>Pulse Wave Velocity</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>rp-HPLC</td>
<td>reversed phase High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>S</td>
<td>Substrate</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SV</td>
<td>Stroke Volume</td>
</tr>
<tr>
<td>T</td>
<td>Thymine</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>TUNEL</td>
<td>Terminal deoxynucleotidyl transferase dUTP nick end labeling</td>
</tr>
<tr>
<td>uCMGP</td>
<td>uncarboxylated Matrix Gla Protein</td>
</tr>
<tr>
<td>UniNx</td>
<td>Uninephrectomy</td>
</tr>
<tr>
<td>V\textsubscript{ACC}</td>
<td>Pulse wave Velocity over the Arteria Carotis Communis</td>
</tr>
<tr>
<td>VKOR</td>
<td>Vitamin K Epoxid Reductase</td>
</tr>
<tr>
<td>V\textsubscript{max}</td>
<td>Maximum Velocity</td>
</tr>
<tr>
<td>VSMC</td>
<td>Vascular Smooth Muscle Cells</td>
</tr>
<tr>
<td>WT</td>
<td>Wildtype</td>
</tr>
</tbody>
</table>
1.1 General Introduction

Fat soluble vitamin K exists in 4 major different forms, all based on the 2-methyl 1,4-naphtoquinon (K\textsubscript{3}). The phylloquinone (K\textsubscript{1}; Figure 1), a 3 phytyl substituent, is located in membranes of chloroplasts. It is the major component of vitamin K uptake in human nutrition.

![Figure 1: Chemical structure of phylloquinone (Vitamin K\textsubscript{1})](image)

High contents of vitamin K\textsubscript{1} can be found for example in herbs (cress: 600 µg/100 g; chive: 570 µg/100 g), green leafy vegetables (corn salad: 200; chard 441 µg/100 g) or broccoli (129 µg/100 g) (1). Menaquinones (K\textsubscript{2}) contain an unsaturated isoprenoid side chain at the C3 position (MK4 - MK10, Figure 2).

![Figure 2: Chemical structure of menaquinone 4 (MK4)](image)

They are formed by bacterial fermentation, for example by bacillus subtilis in natto (2). Natto, made from fermented soy beans, is the richest known source of vitamin K\textsubscript{2}. Menadione (K\textsubscript{3}) and menadione ester (K\textsubscript{4}) are synthetic compounds and play only a role in animal nutrition. Vitamin K\textsubscript{1} is mainly found in the liver to serve as a cofactor for γ-carboxylation of the blood coagulation factors II, VII, IX, X, protein C and S (3). Vitamin K\textsubscript{2} is mainly distributed in extrahepatic tissues (4) and contributes to γ-carboxylation of vitamin K dependent proteins like MGP, Osteocalcin (Ocn) or Gas6. The function of all vitamin K dependent proteins is mediated by binding of calcium to the γ-carboxylated form (5). Increased amounts of uncarboxylated prothrombin (PIVKA), Ocn and MGP were detected in dialysis patients compared to healthy controls (6;7). This indicates a functional vitamin K deficiency in this
population. The origin of the functional vitamin K deficiency in CKD is only partially understood. Reduced vitamin K intake has been described in dialysis patients (7) but we reasoned that this cannot fully explain the marked functional vitamin K deficiency. Low levels of carboxylated MGP predict mortality in such patients (6;8). MGP knockout mice develop spontaneous calcification of arteries (9). The mechanism by which MGP inhibits vascular calcification may involve BMP-2 antagonism and a direct calcium-complexing effect (10). MGP is expressed predominantly by vascular smooth muscle cells (VSMC) in the arterial media and chondrocytes. It contains five glutamic acid residues that can be \(\gamma\)-carboxylated \((\text{Glu} \rightarrow \text{Gla})\) by the vitamin K-dependent \(\gamma\)-carboxylase (GGCX). MGP potently inhibits precipitation of hydroxyapatite crystals in uremia. Abnormalities in mineral metabolism and vascular calcification are highly present in chronic kidney diseases (CKD) (11). Increased ucMGP is associated with increased coronary artery calcification (12). Calcification can occur at the intimal (atherosclerosis) or at medial layer (arteriosclerosis) of an arterial vessel wall (13). In CKD, defined as a decreased kidney function with a glomerular filtration rate < 60 mL/min per 1.73 m\(^2\) (14), the arterial tunica media gets predominantly calcified (13). It can be visualized by computed tomography (13;15). An increased coronary artery calcification score is highly related to mortality in haemodialysis patients, independent of the traditional risk factors (16). Possible unique contributors to the development of vascular calcification in CKD are an increased calcium-phosphate product, parathyroid hormone and as well as reduced levels of inhibitors of vascular calcification like fetuin-A and insufficient activity of MGP (17).

In contrast to MGP, the role of Gas6 in vascular calcification is not well established. Vitamin-K dependent carboxylation of Gas6 is essential for its binding to the Axl receptor (18). Tyrosine phosphorylation of Axl induces cell proliferation (19). Gas6 is known to protect endothelial cells and VSMC against apoptosis (20;21), the latter is known to be associated with vascular calcifications. Another potential link between Gas6 and vascular calcification is demonstrated by in vitro data showing that phosphate-induced calcification of VSMC is associated with a downregulation of Gas6 expression (21). In addition, antiapoptotic effects and protection of calcification of VSMC by statins were mediated through Gas6 mRNA stabilization (21). So far no in vivo data are available on the role of Gas6 in vascular calcification. To clarify this, I assessed Gas6 knockout (Gas6\(^{-/-}\)) mice and Gas6\(^{-/-}\) derived VSMC in in vitro and in vivo vascular calcification models.
Existing animal models contribute to a better understanding of the pathogenesis in vascular calcification processes. Experimental uremia can be created by reducing the kidney mass (uninephrectomy, 5/6 nephrectomy, electrocautery), which mimics the progressive nephron loss occurring in patients with chronic renal failure (22;23). Noninvasively, dietary adenine causes an overload of the converting adenine phosphoribosyltransferase and leads to deposition of 2,8 dihydroxyadenosine crystals in the tubulo-interstitium of the kidney (22;23). Another approach to induce vascular calcification is oral administration of coumarins like warfarin (Figure 3) or phenprocoumon. This was shown both in rats (24) and humans (25) (26). Coumarins directly inhibit the activity of the vitamin K oxidoreductase (VKOR; EC 1.1.4.1)(27). This leads to an insufficient activation of blood coagulation factors, a desirable effect for patients with artificial heart valves or after thromboembolism. But the drawback is a lesser γ-carboxylation of extrahepatic proteins like the vessel derived calcification inhibitor MGP. Replacing coumarins with alternative thrombin inhibitors is under actual debate (28;29). In turn, a high intake of vitamin K$_2$ (MK4) was capable of regressing warfarin-induced medial calcification in Wistar rats (30).

![Figure 3: Chemical structure of warfarin](image)

The GGCX (EC code 4.1.1.90) is an intrinsic membrane protein located in the endoplasmic reticulum and requires vitamin K as a cofactor (31). It utilizes both reduced vitamin K (KH$_2$) and vitamin K with KH$_2$ being the more potent one (32) (Figure 4). The amino terminus is located on the cytoplasmic side and its carboxyl terminus on the lumen (33). The enzyme carboxylates specific protein bound glutamate residues at the gamma position resulting in an extra negative charge and thus potent calcium binding site (34).
Multiple proteins require γ-carboxylation to achieve full bioactivity (35). The pro-sequence, which is the enzyme binding site, is a homologous region of several vitamin K dependent proteins (3). Some known proteins containing this pro-sequence and thus being targets for the GGCX are prothrombin, protein S and extrahepatic osteocalcin, Gas6 and MGP (5). Besides the availability of vitamin K and KH$_2$, the GGCX activity is also dependent on the concentration of substrate and NaHCO$_3$ (36). The enzymatic reaction produces the unusual aminoacid Gla and vitamin K epoxide (K>O) as products, whereby K>O is recycled to K and KH$_2$ by the warfarin sensitive VKOR (37;38). The latter product is also generated by a warfarin insensitive antidotal enzyme (39) the DT-diaphorase (EC 1.6.99.2 also called NADPH-quinone oxidoreductase). The DT diaphorase using NAD(P)H as an electron acceptor uses vitamin K as a substrate and is independent to the dithiotreitol pathway, which antagonises the effects of warfarin (40;41). The DT-diaphorase is predominantly active in the liver and offers an alternative pathway to provide vitamin KH$_2$. Dicoumarol (Figure 5) inhibitsthe purified DT-diaphorase by binding to the oxidized form of the enzyme (42).

Figure 4: The gamma-carboxylation step: A peptide gets γ-carboxylated by the GGCX, which requires the reduced form of vitamin K (Vit KH$_2$) as a cofactor. KH$_2$ is epoxidized to vitamin K epoxide (Vit K>O).

Figure 5: Chemical structure of dicoumarol
These three enzymes form the so called vitamin K cycle (Figure 6) (43;44).

Figure 6: The vitamin K cycle (modified from Stafford, 2005 (43)). The required cofactor vitamin KH$_2$ for the γ-carboxylation by the GGCX is stepwise recycled by 2 additional enzymes: the VKOR, which is directly inhibitable by warfarin and the DT-diaphorase.

In 1975, Emson and Suttie developed a method for measuring the GGCX activity by incorporation of radioactive H14CO$_3^-$ in the synthetic peptide Phe-Leu-Glu-Glu-Leu (short: FLEEL) which is based on the sequence of prothrombin (31). Ulrich and colleagues tested 16 peptide sequences as enzyme substrates and found FLEEL to be the most active one (45). The peptides were hydrolyzed and purified by anion exchange HPLC. Quantification was achieved using a setup based upon a liquid scintillation for detection (46). Protocols describe the addition of propeptide in approaches with purified enzyme (47) or in tissues without propeptide (31;32;48). In vitro, GGCX is inhibited by N-Ethylmaleimide (NEM) (49) and 5-Mercapto-1-Methyl-Thiotetrazole (5-MMT), which is used as a part of antibiotics (moxalactam) (50).
1.2 Aims

1. Establishment of an appropriate method for safe and reproducible detection of γ-glutamyl-carboxylase activity in different tissues
2. Development of a model for uremia and vascular calcification in rats
3. Investigation of the vitamin K cycle under the conditions of uremia in rats
4. Analysis of the influence of oral vitamin K supplementation on vascular calcification
5. Investigation of the influence of oral vitamin K supplementation on vitamin K dependent enzyme activities
6. Examination of the influence of uremic toxins on the activity of the γ-glutamyl carboxylase activity
7. To clarify the role of Gas6 protein in vascular calcification processes
2 MATERIALS AND METHODS

2.1 Chemicals

Acetic Acid
Acetonitrile, HPLC grade
Agarose
Agilent RNA 6000 Nano Kit
AgNO₃
ALT lysis buffer
Ambion RNase Zap

BCA Pierce Protein Determination Kit
BSA
Calcium Phosphate
CAPS
Collagenase
Complete Mini Protease Inhibitor Cocktail
Dicoumarol
Diethylether, HPLC grade
Digitonin
DNase
DTT
EDTA
Elastase

Ethanol
Ethanol HPLC grade
Ethidiumbromide
FAD

Fermentas gene Ruler DNA ladder SM 0313
FLEFLK-FITC
Formalin
Formic acid
Gentamycin
GGCX TaqMan® gene expression assay RN00582138
Glucose-6-phosphate
Glucose-6-phosphate-dehydrogenase
H₂O₂
HEPES
Histofix
Imidazole
In situ Cell Death Detection Kit
Indoxylsulphate

Merck, Darmstadt, Germany
AppliChem, Darmstadt, Germany
Cambrex, ME, USA
Agilent, Böblingen, Germany
Merck, Darmstadt, Germany
Qiagen, Hilden, Germany
Life Technologies, Darmstadt, Germany
Fisher Scientific GmbH, Schwerte, Germany
Serva, Heidelberg, Germany
Sigma Aldrich, Munich, Germany
Sigma Aldrich, Munich, Germany
Sigma Aldrich, Munich, Germany
Roche, Diagnostics, Mannheim, Germany
AppliChem, Darmstadt, Germany
Sigma Aldrich, Munich, Germany
AppliChem, Darmstadt, Germany
Qiagen, Hilden, Germany
AppliChem, Darmstadt, Germany
AppliChem, Darmstadt, Germany
Sigma Aldrich, Munich, Germany
Apotheke, Universitätsklinikum Aachen, Germany
Sigma Aldrich, Munich, Germany
Sigma Aldrich, Munich, Germany
Sigma Aldrich, Munich, Germany
AppliChem, Darmstadt, Germany
AppliChem, Darmstadt, Germany
Fisher Scientific GmbH, Schwerte, Germany
Sigma Aldrich, Munich, Germany
Merck, Darmstadt, Germany
Sigma Aldrich, Munich, Germany
Life Technologies, CA, USA
AppliChem, Darmstadt, Germany
AppliChem, Darmstadt, Germany
AppliChem, Darmstadt, Germany
Carl Roth, Karlsruhe, Germany
Roche, Basel, Switzerland
AppliChem, Darmstadt, Germany
Isoflurane Abbott, IL, USA
Isopropanol Sigma Aldrich, Munich, Germany
KCl AppliChem, Darmstadt, Germany
Ketamin 10% CEVA Tiergesundheit, Düsseldorf, Germany
Liquid nitrogen Apotheke, Universitätsklinikum Aachen, Germany
Meandione AppliChem, Darmstadt, Germany
Meanquinone 4 Sigma Aldrich, Munich, Germany
Methanol
MnCl₂ Carl Roth, Karlsruhe, Germany
MTT Merck, Darmstadt, Germany
Na₂HCO₃ Merck, Darmstadt, Germany
NaCl AppliChem, Darmstadt, Germany
NaCl, 0.9% Delta Select, Pfullingen, Germany
NADPH AppliChem, Darmstadt, Germany
NaHCO₃ Merck, Darmstadt, Germany
NaOH Merck, Darmstadt, Germany
Paraffin Carl Roth, Karlsruhe, Germany
PBS Gibco, Gaithersburg, MD, USA
PCR beads Ready to go GE Healthcare, Munich, Germany
p-Cresol AppliChem, Darmstadt, Germany
Penicillin Sigma Aldrich, Munich, Germany
Phylloquinone Sigma Aldrich, Munich, Germany
Picric Acid Sigma Aldrich, Munich, Germany
Proteinase K Qiagen, Hilden, Germany
qPCR Core Kit for SYBR Green I RT SN10-05 Eurogentec, Cologne, Germany
qPCR Core Kit for SYBR Green I RT SN10-05 Eurogentec, Cologne, Germany
Randox Cresphthailein Assay
Reverse Transcriptase Core Kit RT-RTCK-05 Eurogentec, Cologne, Germany
Reverse Transcriptase Core Kit RT-RTCK-05 Eurogentec, Cologne, Germany
RNA later Qiagen, Hilden, Germany
RNeasy Mini Kit Qiagen, Hilden, Germany
Rotihistol
Safranin-O Sigma Aldrich, Munich, Germany
Sirius Red Sigma Aldrich, Munich, Germany
Smooth Muscle Cell (SMC) Growth Medium 2 PromoCell GmbH, Heidelberg, Germany
Sodium citrate Sigma Aldrich, Munich, Germany
Sodiumthiosulfate Sigma Aldrich, Munich, Germany
Streptomycin Sigma Aldrich, Munich, Germany
Sucrose Sigma Aldrich, Munich, Germany
Supplement Pack for SMCs PromoCell GmbH, Heidelberg, Germany
Sucrose Promocell GmbH, Heidelberg, Germany
Supplement Pack for SMCs
Tetra-butyl-ammoniumphosphate Sigma Aldrich, Munich, Germany
Tissue Tek Sakura, Alphen, Netherlands
Trifluoroacetic acid Carl Roth, Karlsruhe, Germany
<table>
<thead>
<tr>
<th>Item</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-Cl</td>
<td>BioRad, Munich, Germany</td>
</tr>
<tr>
<td>TritonX</td>
<td>AppliChem, Darmstadt, Germany</td>
</tr>
<tr>
<td>Trypsin/ EDTA</td>
<td>GIBCO, Gaithersburg, MD, USA</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Sigma Aldrich, Munich, Germany</td>
</tr>
<tr>
<td>Urea</td>
<td>BioRad, Munich, Germany</td>
</tr>
<tr>
<td>Vectashield with DAPI</td>
<td>Vector Laboratories, CA, USA</td>
</tr>
<tr>
<td>Warfarin</td>
<td>Sigma Aldrich, Munich, Germany</td>
</tr>
<tr>
<td>Xylazin 2%</td>
<td>Medistar, Ascheberg, Germany</td>
</tr>
<tr>
<td>Xylol</td>
<td>AppliChem, Darmstadt, Germany</td>
</tr>
</tbody>
</table>
2.2 Instruments

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>7500 Real-Time PCR TagMan® system</td>
<td>Life Technologies, CA, USA</td>
</tr>
<tr>
<td>Agilent 1100 Series HPLC apparatus</td>
<td>Agilent Technologies, Böblingen, Germany</td>
</tr>
<tr>
<td>Agilent auto sampler G 1313A</td>
<td>Agilent Technologies, Böblingen, Germany</td>
</tr>
<tr>
<td>Agilent binary gradient pump G 1312A</td>
<td>Agilent Technologies, Böblingen, Germany</td>
</tr>
<tr>
<td>Agilent vacuum degasser G 1379A</td>
<td>Agilent Technologies, Böblingen, Germany</td>
</tr>
<tr>
<td>Balance Sartorius 2007 MP</td>
<td>Sartorius AG, Göttingen, Germany</td>
</tr>
<tr>
<td>Centrifuge 4K15</td>
<td>Sigma Aldrich, Munich, Germany</td>
</tr>
<tr>
<td>Centrifuge 5417R</td>
<td>Eppendorf, Hauppauge, NY, USA</td>
</tr>
<tr>
<td>CODA blood pressure system</td>
<td>Kent Scientific, Torrington, Connecticut, USA</td>
</tr>
<tr>
<td>Cooling plate COP 30</td>
<td>Medite GmbH, Burgdorf, Germany</td>
</tr>
<tr>
<td>Cryotome Leica Jung CM3000</td>
<td>Leica Biosysteme, Nussloch, Germany</td>
</tr>
<tr>
<td>Erbotom ACC 450</td>
<td>Erbe, Tübingen, Germany</td>
</tr>
<tr>
<td>Freezer Jouan VXE600</td>
<td>Fisher Scientific GmbH, Schwerte, Germany</td>
</tr>
<tr>
<td>HPLC autoinjector L-7200</td>
<td>Merck Hitachi, Tokyo, Japan</td>
</tr>
<tr>
<td>HPLC column oven L-7350</td>
<td>Merck Hitachi, Tokyo, Japan</td>
</tr>
<tr>
<td>HPLC fluorescence detector L-7480</td>
<td>Merck Hitachi, Tokyo, Japan</td>
</tr>
<tr>
<td>HPLC interface D-7000</td>
<td>Merck Hitachi, Tokyo, Japan</td>
</tr>
<tr>
<td>HPLC pump L-7100</td>
<td>Merck Hitachi, Tokyo, Japan</td>
</tr>
<tr>
<td>HPLC UV detector L-7400</td>
<td>Merck Hitachi, Tokyo, Japan</td>
</tr>
<tr>
<td>Incubator Heracell</td>
<td>Fisher Scientific GmbH, Schwerte, Germany</td>
</tr>
<tr>
<td>Lyophilisator, Christ Loc 1mALPHA 1-4</td>
<td>Martin Christ, Osterode am Harz, Germany</td>
</tr>
<tr>
<td>Max RP HPLC C12 column</td>
<td>Phenomenex, Aschaffenburg, Germany</td>
</tr>
<tr>
<td>Microscope</td>
<td>Olympus Deutschland GmbH, Hamburg, Germany</td>
</tr>
<tr>
<td>Microscope Leica DM 6000 B</td>
<td>Leica Biosysteme, Nussloch, Germany</td>
</tr>
<tr>
<td>MilliQ Water system</td>
<td>Millipore GmbH, Schwalbach, Germany</td>
</tr>
<tr>
<td>MS1 Minishaker</td>
<td>IKA, Staufen, Germany</td>
</tr>
<tr>
<td>Multifuge 3L-R</td>
<td>Heraeus Instruments, Hanau, Germany</td>
</tr>
<tr>
<td>Orbital Shaker</td>
<td>Forma Scientific Inc., Marietta, OH, USA</td>
</tr>
<tr>
<td>Paraffin Section Mounting Bath</td>
<td>Barnstead International, Iowa, USA</td>
</tr>
<tr>
<td>pH-Fix 0-14</td>
<td>Carl Roth, Karlsruhe, Germany</td>
</tr>
<tr>
<td>Qiagen tissue lyser</td>
<td>Qiagen, Hilden, Germany</td>
</tr>
<tr>
<td>Rotary Microtome Slee Cut 5062</td>
<td>SLEE medical GmbH, Mainz, Germany</td>
</tr>
<tr>
<td>Sciex API 3000 LC/MS/MS system</td>
<td>Life Technologies, CA, USA</td>
</tr>
<tr>
<td>Tecan sunrise microplate absorbance reader</td>
<td>Tecan, Männedorf, Switzerland</td>
</tr>
<tr>
<td>Therma Sonic Gel warmer</td>
<td>Parker Laboratories, Fairfield, NJ, USA</td>
</tr>
<tr>
<td>Thermocycler PTC-100</td>
<td>MJ Research Inc., Quebec, Canada</td>
</tr>
<tr>
<td>Tissue embedding station Leica 1160</td>
<td>Leica Biosysteme, Nussloch, Germany</td>
</tr>
<tr>
<td>Tissue processor Slee mtm</td>
<td>SLEE medical GmbH, Mainz, Germany</td>
</tr>
<tr>
<td>Ultracentrifuge Optima L-100 XP</td>
<td>Beckman Coulter GmbH, Krefeld, Germany</td>
</tr>
<tr>
<td>Vacuum hybrid pump RL 6</td>
<td>Vacubrand, Wertheim, Germany</td>
</tr>
<tr>
<td>Vevo 770</td>
<td>Visualsonics, Ontario, Canada</td>
</tr>
<tr>
<td>Vitros 250</td>
<td>Ortho Clinical Diagnostics, NY, USA</td>
</tr>
</tbody>
</table>
2.3 Materials

- **Blood sample tube with serum gel, 1.1 ml**
 - Sarstedt AG und Co, Nümbrecht, Germany
- **Cell culture flask, T25, T75**
 - Becton Dickinson, Heidelberg, Germany
- **Cell scraper**
 - Becton Dickinson, Heidelberg, Germany
- **Centrifugation tube**
 - Beckman Coulter GmbH, Krefeld, Germany
- **Costar Stripette, 5 ml, 10 ml, 25 ml**
 - Fisher Scientific GmbH, Schwerte, Germany
- **Cover glass**
 - Engelbrecht GmbH, Edermünde, Germany
- **Depilatory cream**
 - Veet, Reckitt Benckiser, Hull, UK
- **Dewar**
 - KGW Isotherm, Karlsruhe, Germany
- **Disposable Scalpels, No 15, No 23**
 - Feather, Osaka, Japan
- **Electrocoagulation Ball Tip**
 - Carl Roth, Karlsruhe, Germany
- **Embedding cassettes**
 - Eppendorf AG, Hamburg, Germany
- **Eppendorf pipettes**
 - Harvard Apparatus, Holliston, MA, USA
- **F-Air canister**
 - Millipore GmbH, Schwalbach, Germany
- **Filter, 0.2 µM**
 - Macherey Nagel, Düren, Germany
- **Flange cap N11**
 - Fine Science Tools GmbH, Heidelberg, Germany
- **Forceps**
 - Sarstedt AG und Co, Nömbrecht, Germany
- **Glass pipettes**
 - Phenomenex, Aschaffenburg, Germany
- **HPLC C-12 Synergy 4 µm Max-RP 80A column**
 - Phenomenex, Aschaffenburg, Germany
- **HPLC C-12, 4 x 3 mm, guard column**
 - Macherey Nagel, Düren, Germany
- **Micro Inserts, 200 µl**
 - Becton Dickinson, Heidelberg, Germany
- **Microlance 21G**
 - Fisher Scientific GmbH, Schwerte, Germany
- **Microscope slide Superfrost plus**
 - Feather, Osaka, Japan
- **Microtiterplate, 12-well, 96-well**
 - IBS Integra Biosciences GmbH, Fernwald, Germany
- **Microtome Blade, N35, C35**
 - Carl Roth, Karlsruhe, Germany
- **Pipetboy**
 - Kent Scientific, Torrington, Connecticut, USA
- **Pipette tips**
 - Sarstedt AG und Co, Nümbrecht, Germany
- **Rat Restrainer**
 - Sarstedt AG und Co, Nümbrecht, Germany
- **Round bottom flask**
 - Fine Science Tools GmbH, Heidelberg, Germany
- **Safety Multifly Canuele**
 - Waters GmbH, Eschborn, Germany
- **Scissors**
 - Johnson & Johnsons, St Stevens-Woluwe, Belgium
- **SepPak C18 cartridge**
 - Qiagen, Hilden, Germany
- **Silk, 3-0 Mersilene, Ethicon**
 - Becton Dickinson, Heidelberg, Germany
- **Stainless steel beads 5 mm**
 - Terumo, Eschborn, Germany
- **Syringes, plastic, 1 ml;**
 - Sakura, Alphen, Netherlands
- **Syringes, plastic, 10 ml; 20 ml**
 - Eppendorf AG, Hamburg, Germany
- **Tissue Tek Cryomold**
 - Greiner Bio-One GmbH, Frickenhausen, Germany
- **Tubes 1.5; 2 ml**
 - Macherey Nagel, Düren, Germany
- **Tubes 15mL, 50 ml**
- **Tubes, N11, 1.5 ml, glass**
Chapter 2.3

Ultrasound Gel
A + M Handelsvertretung, Versmold, Germany
2.4 Software

<table>
<thead>
<tr>
<th>Software</th>
<th>Company</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChemSketch 12.01</td>
<td>ACD labs, Ontario, Canada</td>
<td></td>
</tr>
<tr>
<td>Coda</td>
<td>Kent Scientific, Torrington, Connecticut, USA</td>
<td></td>
</tr>
<tr>
<td>Diskus</td>
<td>C.H. Hilgers, Königswinter, Germany</td>
<td></td>
</tr>
<tr>
<td>Graph Pad Prism 5.01</td>
<td>GraphPad Software, Inc., CA, USA</td>
<td></td>
</tr>
<tr>
<td>Image J 1.43u</td>
<td>National Institute of health, MD, USA</td>
<td></td>
</tr>
<tr>
<td>Merck-Hitachi D-7000 HSM</td>
<td>Merck Hitachi, Tokyo, Japan</td>
<td></td>
</tr>
<tr>
<td>Origin Pro 8</td>
<td>OriginLab Corporation, MA, USA</td>
<td></td>
</tr>
<tr>
<td>Vevo</td>
<td>Visualsonics, Ontario, Canada</td>
<td></td>
</tr>
</tbody>
</table>
2.5 Methods for Aim 1

2.5.1 Peptide design

The synthetic fluorescence labelled hexapeptide FLEFLK-FITC (purity > 90%) was synthesized by Biomatik Corporation, Ontario Canada. The peptide was designed in order to contain only one carboxylation site instead of two, with good purification and solubility properties. The lysine residue is required to link the fluorescence marker (FITC) to the side chain of the peptide (Figure 7).

![Chemical structure of the FITC labelled hexapeptide FLEFLK. The brackets indicate the site of γ-carboxylation.](image)

Figure 7: Chemical structure of the FITC labelled hexapeptide FLEFLK. The brackets indicate the site of γ-carboxylation.

2.5.2 Animals

Animals received food and water ad libitum. They were housed in a 12h day and night cycle (Institut für Versuchstierkunde, Aachen, Germany).

All animals were treated in accordance with the requirements of the Federation of the European Laboratory Animals Science Associations approved by the Landesamt für Natur, Umwelt und Verbraucherschutz NRW, Germany (Permit No 84-02.04.2011.A144). For preparation of microsomes healthy, male WISTAR rats (purchased from Charles River, Sulzfeld, Germany) weighing 462 +/- 30 g were used. Animals were sacrificed under isoflurane anaesthesia by heart puncture and exsanguination. Before harvesting, organs were perfused in vivo with 20 ml ice-cold PBS.

2.5.3 Preparation of microsomes

After removal the liver, kidneys and aortas were immediately snap frozen in liquid nitrogen and stored at -80°C. To isolate the enzyme rich microsomes 300-400 mg of liver or kidney
was used. Aortas were pooled (3 ± 1 aortas) up tp 150 mg in total. All tissue samples were cut into small pieces and homogenized in a Qiagen tissue lyser in 3 x volume of 300 mM sucrose buffer (10 mM HEPES, 0.1 mM EDTA and protease inhibitor cocktail) for 2 x 2 min at 24 Hz with two 5 mm steel beads. Afterwards the homogenate was centrifuged at 1,600 × g, for 10 min at 4°C. The pellet was discarded and the supernatant was collected and centrifuged for 20 min at 10,000 × g. The post-mitochondrial fraction was ultracentrifuged at 100,000 × g for 1 h at 4°C. The pelleted microsomal fractions were dissolved in 0.3 ml sucrose buffer in a protein concentration of 5-15 mg/ml, aliquoted and flash frozen for storage at -80°C. Microsomes from aortas were diluted in 100 µl sucrose buffer.

2.5.4 Protein determination
Protein content of microsomes from rat liver, kidney or aorta was determined by the BCA Pierce kit accordong to the manufacturer’s protocol. Each 25 µl sample was measured in duplicates. BSA standard concentrations were 2, 1.5, 1, 0.75, 0.5, 0.25, 0.125 and 0.025 mg/ml. The samples were incubated for 30 min at 37°C. The absorption was measured at 562 nm on a Tecan sunrise microplate absorbance reader.

2.5.5 GGCX activity assay from microsomes
The assay was performed in sealed tubes at 20°C. A total reaction volume of 0.125 ml contained 250 µg microsomal protein, 0.5% (w/v) CAPS, 5 mM DTT, 2.5 mM NaHCO₃, 10 mM MnCl₂, 100 µg/ml vitamin K₁H₂, at pH 7.0. The pipetting scheme was 1) 64 µl of 250 µg microsomal protein, 2) 12.5 µl of 50 mg/ml CAPS, 3) 2 µl of 625 mM DTT, 4) 12.5 µl of 25 mM NaHCO₃, 5) 12.5 µl of 100 mM MnCl₂ and 6) 12.5 µl of 1 mg/ml vitamin K₁H₂. All substrates were added in aqueous solution, except vitamin K₁H₂, which was diluted 1 mg/ml in ethanol. The reaction was started by adding 2 mM FLEFLK-FITC, always protected from light. After 30 min the reaction was stopped by adding 2 x volume of ice-cold methanol. All samples were kept on ice until injection. For enzyme kinetics the reaction was stopped at 0, 15, 60 and 120 min. The microsomal protein contents were 50, 125, 250, 500 and 750 µg. Used concentrations of the substate FLEFLK-FITC were, 0.5, 1, 2, 4 and 5 mM. To inhibit enzyme activity, 10 mM NEM was added to the reaction mixture prior to adding the substrate FLEFLK-FITC (2 mM). Vitamin K₁ was reduced to KH₂ by incubation in a mixture of 20 mM DTT, 50 mM NaCl and 2 mM Tris at 37°C for 24 h in the dark. (47). The resulting K₁H₂ was extracted with 100% ether, diluted up to 1 mg/ml in ethanol and stored at -80°C in argon atmosphere. All chemicals used here were HPLC grade.
2.5.6 Purification of FLELFK-FITC after in vitro carboxylation
Purification of the carboxylated peptide was achieved by the method of Mc Tigue (46). The reaction mixture of the GGCX assay was centrifuged at 10,000 × g for 15 min. For mass spectrometry (MS) measurements, the supernatant was dissolved in 10 ml SI-buffer (250 mM sucrose, 25 mM imidazole, 5 mM tetra-butyl-ammoniumphosphate), loaded onto a Waters SepPak C18 cartridge and washed with additional 10 ml of SI-buffer. The peptide was eluted in 4 ml methanol, which was evaporated by drying at 50°C in argon flow. For final HPLC measurements, samples were centrifuged at 10,000 × g for 15 min at 4°C. The supernatant was collected and the remaining residue was washed twice with a water-acetonitrile solution (4:1) and pooled with the supernatant to a total volume of 1 ml.

2.5.7 Reversed phase HPLC
The D-7000 Merck-Hitachi HPLC consisted of a pump (L-7100), an autoinjector (L-7200), a column oven (L-7350), a fluorescence detector (L-7480) and an interface (D-7000). 50 µl of each sample was injected. A linear gradient from 100% of 0.1% (v/v) TFA in H₂O up to 100% 0.1% TFA (v/v) in acetonitrile was set at a continuous flow of 0.5 ml/min. For separation, a Phenomenex C-12 Synergy 4 µm Max-RP 80A column including a C-12, 4 x 3 mm, Phenomenex guard column was used. Fluorescence detection was optimized for FITC at 494 nm excitation and 521 nm emission The pressure limit was set at 350 bar. Each run was recorded for 30 minutes on the Merck-Hitachi D-7000 HSM software. The peptide was quantified by using internal and external standards.

2.5.8. Mass spectrometric confirmation by LC/ESI-MS
Liquid chromatography was carried out on an Agilent 1100 Series HPLC apparatus consisting of an auto sampler G 1313A, a binary gradient pump G 1312A and an Agilent vacuum degasser G 1379A. The gradient of the mobile phase, column and injection volume were equal to the rp-HPLC setup. The mass spectrometric detection was performed on an Applied Biosystems Sciex API 3000 LC/MS/MS system in ESI-positive mode. An electrospray needle voltage of + 4,500 V in the positive ion mode and nitrogen as nebulizer were used The turbo heater gas (450°C) was set to a pressure of 65 psi and the curtain gas was set to 58 psi. Mass spectra were acquired in full scan mode between m/z 350-1,250. Resolution of the mass spectrometer was set to “unit”. Peptide molecular weights were calculated using chemSketch.
2.5.9 14CO$_2$ incorporation

The 14CO$_2$ incorporation of FLEEL is the standard assay to determine GGCX activity by a liquid scintillation counter. The 14CO$_2$ incorporation by FLEFLK-FITC was measured by Vasantha P. Mutucumarana at the University of North Carolina at Chapel Hill, North Carolina, USA, as described previously (51). The radioactive assay was performed for 1 h 20 min. The kcat/KM of the 14CO$_2$ incorporation into FLEFLK-FITC was calculated by conversion of the Michaelis Menten equation (Formular 1a-f).

Formular 1a

$v = \frac{V_{\text{max}} [S]}{(K_M + [S])}$

Formular 1b

$V_{\text{max}} = k_{\text{cat}} [E]$

Formular 1c

$v = \frac{k_{\text{cat}} [E] [S]}{(K_M + [S])}$

at low [S], that is when $K_M \gg [S]$,

Formular 1d

$v = \frac{k_{\text{cat}} [E] [S]}{K_M}$

Formular 1e

$v / [S] = \text{slope} = \frac{k_{\text{cat}} [E]}{K_M}$

Formular 1f

slope / [E] = k_{\text{cat}} / K_M
2.6. Methods for Aims 2-6

2.6.1 Rats and diets

Male Wistar rats (Charles River, Sulzfeld, Germany) weighing 365 ± 18 g were fed a standard diet containing 5 µg/g Vitamin K₁ and water *ad libitum*. They were fed the diets shown in Figure 3 (all diets were from Altromin, Lage, Germany; Table 1). Diets a) - d) were applied for 4 weeks as a model for kidney failure with no overt vascular calcification, diets e) - h) as a model of severe calcification for 7 weeks. 7 weeks of adenine diet included a 2-week interphase on an adenine-free diet in week 5 and 6 for recovery of the animals. Vitamin K₂ diet contained 100 mg/kg MK4 (diets c, d, f) or 500 mg/kg (diet g). Vitamin K₁ was added to 100 mg/kg (diet h) (Figure 8, Table 1). Organ harvesting was performed as described under 2.5.2.

![Figure 8: Overview of the 8 different rat treatment groups. Seven weeks of treatment contained a 2-week interphase without adenine supplementation.](image-url)
Table 1: Composition of diets and treatment duration

<table>
<thead>
<tr>
<th>Group</th>
<th>Protein [g/kg]</th>
<th>Energy [kcal/kg]</th>
<th>Fat</th>
<th>Fibre</th>
<th>K1 [mg/kg]</th>
<th>K2 [mg/kg]</th>
<th>Adenine</th>
<th>Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>173.46</td>
<td>3720</td>
<td>50.3</td>
<td>0.06</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>b)</td>
<td>173.46</td>
<td>3720</td>
<td>50.3</td>
<td>0.06</td>
<td>5</td>
<td>-</td>
<td>7.5</td>
<td>4</td>
</tr>
<tr>
<td>c)</td>
<td>173.46</td>
<td>3720</td>
<td>50.3</td>
<td>0.06</td>
<td>5</td>
<td>100</td>
<td>7.5</td>
<td>4</td>
</tr>
<tr>
<td>d)</td>
<td>173.46</td>
<td>3720</td>
<td>50.3</td>
<td>0.06</td>
<td>5</td>
<td>100</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>e)</td>
<td>25</td>
<td>3671</td>
<td>50.6</td>
<td>1.8</td>
<td>5</td>
<td>-</td>
<td>7.5</td>
<td>7</td>
</tr>
<tr>
<td>f)</td>
<td>25</td>
<td>3671</td>
<td>50.6</td>
<td>1.8</td>
<td>5</td>
<td>100</td>
<td>7.5</td>
<td>7</td>
</tr>
<tr>
<td>g)</td>
<td>25</td>
<td>3671</td>
<td>50.6</td>
<td>1.8</td>
<td>5</td>
<td>500</td>
<td>7.5</td>
<td>7</td>
</tr>
<tr>
<td>h)</td>
<td>25</td>
<td>3671</td>
<td>50.6</td>
<td>1.8</td>
<td>100</td>
<td>-</td>
<td>7.5</td>
<td>7</td>
</tr>
</tbody>
</table>

2.6.2 Blood pressure

Blood pressure was measured in rats non-invasively by determining the tail blood volume with a volume recording sensor and an occlusion tail cuff on a Kent Scientific CODA system at weeks 0, 2, 4 and 7. Rats were placed into a restrainer and the warming plate was set on 37°C. The Coda software was programmed on 5 cycles for acclimatisation and 10 cycles to obtain values. The systolic blood pressure is measured directly whereas the diastolic blood pressure is calculated by the software. Rats were trained before assessing values.

2.6.3 Biochemistry

Blood from rats was collected at after 0 and 4 weeks by tail vein puncture. Therefore, rats were placed into a restrainer and the tail was warmed with 38°C tap water. One of the 3 tail veins was punctured with a safety multifly canule. At the end point (4 or 7 weeks), blood was collected by puncture of the left ventricle. Serum was obtained by spinning the blood sample tube at 2,000 x g for 10 min at 4°C. To collect the urine, animals were placed into metabolic cages for 24 h prior sacrifice (Institut für Versuchstierkunde, Aachen, Germany). Serum and urine parameters were measured by Vitros 250, Ortho Clinical Diagnostics, NY, USA clinical routine laboratory diagnostics (Institut für Versuchstierkunde, Aachen, Germany). Glomerular filtration rate (GFR) was calculated as follows:
Formula 2: \[GFR[ml/min] = \frac{c_{creaurine} \cdot V_{urine}}{t \cdot c_{creaserum}} \]

- \(c_{creaurine} \): concentration of creatinine in urine [\(\mu\text{mol/l} \)]
- \(V_{urine} \): Volume of urine [\text{ml}]
- \(t \): time [\text{min}]
- \(c_{creaserum} \): concentration of creatinine in serum [\(\mu\text{mol/l} \)]

2.6.4 MGP ELISA

MGP diagnostics were performed at VitaK BV, Maastricht, NL. Total uncarboxylated MGP was measured in serum by competitive ELISA by a monoclonal antibody (MGP sequence 35-49; VitaK BV, Maastricht, the Netherlands), as described previously (52).

2.6.5 Enzyme activities

Enzyme activities were tested using microsomes which were obtained as described under 2.5.3. Each microsomal fraction was split to be tested in three enzyme activity assays, GGCX, VKOR and DT-diaphorase. Microsomes from aorta were only tested for GGCX activity due to the low amount of microsomal protein.

2.6.5.1 GGCX activity assay

GGCX assay was performed as described under 2.5.5. The amount of microsomal protein was 250 \(\mu\text{g} \) and the reaction time was 30 min. For a selective influence on the \(\gamma \)-carboxylase activity, microsomes from healthy rats were first incubated with the uremic toxins urea (50 mM, 500 mM), indoxylsulfate (250 \(\mu\text{M} \), 500 \(\mu\text{M} \)) or p-cresol (100 \(\mu\text{M} \)) at room temperature for 30 min. Quantification of carboxylated FLEFLK-FITC was performed by rp-HPLC setup referring to 2.5.6.

2.6.5.2 VKOR activity assay

The VKOR activity was measured by conversion of vitamin \(K_1 \) 2, 3 epoxide (\(K_1<\text{O} \)) to vitamin \(K_1 \) (37). The reaction mixture, with a total volume of 200 \(\mu\text{l} \) contained 500 \(\mu\text{g} \) microsomal protein in sucrose buffer and 8 \(\mu\text{l} \) 5 mM \(K_1<\text{O} \). The reaction was started by the addition of 5 \(\mu\text{l} \) 200 mM DTT and stopped after 60 min incubation at 30\(^\circ \text{C} \) in the dark by 500 \(\mu\text{l} \) 0.05 M AgNO\(_3\) in isopropanol. The samples were centrifuged at 5,000 x g for 5 min.
supernatant was taken for HPLC measurements. The HPLC system consisted of a pump (L-7100), an autoinjector (L-7200), a column oven (L-7350), a UV-detector (L-7400) and an interface (D-7000) connected in line. Vitamin K_1 was separated in reversed phase HPLC on a Max RP C12 column. Isocratic methanol at pH 5 (acidified with acetic acid) was used as a mobile phase with a continuous flow rate of 1 ml/min. The pressure limit was set at 350 bar. Vitamin K_1 and vitamin $K_1>O$ were detected at 246 nm. Each run was recorded for 12 min. Vitamin K was quantified by external standards. For epoxidation, vitamin K_1 was diluted in hexane and mixed with 0.5 M NaOH, 0.2 M Na_2CO_3 and 5% H_2O_2 for 12 h at 37°C in the dark. Vitamin $K_1>O$ quality was monitored by HPLC measurements.

2.6.5.3 DT-diaphorase activity assay

DT-diaphorase activity was analyzed in rat kidney and liver by the standard assay (53) with NADPH as electron donor and menadione as electron acceptor (Figure 9).

Figure 9: Principle of the DT-diaphorase activity assay (from Prochaska 1987) (53).

NADPH is generated by the conversion from glucose-6-phosphate to 6-phosphogluconate by glucose-6-phosphate dehydrogenase and is required as a cofactor for the DT-diaphorase (Quinone-reductase). Thereby, menadione is reduced to menadiol by the DT-diaphorase. MTT is reduced nonenzymatically by menadiol and forms a blue colour which is detected at 610 nm (53).
A total volume of 150 ml reaction mixture contained 7.5 ml 0.5 M Tris-Cl (pH 7.4), 100 mg BSA, 1 ml 1.5% Tween-20, 0.1 ml 7.5 mM FAD, 1 ml 150 mM glucose-6-phosphate, 90 µl 50 mM NADPH, 300 U yeast glucose-6-phosphate-dehydrogenase and 45 mg MTT. The assay was carried out in the presence and absence of 3 mM dicoumarol and 50 µM menadione with 250 µg microsomal protein (Figure 10).

Figure 10: Pipetting scheme of the 96-well plate for DT-diaphorase activity assay.

b = nonenzymatic blank; S1-S24: sample number; RM = reaction mixture with menadione (timepoint t 5min); D: reaction mixture with menadione and dicoumarol (to determine the unspecific activity not inhibitable by dicoumarol); R: reaction mixture without menadione (representing timepoint t0)

The reaction was stopped after 5 min at 20°C by 3 mM dicoumarol and 5 mM KCl. The DT-diaphorase activity was calculated as the specific activity inhibited by dicoumarol. Reduced MTT as the formazan dye was detected at 610 nm on a Tecan sunrise microplate absorbance reader. To calculate the difference of reduced MTT extinction (δE) the arithmetic mean of the blank (B) is subtracted from each value first (i: sample number 1-24) and afterwards timepoint t0 from the extinction at timepoint 5 min (according to formula 3).

Formula 3:

$$\delta E = (S_{i_{5\text{min}}} - B) - (S_{i_{0}} - B)$$
Chapter 2.6

The extinction of the unspecific activity (SiD), also corrected for the mean of the blank, can be subtracted from the activity at timepoint \(t_5 \) to calculate the extinction of the specific DT diaphorase activity \((\delta E_{\text{spec}})\) (according to formula 4).

Formula 4: \[\delta E_{\text{spec}} = \delta E - (\text{SiD} - B) \]

The concentration of the formazan dye reduced MTT \((\delta c)\) can be calculated from the Beer Lambert law (formula 5).

Formula 5: \[\frac{\delta c [M]}{\epsilon \cdot d} = \frac{\delta E_{\text{spec}}}{\epsilon \cdot d} \]

\(\epsilon = \) extinction coefficient of MTT at 610 nm = 11.3 mM/cm
\(d = \) thickness of the sample = 0.7 cm

The final result is depicted as specific activity per minute per g protein (formula 6).

Formula 6: \[\text{DT-diaphorase activity} \ [\text{mol/min/g}] = (\frac{\delta c}{5}) \cdot 4 \]

2.6.6 Calcium determination

The extent of vascular and tissue calcium content was measured colorimetrically. Frozen samples weighing between 30-70 mg (aorta) or 100-250 mg (kidney, lung, heart) were lyophilised on a Christ Loc 1mALPHA 1-4 coupled with a vacuum hybrid pump RL 6 over night. Dried samples were weighed and incubated in 500 µl 10% formic acid over night to elute the calcium. For quantification of calcium deposition of VSMC, cells were washed twice with calcium-free PBS and incubated over night in 10% formic acid. 25 µl of each sample was measured twice in the Randox cresolphthalein assay. The working solution consisted of equal parts solution 1 (2-amino-2methyl-1-propan-1-ol 3.5mol/l, pH 10.7) and solution 2 (containing the chromogen O-chresolphthalein 0.16 mmol/l). Calcium standards were 10, 5, 2.5, 0.625 and 0 mg/dl. Absorption was measured at 550 nm on a Tecan sunrise microplate absorbance reader. Results were depicted in mg calcium per g dry tissue.
2.6.7 Histochemistry

Kidney, lung, and thoracic aorta were fixed in 4% paraformaldehyde (Roti®-Histofix) for at least 24 h at room temperature. Dehydration of the samples was performed on an automated tissue processor (Slee tissue processor, Interdisziplinäres Zentrum für klinische Forschung IZKF, Aachen, Germany). Afterwards the samples were embedded in paraffin blocks. 4 µm thick sections were cut on a rotary microtome (Slee, Mainz, Germany). Microscope slides were incubated for 12 h at 37°C before staining. The base of the heart was embedded in tissue tek for cryosectioning. 10 µm thick sections were cut on a cryotome.

Deparaffinization of the slices was performed by washing 3 x 5 min Xylol, 3 x 2 min 96% ethanol, 2 x 2 min 75% ethanol, 10 seconds in water.

Localisation of the calcification was visualized by von Kossa staining (54). Therefore, deparaffined sections were immersed in 1% aqueous AgNO₃ solution for 5 min. After washing, samples were incubated in a solution of 5% NaCO₃ and 9.25% formalin for 1 min. After a second rinse, sections were developed using 5% sodiumthiosulphate for 5 min and counterstained in 0.1% safranin-O followed by a final rinse using tap water. Dehydration was performed by washing in 70% ethanol for 1 min, 95% ethanol for 1 min, 3 x 5 min in xylol.

Stained slices were covered with Roti®-Histol and a cover glass. Quantification of von Kossa positive areas was performed with the help of imageJ software. Results are depicted in % positive area of total area.

UcMGP was visualized in aortic tissues by incubation with the anti-GluMGP antibody (55), performed at the VitaK BV, Maastricht, NL.

2.6.8 Real time PCR

RNA was harvested from RNAlater® (Qiagen, Hilden, Germany) stabilized liver, abdominal aorta and heart using the Qiagen RNeasy mini kit. Purity and RNA concentration were analyzed with the Agilent RNA 6000 Nano Kit. 200 ng RNA was used for reverse transcriptase performed on a thermocycler in four steps: 1) 10 min at 25°C, 2) 3 min at 48°C, 3) 5 min 95°C and 4) cool down.

The qPCR Core Kit for SYBR Green I was applied for a two-step quantification on an Real-Time PCR TagMan® system. The GGCX TaqMan® gene expression assay was performed from cDNA received from rat liver. GAPDH was used as a housekeeping gene. The following rat GAPDH primers were used:

sense: ACAAGATGGTGAGGTCGGT,
antisense: AGAAGGCAGCCTGGTAACC,
probe: CGGATTGGCCGATCGGACGC 3.
Chapter 2.7

2.7. Methods for Aim 7

2.7.1 Mice
Two breeding pairs of Gas6\(^{-/-}\) mice were kindly provided by Peter Carmeliet (University of Leuven, Belgium). Gas6\(^{-/-}\) were backcrossed for more than 10 generations on a C57BL/ background, which served as a wildtype (WT) control.

2.7.2 VSMC culture
VSMC were isolated from the thoracic aorta of healthy adult C57BL/6 and Gas6\(^{-/-}\) mice. Therefore, mice were killed with an overdose of isoflurane. The abdomen and the thorax were opened with sterile instruments. Organs were perfused with 10 ml cold PBS via puncture of the left ventricle. The iliac artery was incised to enable an outflow of blood and PBS. Liver, intestine, lung, kidney and spleen were removed to dissect the aorta. The thoracic aorta was cleaned from fat and surrounding tissue. After harvesting, aortas were washed twice with PBS and then incubated with 2 g/l collagenase and 1% elastase containing cell culture medium for 1 h at 37°C. Aortas were cut into small pieces, washed twice with PBS and seed into T25 cell culture flasks. The smooth muscle cell basal medium was supplemented with fetal calf serum (0.05 ml/ml), epidermal growth factor (0.5 ng/ml), basic fibroblast growth factor (2 ng/ml), insulin (5 µg/ml) and finally 1% penicillin streptomycin and 0.1% gentamycin. Cell culture medium was changed twice each week. Cells were grown to 85% confluence until passaging. Passages from 3-5 were used for calcification experiments in 12 well plates. Calcification medium contained 3 mM calcium phosphate or 10 nM warfarin plus 3 mM calcium phosphate. To induce calcification cells were cultured for 5 to 7 days. A negative control \(d_0\) was included in each experiment to normalize the obtained values; calcium deposits were depicted as changes in %.

2.7.3 Protein determination
The adherent cells were diluted in 200 µl lysis buffer (0.8% Digitonin, 2 mM EDTA, pH 7.8) using a cell scraper. Protein content in VSMC was determined as described under 2.5.4.

2.7.4 TUNEL-assay
Apoptosis measurements were performed with the Roche \textit{in situ} cell death detection kit. All samples were fixed in methanol for 10 min at room temperature. VSMC were permeabilised by an aqueous solution of 0.1% sodium citrate and 0.1% Triton X for 2 min on ice. Cells were counterstained with DAPI (Vectashield®, containing 1.5 µg/ml DAPI). For positive control
cells were preincubated with DNase for 10 min at room temperature. For a negative control the terminal transferase was omitted.

Stained slices were photographed on a Leica microscope at a 100 x magnification. Semiquantitative analysis of positive stained area was measured with ImageJ software.

2.7.5 Mice: Surgery and diets
Mice were divided into six groups: two healthy groups at the age of a) 8-10 weeks and b) 34-36 weeks and four treatment groups: c) warfarin d) Uninephrectomy (UNiNx) and e) electrocautery (EC). For the surgical groups (UNiNx and EC) the rodent chow (AB diets, Woerden, The Netherlands) was supplemented to 0.95% calcium and 1.65% phosphate. The warfarin chow contained 3 g/kg. The warfarin diet or surgery was started at the age of 8-10 weeks and the diets were continued for 8 weeks. UNiNx was performed at the age of 8 weeks. All surgery was performed under Ketamin/ Rompun (0.2 ml 10% Ketamin, 0.25 ml 2% Xylazin, 0.25% NaCl) anaesthesia. Anaesthesia was injected intraperitoneally at a dosage of 2 µl/g body weight 10 min earlier. The depth of anaesthesia was checked by a gentle skin pinch. The surgery was started after desinfection with an incision on the left flank. The kidney was exposed and after ligation of the ureter, renal artery and vein with non resorbable silk-removed. After one week of recovery, high phosphate diet was initiated (Figure 11). For more severe kidney damage, electrocautery of the right kidney at the age of 8 weeks plus uninephrectomy of the left kidney 2 weeks later was performed. For electrocautery, punctual lesions were set on the renal cortex with a 2 mm diameter electrocoagulation ball tip over all areas of the kidney. The 1 mm deep punctuate lesions were spaced 2 mm apart (56) (Figure 12). After 2 weeks, the contralateral kidney was removed and after one additional week the high phosphate diet was started (Figure 11). In all experiments female animals were used, except in ageing mice where both gender were analyzed. Tissue was harvested as described under 2.6.
2.7.6 Genotyping

DNA was isolated from snap frozen WT and Gas6−/− mice liver tissues from each treatment group at different timepoints throughout the breeding time of the experiment. The liver was homogenized in a ball mill in ALT lysis buffer at 20 Hz for 2 minutes. Protein was digested by incubation for 45 min at 56°C with proteinase K. Further DNA isolation was performed with the Qiagen QIAmp DNA Mini Kit. Ready to go PCR beads were used for cDNA synthesis. DNA was amplified on a thermocycler (step 1) 94°C 2 min, step 2) 94°C 30 sec,
step 3) 58°C 30 sec, step 4) 72°C 30 sec, step 5) go to step 2 for 34 times, step 6) 72°C 10 min, step 7) hold). Primer sequences made by Invitrogen (Invitrogen, CA, USA) were:

Mgas6 1S: 5' GAG-TGC-CGT-GAT-TCT-GGT-C 3';
Mgas6 2A: 5' CCA-CTA-AGG-AAA-CAA-TAA-CTG 3'.

The PCR product was separated on a 1% agarose gel (2 g agarose, 200 mL TAE buffer) at 130 V in TAE buffer (50 x TAE: 18.61 g/l (0.05 M) EDTA Na2 2 H2O; 60.05 g/l (1 M) acetic acid and 242.28 g/l (2 M) TRIS) for 45 min. Bands were visualized with ethidium bromide and identified with the 1 kb DNA ladder Fermentas GeneRuler™.

2.7.7 Biochemistry
Blood from mice was collected by puncture of the left ventricle during sacrifice and collected in a serum tube. Serum and urine diagnostics were performed as described under 2.6.3.

2.7.8 Calcium determination
VSMC were washed twice with calcium free PBS and each well was incubated 10% formic acid over night. Quantification of VSMC and tissue calcium content (aorta, heart, kidney) was performed as described under 2.6.6.

2.7.9 Echocardiography
Transthoracic echocardiography was performed on the Visulasonics high resolution micro-imaging system Vevo 770 using the RMV 704 scanhead. Therefore, mice were anaesthetised with isoflurane and placed on a warming plate at 37°C. The thorax was fully depilated. Breathing and heart frequency were monitored, continuously. A long axis view loop was recorded in the brightness mode (B-mode). Left ventricular (LV) mass was calculated in the motion mode (M-mode) in the long axis view (Figure 13) from the Devereux formula:

Formula 7: \[LVM [mg] = 1.04\times[(LVID+LVPW+LVSW)^3-LVID^3] \]
Figure 13: M-mode of the long axis view. The left ventricular inner diameter is measured in the systole (LVIDs) and the diastole (LVIDd), as well as the thickness of the septal wall (SW) and the left ventricular posterior wall in the diastole (LVPWd).

The short axis view is obtained by a 90 degree rotation of the scanhead (RMV 704) in the B-mode. Ejection fraction (EF) as an index for global left ventricular systolic function was measured by the Simpson’s method. Therefore, the heart was divided into 4 equal sections along the longitudinal axis (Simpson 1-4) and for each a short axis view loop was taken. The endocardial area was measured in each picture of the short axis view in the systole and in the diastole to obtain the end diastolic (EDV) and end systolic volumes (ESV) (Figure 14).

Formula 8:

\[
EF[\%] = \frac{SV}{EDV} \times 100
\]
Chapter 2.7

Figure 14: Short axis view of the diastole to measure the endocardial area (here Simpson 3) of the left ventricle.

Stroke volume (SV) was estimated as the difference between the LV end-systolic and end-diastolic volumes as follows:

Formula 9: \[SV[\mu L] = EDV - ESV \]

Pulse-wave velocity (PWV) in the right common carotid artery was measured using the transit-time method in a two-dimensional mode. In the carotid artery, the proximal pulse wave signal was obtained 1 mm behind the origin of the subclavian artery, the distal signal 1 mm before the carotid bifurcation (Figure 15). The transit time was found by subtracting the distal arrival time between the R-wave peak and the foot of velocity upstroke from the similarly determined proximal arrival time:

Formula 10: \[PWV[mm/\text{ms}] = \frac{\Delta d}{(Pt_{dist} - Pt_{prox})} \]

Pt is the time point of the proximal or distal pulse wave signal and \(\Delta d \) is the distance between the two measurements.
2.7.8 Histochemistry

Von Kossa staining was performed as described under 2.6.7. Sirius red staining for collagen was performed in cryo sections from heart tissues from warfarin treated mice. Samples were incubated in 5 w/v % Sirius red for one hour in picric acid at room temperature. Afterwards the samples were washed twice in acidified ethanol (70 v/v %; pH 3.5).

2.7.9 Real time PCR

Real time PCR was performed as described under 2.6.8. Quantification of MGP gene expression was performed from cDNA from Gas6−/− and WT mice aortas with external standards for MGP ($8.8 \times 10^6 - 8.8 \times 10$) and GAPDH ($6.4 \times 10^6 - 6.4 \times 10$).
MGP probe was AGAGTCCAGGAACGCAACAAGCCTGC,
sense primer GCAGAGGTGGCGAGCTAAAG and
antisense primer AGCGCTCACACAGCTTGTAGTC (57).
Corresponding murine GAPDH probe was AAGGCCGAGAATGGGAAGCTTGTCATC,
sense primer AAGTGGTGATGGGCTTCCC and
antisense primer GGCAAATTCAACGGCACAGT.

2.8 Statistical analysis
The difference between the treatment groups was assessed by one-way ANOVA followed by
Tukey’s multiple comparison test. Equal variances were tested with Bartlett’s method.
D’Agostino and Pearson normality test was performed to check for Gaussian distribution.
Statistical significance was defined as p < 0.05. Linear correlations were calculated in Origin
Pro8 software.
3. RESULTS

3.1 Results for aim 1

3.1.1 Peptide Design
The properties of the designed hexapeptide FLEFLK-FITC was tested on rp-HPLC coupled with UV-detection and in LC/MS/MS measurements before and after in vitro carboxylation.

3.1.1.1 Detection of the uncarboxylated FLEFLK-FITC
The lipophilic FLEFLK-FITC was detected after 19.44 min rp-HPLC (Figure 16) and 19.55 min in MS measurements (Figure 17).

![Figure 16: Rp-HPLC chromatogram of the purified reaction mixture at t=0. FLEFLK-FITC peak was detected after a retention time of 19.44 min.](image-url)
Figure 17: MS chromatogram of unmodified FLEFLK-FITC peptide solution with a distinct peak at 19.55 min (box).
There were no differences between the HPLC and MS patterns of the pure, diluted Glu-peptide and the purified reaction mixture at \(t = 0 \). The detection limit of uncarboxylated FLEFLK-FTIC in HPLC measurements was <10 ng/ml. There was a linear correlation of FLELFK-FITC between 10 ng -5 µg \((R^2 = 0.99)\) (Figure 18).

![Figure 18: Linear correlation of the peak area and the amount of uncarboxylated FLEFLK-FITC. Used concentrations were 10 ng, 25 ng, 50 ng, 100 ng, 250 ng, 500 ng, 1 µg, 2.5 µg and 5 µg.](image)

The MS pattern was in accordance with the manufacturer’s analysis with distinct peaks at 390, 594, 926 and 1,186 m/z (Figure 19), the last matching the stated peak of highest mass corresponding to the molecular mass of the intact FITC-labelled peptide (Table 2).
Figure 19: MS spectrum of FLELFK-FITC at 19.55 min
The 390 m/z fragment is expected to be FITC and the 594 m/z fragment could not be further identified. The purity of the peptide in reversed phase-HPLC analysis was 91%. The remaining 9% mainly include peptide fragments, salt and water, as supplied by the manufacturer.

3.1.1.2 Characterization of the carboxylated FLEFLK-FITC

After running the carboxylase assay on the FLEFLK-FITC probe peptide, the lipophilic, hydrophobic FLGlaFLK-FITC product peptide showed a shorter retention time in reversed phase HPLC and was detected at 15.66 min in HPLC (Figure 20) and at 15.76 in MS measurements (Figure 21). Here, the in vitro reaction time was increased from 30 to 60 minutes in order to increase the amount of carboxylated peptide. In MS distinct peaks appear at 394, 438, 523, 577, 582 and 1,229 m/z (Figure 22, Table 2). The carboxylated peptide was stable over 24 h at 4°C in the dark.

Figure 20: HPLC chromatogram of the reaction mixture at t = 30 min. A distinct peak appears at 15.66 min representing the carboxylated FLEFLK-FITC peptide as identified by LC/ESI-MS; a smaller peak at 19.24 min represents the uncarboxylated peptide (referring to figure 16).
Figure 21: LC/MS chromatogram of the carboxylated FLELFK-FITC at *in vitro* reaction time $t = 60$, a distinct peak appears at 15.76 min (box).
Figure 22: Mass spectrum of the carboxylated peptide at run time 15.76 min (referring to box figure 21). Asterisks indicate peaks representing carboxylated peptides (referring to table 2).
Table 2: Molecular weights of MS fragments

<table>
<thead>
<tr>
<th>Fragments</th>
<th>calculated MW [g/mol]</th>
<th>measured MW [g/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>intact peptides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe-Leu-Gla-Phe-Leu-Lys-FITC</td>
<td>1229.4</td>
<td>1229.8***</td>
</tr>
<tr>
<td>Phe-Leu-Glu-Phe-Leu-Lys-FITC</td>
<td>1185.3</td>
<td>1186.1</td>
</tr>
<tr>
<td>MS fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu-Phe-Leu-Lys-FITC</td>
<td>924.0</td>
<td>925.8</td>
</tr>
<tr>
<td>Phe-Leu-Glu-Phe-Leu-Lys</td>
<td>795.0</td>
<td>796.8</td>
</tr>
<tr>
<td>Phe-Leu-Glu-Phe-Leu</td>
<td>650.8</td>
<td>649.8</td>
</tr>
<tr>
<td>Gla-Phe-Leu-Lys</td>
<td>577.6</td>
<td>576.7*</td>
</tr>
<tr>
<td>Phe-Leu-Glu-Phe</td>
<td>537.6</td>
<td>536.3</td>
</tr>
<tr>
<td>Phe-Leu-Gla-Phe</td>
<td>581.6</td>
<td>581.5**</td>
</tr>
<tr>
<td>Gla-Phe-Leu</td>
<td>433.5</td>
<td>437.8</td>
</tr>
<tr>
<td>Phe-Leu-Lys</td>
<td>391.5</td>
<td>393.8</td>
</tr>
<tr>
<td>FITC</td>
<td>390.4</td>
<td>390.3</td>
</tr>
</tbody>
</table>

List of unmodified FLEFLK-FITC and carboxylated FLEFLK-FITC with possible cleaved peptides generated by MS electrospray ionisation resembling positively charged fragments. Asterisks indicate carboxylated peptides corresponding to figure 22.

3.1.2 GGCX activity method

The GGCX activity was determined in microsomal preparations (9-21 mg/ml total protein) from kidney and liver tissues of healthy male rats fed a standard diet. The enzyme reaction was linear between 15 and 120 min ($R^2 = 0.98$) (Figure 23).
Figure 23: Linear correlation between *in vitro* reaction time and formed FLGluFLK-FITC ($R^2 = 0.98$).

A variation in the microsomal protein content resulted in a linear slope ($R^2 = 0.99$) between 50 and 750 µg microsomal protein (Figure 24).

Figure 24: Linear correlation between the amount of microsomal protein and GGCX activity.

A variation in substrate however did not follow Michaelis Menten kinetics (data not shown).
The GGCX activity in liver microsomes was 481 ± 245 nmol/min/g protein and in kidney microsomes 412 ± 42 nmol/min/g protein. Treatment with NEM reduced the activity to 17.6 ± 10.7 in liver samples and 62.0 ± 49.0 nmol/min/g microsomal protein in kidneys (Figure 25).

Figure 25: GGCX activity in rat liver and kidney without and with specific NEM inhibition (n = 7 and n = 3, respectively).

3.1.3 \(^{14}\text{CO}_2\) incorporation

FLELFK-FITC showed incorporation of \(^{14}\text{CO}_2\) during \textit{in vitro} \(\gamma\)-carboxylation with a linear increase with increasing peptide concentrations from 0.3 - 2.2 µM (Figure 26).
Figure 26: $^{14}\text{CO}_2$ incorporation of FLEFLK-FITC in the GGCX assay

Based on the slope of the curve, the calculated k_{cat}/K_m value for FLEFLK-FITC was 3.5 fold higher than reported for FLEEL (5068 vs. 1413 $\text{h}^{-1}\text{mM}^{-1}$) (58). Using the radioactive assay, increasing amounts of acetonitrile inhibit the GGCX activity (Figure 27).

Figure 27: Effect of acetonitrile on GGCX activity.
3.2 Results for aims 2-6

3.2.1 Blood pressure

Systolic blood pressure levels measured in rats at the beginning and the end of each treatment period were unchanged in all groups (Figure 28). No changes were observed in diastolic blood pressure (for group e, CKD from 74 ± 5 mmHg at week 0 to 85 ± 10 mmHg at week 7).

![Figure 28: Time course of systolic blood pressure levels in CKD rats compared to healthy controls (group a); increase in CKD group (group e) is not significant.](image)

3.2.2 Biochemistry

After 4 weeks of adenine treatment (group b), we observed a 6-fold increase in serum creatinine (Figure 29 and Table 3) and a 7-fold increase in serum urea (Table 3). Adenine diet combined with low protein diet led to slightly higher creatinine (Figure 29) and phosphate (Figure 30) levels in serum after 4 weeks, compared to adenine diet with normal protein.
Figure 29: Creatinine levels in rat serum after 4 weeks of treatment. Increase was significant in all adenine fed groups.
*: significant to group a) healthy control; #: significant to group b) adenine treatment.

Figure 30: Phosphate in rat serum after 4 weeks of treatment. The low protein diet lead to higher levels even after 4 weeks of diet compared to normal protein diet.
*: significant to group a) healthy control; #: significant to group b) adenine; +: significant to group e) adenine with low protein.
Chapter 3.2

After 7 weeks of treatment, serum phosphate levels in the vitamin K₂ high dose group (500 mg/kg + adenine) were significantly lower than in CKD (after 7 weeks of adenine based on low protein, Table 3). Serum calcium was unchanged in all groups at every time point (Table 3).

Table 3: Final biochemical results in rat serum

<table>
<thead>
<tr>
<th>Serum Group</th>
<th>Urea [mmol/L]</th>
<th>Creatinine [µmol/L]</th>
<th>Calcium [mmol/L]</th>
<th>Phosphate [mmol/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>6.23 (± 1.67)*</td>
<td>32.40 (± 3.08)*</td>
<td>2.46 (± 0.11)</td>
<td>2.08 (± 0.18)*</td>
</tr>
<tr>
<td>b)</td>
<td>29.16 (± 7.16)*</td>
<td>173.60 (± 63.23)*</td>
<td>2.45 (± 0.16)</td>
<td>4.16 (± 0.94)*</td>
</tr>
<tr>
<td>c)</td>
<td>32.03 (± 7.36)*</td>
<td>133.17 (± 29.09)*</td>
<td>2.51 (± 0.21)</td>
<td>3.23 (± 0.78)*</td>
</tr>
<tr>
<td>d)</td>
<td>4.09 (± 0.98)*</td>
<td>29.00 (± 3.20)*</td>
<td>2.57 (± 0.07)</td>
<td>2.42 (± 0.24)*</td>
</tr>
<tr>
<td>e)</td>
<td>36.37 (± 17.63)*</td>
<td>388.44 (± 115.43)*</td>
<td>2.53 (± 0.30)</td>
<td>6.57 (± 1.79)*</td>
</tr>
<tr>
<td>f)</td>
<td>31.30 (± 9.60)*</td>
<td>356.83 (± 92.50)*</td>
<td>2.62 (± 0.18)</td>
<td>6.06 (± 1.15)*</td>
</tr>
<tr>
<td>g)</td>
<td>34.42 (± 28.26)*</td>
<td>317.71 (± 93.48)*</td>
<td>2.66 (± 0.40)</td>
<td>5.22 (± 2.02)*</td>
</tr>
<tr>
<td>h)</td>
<td>42.81 (± 30.80)*</td>
<td>429.71 (± 120.01)*</td>
<td>2.94 (± 0.57)</td>
<td>6.75 (± 1.75)*</td>
</tr>
</tbody>
</table>

*: significant to group a) healthy control; # significant to group b) CKD 4 weeks

Renal creatinine excretion and GFR (Figure 31) were reduced in all adenine fed groups (Table 4).

Table 4: Final biochemical results in rat 24 h urine

<table>
<thead>
<tr>
<th>Urine Group</th>
<th>Creatinine [µmol/L]</th>
<th>Protein [mg/dL]</th>
<th>Phosphate [mmol/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>9964 (± 8889.5)#*</td>
<td>26.71 (± 4.39)</td>
<td>58.79 (± 69.45)</td>
</tr>
<tr>
<td>b)</td>
<td>1792.3 (±232.7)*</td>
<td>38.5 (±6.22)</td>
<td>15.44 (± 6.03)</td>
</tr>
<tr>
<td>c)</td>
<td>1327.2 (±319.9)*</td>
<td>38.33 (±8.91)</td>
<td>14.33 (± 5.34)</td>
</tr>
<tr>
<td>d)</td>
<td>10433.6 (±6612.1)#*</td>
<td>25 (±2.74)</td>
<td>59.83 (± 38.23)</td>
</tr>
<tr>
<td>e)</td>
<td>2367.3 (±488.4)*</td>
<td>40.28 (± 13.77)</td>
<td>21.82 (± 2.96)</td>
</tr>
<tr>
<td>f)</td>
<td>1817.4 (±368.5)*</td>
<td>45.33 (±33)</td>
<td>17.92 (± 4.47)</td>
</tr>
<tr>
<td>g)</td>
<td>2099.3 (±1001.5)*</td>
<td>29.66 (±8.09)</td>
<td>18.78 (± 12.46)</td>
</tr>
<tr>
<td>h)</td>
<td>2222.7 (±585.9)*</td>
<td>37.3 (±11.1)</td>
<td>17.19 (± 3.94)</td>
</tr>
</tbody>
</table>

*: significant to group a) healthy control; # significant to group b) CKD 4 weeks; * significant to group e) CKD 7 weeks
Figure 31: Glomerular Filtration rate (GFR) is reduced in adenine fed rats I) after 4 weeks; II) after 7 weeks of treatment; *: significant to group a) healthy control; #: significant to group b) 4 weeks of adenine.

Significantly higher levels of ucMGP were measured in the 4-week CKD group b (Figure 32 I). After 7 weeks, no significant differences in ucMGP levels were detected (Figure 32 II).

Figure 32: UcMGP measured in rat serum a) after 4 weeks; b) after 7 weeks of treatment. The only significant increase is seen after 4 weeks of adenine diet.
3.2.3 Enzyme activities

3.2.3.1 GGCX activity

Compared to group a) (healthy non-CKD controls) GGCX was significantly less active in the uremic groups (b and c) in kidney (Figure 33I) and liver tissue after 4 weeks of adenine treatment (Figure 33III). After 7 weeks of adenine treatment, the activity was even further reduced in kidney tissues (Figure 33II). A high dosage of vitamin K$_2$ or vitamin K$_1$ increased GGCX activity in kidney tissue after 7 weeks back to baseline values and was even higher in liver tissue (Figures 33II, 33IV). Reduced GGCX activity was also found in aortic tissue after 7 weeks (Figure 34) and exceeded values from healthy and untreated animals (160.7 ± 54.71 nmol/g/min) by high intake of either vitamin K$_1$ or K$_2$. No difference due to vitamin K treatment was detected in aortic tissue after 4 weeks of adenine diet.

Figure 33: GGCX activity (mean ± SD) in kidneys [I after 4 weeks, II after 7 weeks] and liver [III after 4 weeks, IV after 7 weeks of adenine diet].
Urea is supposed to modify molecular enzyme activities by carbamylation of lysine residues. *In vitro* co-incubation of 50 mM urea with microsomes from healthy animals did not lead to a reduction of GGCX activity (Figure 35).

![Figure 34: GGCX activity in aortas after 7 weeks (mean ± SD) of adenine diet.](image)

<table>
<thead>
<tr>
<th>Adenine</th>
<th>Protein [%]</th>
<th>K1 [mg/kg]</th>
<th>K2 [mg/kg]</th>
<th>Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>2.5</td>
<td>5</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>+</td>
<td>2.5</td>
<td>5</td>
<td>100</td>
<td>7</td>
</tr>
<tr>
<td>+</td>
<td>2.5</td>
<td>5</td>
<td>500</td>
<td>7</td>
</tr>
<tr>
<td>+</td>
<td>2.5</td>
<td>100</td>
<td>-</td>
<td>7</td>
</tr>
</tbody>
</table>

![Figure 35: In vitro incubation with 50 mM urea prior GGCX activity assay, microsomes were isolated from healthy aorta, kidney and liver. No influence was seen by supplementation of urea to the carboxylation mixture.](image)
Also no changes in enzyme activity were found after \textit{in vitro} incubation with p-cresol or indoxylsulfate (data not shown).

3.2.3.2 VKOR activity

To determine VKOR activity, the measurement of vitamin K in rp-HPLC was established, first. Vitamin K$_1$ was eluted in the rp-HPLC setup at 8.7 min (Figure 36) with a detection limit $<$ 0.5 ng/ml. Between 0.5 - 50 ng/ml the correlation between the area under the curve and the injected vitamin K$_1$ concentration was linear with $R^2 = 0.99$ (Figure 37).

![Figure 36: Vitamin K$_1$ peak at 8.7 min in rp-HPLC setup; Amount of Vitamin K$_1$: 50 ng/mL, Injection volume 50 µl.](image-url)
Figure 37: Linear correlation of Vitamin K₁ and area under the curve in rp-HPLC setup; used concentrations were: 0.5, 1, 2.5, 5, 10, 20, 30 50 ng/ml.

K₁>O was eluted at 6.3 min with a detection limit < 10 ng/ml. Vitamin K₁>O was stable for at least 6 months at -20°C (99% purity) measured by rp-HPLC. VKOR activity did not differ significantly between the groups and ranged between 0.6 and 2.6 µmol/g/min in kidney tissue and from 0.5 and 7.1 µmol/g/min in liver tissue (Table 5).

Table 5: VKOR activity in rat kidney and liver (mean ± SD)

<table>
<thead>
<tr>
<th>group</th>
<th>VKOR [µmol/g/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kidney</td>
</tr>
<tr>
<td>a)</td>
<td>1.43 (± 0.82)</td>
</tr>
<tr>
<td>b)</td>
<td>1.52 (± 0.40)</td>
</tr>
<tr>
<td>c)</td>
<td>1.28 (± 0.78)</td>
</tr>
<tr>
<td>d)</td>
<td>2.10 (± 0.72)</td>
</tr>
<tr>
<td>e)</td>
<td>0.57 (± 0.11)</td>
</tr>
<tr>
<td>f)</td>
<td>2.55 (± 0.99)</td>
</tr>
<tr>
<td>g)</td>
<td>1.66 (± 0.84)</td>
</tr>
<tr>
<td>h)</td>
<td>2.09 (± 0.74)</td>
</tr>
</tbody>
</table>

3.2.3.3 DT–diaphorase activity

DT-diaphorase activity was significantly higher in kidneys and liver in the 4-week CKD model (group b) (3.6 fold and 2.7 fold, respectively, Figure 38I and 38III). After 7 weeks of
additional vitamin K\textsubscript{1} or K\textsubscript{2} treatment in the severe calcification groups (groups g, h), DT-diaphorase activity was reduced to baseline values in the liver (Figure 38IV).

![Figure 38: DT-diaphorase activity (mean ± SD) in kidneys [I after 4 weeks, II after 7 weeks of adenine diet] and liver [III after 4 weeks, IV after 7 weeks of adenine diet].](image)

3.2.4 Calcium measurements

After 4 weeks of treatment, the aortic calcium content was significantly increased only in the adenine groups b) compared to healthy controls (groups a, d) (Figure 39I). After 7 weeks of adenine treatment, the aortic calcium content was significantly higher than in healthy controls (groups a and d) and after 4 weeks of adenine (group b) (Figure 39II). Aortic calcium deposition was reduced in the adenine plus high vitamin K groups (g, h) compared to CKD controls (group e) (Figure 39II). The cardiac calcium content increased after 7 weeks of
adenine treatment (group e CKD) and high dose vitamin K treatment significantly reduced
cardiac calcium content (groups g, h) as compared to CKD (Figure 39IV). Kidney calcium
content was significantly elevated after 4 weeks of adenine treatment without vitamin K
substitution (group b CKD) as well as after 7 weeks with low dose vitamin K treatment
(group f; 100 mg/kg, Figure 39V and 39VI). Kidney calcium content was significantly
reduced by high dose vitamin K$_2$ (group g) supplementation or K$_1$ (group f) (Figure 39VI). In
pulmonary tissue, no significant changes in the calcium content were detected.
3.2.5 Histochemistry

Quantification of calcified areas by von Kossa staining confirmed the results obtained by chemical calcium assessment, but none of the differences reached statistical significance. Overt vascular calcification was present after 7 weeks of adenine, and in von Kossa-stained
aortic specimens, the calcified area increased on average 7.7-fold compared to the status at 4 weeks (Figures 40).

Figure 40: Quantification of von Kossa staining in rat aortic tissue (mean ± SD) after adenine diet.

Vascular media calcification co-localized with positive staining for ucMGP (Figure 41). Healthy animals did not show aortic calcification or positive staining for ucMGP by histology.
Figure 41: *Von Kossa* and ucMGP staining in rat aortic tissue (100 x): early calcification after 4 weeks of adenine (group b) and overt calcification after 7 weeks of adenine diet (group e). UcMGP positive staining (red colour) occurs at calcification sites (group e).
3.2.6

The GGCX gene expression assessed by RT-PCR in liver tissue was similar in all groups after 4 weeks of adenine diet (Figure 42).

Figure 42: Relative expression of GGCX in rat liver. No changes were seen after 4 weeks of treatment.
3.3 Results for aim 7

In order to assess the role of Gas6 protein in vascular calcification processes, \textit{in vitro} and \textit{in vivo} models were used.

3.3.1 VSMC

\textit{In vitro}, VSMC of WT and Gas−/− mice were challenged by supplementation of calcium and phosphate or warfarin on top. Using calcification medium the deposition of calcium in VSMC increased over time and after 120 h calcium content was 4-fold increased in WT and only 1.4 times in Gas6−/− (Figure 43a); however this difference was not significant. After 168 h of incubation the calcium load of VSMC increased further with no significant difference between VSMC from Gas−/− and from WT mice. (Figure 43a).

Warfarin treatment led to a significant increase of calcium deposition in WT cells after 120 h (WT \textsubscript{t\textsubscript{0}} 1.40\% ± 0.77\%; WT \textsubscript{t\textsubscript{120}}: 5.52\% ± 5.17\%). Again, there was no significant difference in calcium load between Gas6−/− and WT-derived VSMC (data not shown).

The rate of VSMC apoptosis in calcification medium ± warfarin supplementation increased over the time course; however the rate of apoptosis was not increased in Gas6−/− compared to WT VSMC (Figures 43b and 44).
Figure 43: a) Ca2+ deposition in VSMC derived from Gas6−/− and WT mice after 168 hours (h) of exposure to phosphate and calcium enriched cell culture medium. b) TUNEL positive VSMC of Gas6−/− and WT mice after exposure to phosphate and calcium enriched cell culture medium.
Figure 44: TUNEL and DAPI staining in VSMC from WT mice after 0 and 5 days of calcification medium plus warfarin
3.3.2 *In vivo* calcification models

In vivo animals of Gas6\(^{-/-}\) were compared to WT mice. All mice survived warfarin treatment without weight loss. In both strains 16% died after UniNx surgery. Somehow in the EC group all WT mice survived the surgical protocol. But only 40% of Gas6\(^{-/-}\) mice survived to the end of the experiment (Figure 45).

![Kaplan-Meier curve after electrocautery surgery in WT and Gas6\(^{-/-}\) mice.](image)

3.3.2.1 Genotyping

Only DNA isolated from snap frozen WT and not Gas6\(^{-/-}\) mice showed a distinct band at 500 bp (Figure 46).

![DNA gel for Gas6 gene; line 1: page ruler DNA ladder with a bright reference band at 1000 bp; lines 2-8 DNA isolated from Gas6\(^{-/-}\); lines 9-15 DNA from WT mice.](image)
3.3.2.2 Biochemistry

In healthy, untreated mice at the age of 8 weeks, alkaline phosphatase serum levels were lower in Gas6\(^{-/-}\) than in WT mice (Table 6). Serum protein levels were higher in older mice and significantly lower in old Gas6\(^{-/-}\) compared to old WT mice (Table 6).

Table 6: Baseline biochemical characteristics of healthy WT and Gas6\(^{-/-}\) mice at different ages (Mean ± SD).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>8-12 weeks old, healthy</th>
<th>34-36 weeks old, healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C57BL/6</td>
<td>Gas6(^{-/-})</td>
</tr>
<tr>
<td>Body weight [g]</td>
<td>20.2 ± 0.7</td>
<td>18.6 ± 1.6</td>
</tr>
<tr>
<td>haematology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urea [mmol/l]</td>
<td>13.26 ± 0.25</td>
<td>11.55 ± 1.92</td>
</tr>
<tr>
<td>Creatinine [µmol/l]</td>
<td>20.67 ± 0.58</td>
<td>24.50 ± 8.60</td>
</tr>
<tr>
<td>Calcium [mmol/l]</td>
<td>2.56 ± 0.09</td>
<td>2.23 ± 0.08</td>
</tr>
<tr>
<td>Phosphate [mmol/l]</td>
<td>2.46 ± 0.11</td>
<td>3.05 ± 0.82</td>
</tr>
<tr>
<td>Protein [g/dl]</td>
<td>5.00 ± 0.00</td>
<td>4.90 ± 0.15</td>
</tr>
<tr>
<td>Alkal. phosphatase [U/l]</td>
<td>332.67 ± 8.62</td>
<td>255.63 ± 34.55 *</td>
</tr>
</tbody>
</table>

* p < 0.05; to corresponding WT group

Serum protein levels increased significantly in both mouse strains after warfarin diet (Table 7). Serum creatinine levels increased after UniNx surgery compared to healthy animals in Gas6\(^{-/-}\) and WT mice (+ 46% in WT and + 24% in Gas6\(^{-/-}\), respectively) (Table 7). Serum calcium, phosphate and creatinine levels were significantly increased in WT and Gas6\(^{-/-}\) mice after electrocautery compared to the corresponding healthy controls (Table 7).
Chapter 3.3

Table 7: Biochemical heamatology and 24 h urine characteristics of wildtype and Gas6^{−/−} mice after different treatments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>C57BL/6</th>
<th>Gas6<sup>−/−</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>body weight [g]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warfarin</td>
<td>22.95 ± 1.57</td>
<td>18.90 ± 1.66</td>
</tr>
<tr>
<td>UniNx</td>
<td>24.42 ± 2.17</td>
<td>19.06 ± 3.19 *</td>
</tr>
<tr>
<td>Electrocautery</td>
<td>22.35 ± 1.64</td>
<td>18.45 ± 3.05</td>
</tr>
<tr>
<td>haematology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urea [mmol/l]</td>
<td>6.27 ± 0.63</td>
<td>6.43 ± 1.29</td>
</tr>
<tr>
<td>Warfarin</td>
<td>10.26 ± 3.58</td>
<td>10.25 ± 2.56</td>
</tr>
<tr>
<td>UniNx</td>
<td>10.58 ± 1.62</td>
<td>17.1 ± 11.58</td>
</tr>
<tr>
<td>Electrocautery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatinine [µmol/l]</td>
<td>22.00 ± 1.67</td>
<td>23.67 ± 6.32</td>
</tr>
<tr>
<td>Warfarin</td>
<td>25.11 ± 2.37</td>
<td>29.91 ± 14.12</td>
</tr>
<tr>
<td>UniNx</td>
<td>30.28 ± 3.74</td>
<td>30.29 ± 3.86</td>
</tr>
<tr>
<td>Electrocautery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium [mmol/l]</td>
<td>2.58 ± 0.09</td>
<td>2.67 ± 0.17</td>
</tr>
<tr>
<td>Warfarin</td>
<td>2.50 ± 0.12</td>
<td>2.50 ± 0.12</td>
</tr>
<tr>
<td>UniNx</td>
<td>2.73 ± 0.14‡</td>
<td>2.84 ± 0.27‡</td>
</tr>
<tr>
<td>Electrocautery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphate [mmol/l]</td>
<td>2.84 ± 0.22</td>
<td>3.68 ± 0.60</td>
</tr>
<tr>
<td>Warfarin</td>
<td>2.78 ± 0.29</td>
<td>3.47 ± 0.89</td>
</tr>
<tr>
<td>UniNx</td>
<td>2.90 ± 0.30</td>
<td>3.91 ± 0.68</td>
</tr>
<tr>
<td>Electrocautery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein [g/dl]</td>
<td>6.58 ± 0.38‡</td>
<td>6.03 ± 0.32‡</td>
</tr>
<tr>
<td>Warfarin</td>
<td>5.74 ± 0.74</td>
<td>5.70 ± 0.31‡</td>
</tr>
<tr>
<td>UniNx</td>
<td>5.47 ± 0.49</td>
<td>5.41 ± 0.55</td>
</tr>
<tr>
<td>Electrocautery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkal. phosphatase [U/l]</td>
<td>205 ± 26.59‡</td>
<td>227.67 ± 45.87</td>
</tr>
<tr>
<td>Warfarin</td>
<td>173.11 ± 64.73‡</td>
<td>201.18 ± 63.97</td>
</tr>
<tr>
<td>UniNx</td>
<td>166.33 ± 35.90‡</td>
<td>187.00 ± 74.08</td>
</tr>
<tr>
<td>Electrocautery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h urine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFR [µl/min]</td>
<td>76.88 ± 36.88</td>
<td>56.63 ± 32.83</td>
</tr>
<tr>
<td>Warfarin</td>
<td>55.17 ± 32.44</td>
<td>41.65 ± 28.06</td>
</tr>
<tr>
<td>UniNx</td>
<td>41.71 ± 21.31</td>
<td>40.38 ± 13.00</td>
</tr>
<tr>
<td>Electrocautery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein [mg/dl]</td>
<td>25.88 ± 17.23</td>
<td>14.00 ± 4.93</td>
</tr>
<tr>
<td>Warfarin</td>
<td>12.83 ± 4.58‡</td>
<td>9.50 ± 5.99‡</td>
</tr>
<tr>
<td>UniNx</td>
<td>6.66 ± 1.86‡</td>
<td>17.67 ± 4.16</td>
</tr>
<tr>
<td>Electrocautery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatinine [µmol/l]</td>
<td>2071 ± 2005</td>
<td>4283 ± 3853</td>
</tr>
<tr>
<td>Warfarin</td>
<td>3853 ± 2520</td>
<td>2175 ± 667</td>
</tr>
<tr>
<td>UniNx</td>
<td>3062 ± 1133</td>
<td>914 ± 179</td>
</tr>
<tr>
<td>Electrocautery</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p < 0.05; ‡ p < 0.05 to corresponding WT group; † p < 0.05 to healthy control group
3.3.2.3. Calcium measurements

As ageing could be related to vascular pathology, older mice (at the age of 34 - 36 weeks) were tested for a possible different development of spontaneous vascular calcification. Calcium content was not significantly different in both old Gas6$^{-/-}$ and old WT mice (Figure 47). Von Kossa staining revealed only minor calcifications in both groups without significant differences (Figure 48).

Warfarin administration was used to induce calcification by blocking the posttranslational activation of MGP and potentially Gas6. After warfarin diet, no significant differences in soft tissue calcification between WT and Gas6$^{-/-}$ mice were detected (Figure 47a), except for a reduced cardiac calcium content in Gas$^{-/-}$ mice after 8 weeks of warfarin (Figure 47b).

UniNx (plus high phosphate diet) was used to initiate kidney damage. Spotty calcifications were present in the aorta (Figure 49a) and in cardiac tissue, however without obvious differences between Gas6$^{-/-}$ and WT mice. Within the heart calcifications were mainly located at the valves (Figure 49b). The most prominent calcification was found in kidney tissues in both strains, spreading throughout all structures with accumulation at the renal cortex (Figure 49c). Again, there was no significant difference between the models with respect to tissue calcium content (Figure 47c).

Electrocautery of the contralateral kidney was used in addition to UniNx (plus high phosphate diet) to further increase the extent of kidney damage. Calcium content in aortas and hearts of Gas6$^{-/-}$ mice was slightly higher than in WT, however without a significant difference (Figure 47). Calcification spots were found in a similar pattern than after UniNx in all kidney structures in both, WT and Gas6$^{-/-}$ mice.
Figure 47: Ca^{2+} content in soft tissues after warfarin diet, UniNx, EC or in healthy aging WT (C57BL/6) and Gas6^{+/−} mice. a) aorta, b) heart, c) kidney. UniNx (Uninephrectomy), EC (Electrocautery).
Figure 48: Von Kossa staining of aorta, heart and kidney in old WT compared to Gas6^{+/−} mice (100x).
Figure 49: *Von Kossa* staining of aorta, heart and kidney after uninephrectomy in WT compared to Gas6^{-/-} mice (100 x).
3.3.2.4 Echocardiography

The cardiac function of healthy young and ageing, warfarin treated, uninephrectomized and electrocoauterized mice was investigated. Echocardiography revealed a higher LV mass in healthy Gas6⁻/⁻ compared to healthy WT mice at the age of 8 weeks (Table 8). After UniNx, EF in was significantly higher in Gas6⁻/⁻ compared to WT (Table 9). UniNx and EC caused cardiac functional changes seen by decreased EF and SV in WT (Table 9). In all other groups, no significant differences were observed.
Table 8: Functional characteristics of healthy WT and Gas6\(-/-\) mice at different age

<table>
<thead>
<tr>
<th>Parameter</th>
<th>8-12 weeks old, healthy</th>
<th>34-36 weeks old, healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echocardiography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left ventricular (LV) mass [mg]</td>
<td>50.82 ± 11.39</td>
<td>73.60 ± 9.72 *</td>
</tr>
<tr>
<td>Stroke volume (SV) [µl]</td>
<td>23.90 ± 9.05</td>
<td>20.30 ± 6.34</td>
</tr>
<tr>
<td>Ejection Fraction (EF) [%]</td>
<td>54.33 ± 11.49</td>
<td>45.64 ± 7.76</td>
</tr>
<tr>
<td>VACC [mm/ms]</td>
<td>2.09 ± 0.98</td>
<td>2.06 ± 1.15</td>
</tr>
</tbody>
</table>

(Mean ± SD); * significant to corresponding WT control group

Table 9: Functional characteristics of WT and Gas6\(-/-\) mice after different treatments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>C57BL\6</th>
<th>Warfarin</th>
<th>UniNx</th>
<th>Electrocautery</th>
<th>Warfarin</th>
<th>UniNx</th>
<th>Electrocautery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echocardiography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left ventricular (LV) mass [mg]</td>
<td>79.03 ± 22.00</td>
<td>60.67 ± 14.63</td>
<td>59.10 ± 11.80</td>
<td>69.21 ± 14.74</td>
<td>74.15 ± 28.46</td>
<td>61.36 ± 16.58</td>
<td></td>
</tr>
<tr>
<td>Stroke volume (SV) [µl]</td>
<td>22.00 ± 5.96</td>
<td>13.36 ± 2.68</td>
<td>10.44 ± 2.79</td>
<td>20.55 ± 4.33</td>
<td>24.37 ± 8.90</td>
<td>10.16 ± 6.19</td>
<td></td>
</tr>
<tr>
<td>Ejection Fraction (EF) [%]</td>
<td>46.60 ± 11.55</td>
<td>33.29 ± 13.79</td>
<td>33.75 ± 7.38</td>
<td>44.84 ± 2.66</td>
<td>58.43 ± 21.30*</td>
<td>38.36 ± 17.83</td>
<td></td>
</tr>
<tr>
<td>VACC [mm/ms]</td>
<td>1.97 ± 0.71</td>
<td>2.69 ± 1.01</td>
<td>1.78 ± 0.46</td>
<td>2.26 ± 2.14</td>
<td>3.03 ± 1.38</td>
<td>1.98 ± 0.37</td>
<td></td>
</tr>
</tbody>
</table>

(Mean ± SD), * significant to corresponding WT control group
3.3.2.5 TUNEL assay
To test for apoptosis the TUNEL assay was used. In all tested *in vivo* models (young healthy, senescent, warfarin, UniNx, EC), we could not observe different levels of apoptosis in aortas between the different groups (data not shown).

3.3.2.6 Collagen staining
As calcium content in WT mice after warfarin diet was higher only in cardiac tissue, we tested for differences in the associated cardiac collagen content by sirius red staining. The size of collagen positive areas in cardiac tissues was equal in warfarin treated mice in Gas6−/− and WT mice (Figure 50).

![WT](image1.jpg) ![Gas6−/−](image2.jpg)

Figure 50: Collagen staining by sirius red in warfarin treated WT and Gas6−/− mice (50 x).

3.3.2.7 RT-PCR for MGP
Whether Gas6−/− mice show an upregulation of MGP gene expression in aortic tissues in all animal models (young healthy, ageing, warfarin, UniNx, EC) was investigated. However, a significant difference in MGP mRNA content in aortic tissue in all experimental groups was not detected (Figure 51).
Figure 51: MGP gene expression measured by RT-PCR in WT versus Gas6^{−/−} mice.
4. DISCUSSION

Aim 1 was the establishment of an appropriate method for safe and reproducible detection of GGCX activity in different tissues. Therefore I developed a fluorescence assay for the determination of the activity of the GGCX. This assay determines activities in nanomolar range (per gram protein per minute) in microsomes isolated from rat liver, kidney or aorta. The assay is based on the synthetically FITC labelled hexapeptide FLEFLK. It contains a single carboxylation site and interacts with the active centre of the GGCX enzyme. In vivo γ-carboxylation is essential for vitamin K dependent proteins. In most of these proteins a propetide region with 3 highly conserved amino acids seems to be important for the covalent binding with the GGCX enzyme (59). To further identify the interaction of FLEFLK-FITC with the GGCX the formation of the enzyme substrate complex could possibly be studied using nuclear magnetic resonance spectroscopy (60). The reversed phase-HPLC and MS measurements detect both the uncarboxylated as well as the carboxylated peptide as shown by the comparison between measured and calculated molecular weights (Table 2). This is indicated by different eluted peaks of FLEFLK-FITC and the more hydrophilic FLGLaFLK-FITC (Figure 18). The shorter retention time of the new appearing peak after in vitro carboxylation in rp-HPLC separation suggested a carboxylation of the substrate. This was proven by MS fragmentation. The comparison of mass spectrometric fingerprints of rp-HPLC eluted probes (Figures 17 and 20) with the calculated molecular weights of the carboxylated peptide revealed a high accordance. The additional peaks detected in HPLC (after 18.1 min and 18.6 min, Figure 20) may represent degradation products of the original peptide, molecular modifications like oxidation or residues from the microsomal matrix. Given the expected introduction of a carboxyl-group at the glutamic acid residues of the fragments, calculations of corresponding molecular weights are close to measured MW (measured fragments 576.7*, 581.5** and 1229.8*** MW, see Table 2 and Figure 20).

The variation of GGCX activity in liver tissues in the different healthy animals tested was quite high. This might be due to different expression levels or alterations of the activity caused by unknown conditions requiring further investigations. Age or body weight of the animals was similar excluding their influences on the GGCX activity. To our knowledge, individual differences in GGCX activity have not been investigated yet. In kidney tissues from different animals we found a quite constant enzyme activity.

The specificity of the assay is underlined by its highly significant inhibition by NEM. NEM is an inhibitor of the GGCX (49) by irreversibly alkylating sulphydryl groups (61). The activity in liver tissues was reduced by NEM to 4% and in kidney tissues to 15% of the baseline activity.
levels. These data are in line with previously reported results using the conventional radioactive carboxylase assay where NEM was found to inhibit the GGCX activity to 5 - 20% of baseline levels (49; 50).

The non-linearity of the substrate variation (i.e. decreased activity at higher concentrations) might be caused by an inhibiting effect of acetonitrile of the GGCX activity which is added in parallel to the substrate (Figure 26). To compare the efficiency of substrate carboxylation of FLEFLK-FITC with the frequently used pentapeptide FLEEL, the k_{cat}/K_m value was calculated from the slope of the curve of the $^{14}\text{CO}_2$ incorporation assay (Formula 1). Due to the inhibiting effect of acetonitrile on the GGCX and the limited solubility of the GGCX in an aqueous solution, the substrate concentration could not be further increased to determine the V_{max} directly. Based on the slope of the curve the calculated k_{cat}/K_M value that was 3.5 fold higher than the one reported for FLEEL ($5068 \text{ vs. } 1413 \text{ h}^{-1} \text{mM}^{-1}$) (58). This increased value might indicate a higher turnover of the GGCX in the new assay or a higher affinity for substrate FLEFLK-FITC. Nevertheless, the calculated k_{cat}/K_M value for FLEFLK-FITC indicates a sufficient carboxylation of the substrate. Further investigation on the binding between the substrate and the GGCX could explain these results.

The advantages of the new GGCX assay are the quick and direct measurement of the γ-carboxylated end product avoiding the hazardous use of radioactive labelled compounds. Purification of the substrate is achieved in a one-step procedure after incubation. The HPLC measurement yields reliable and reproducible results. This assay seems to be suitable for comparative studies between different treatment groups both of in vitro and in vivo experiments. It might also be interesting to identify possible GGCX-inhibitors or influences of gene mutations on the activity. Also of importance are VKOR/GGCX interactions. One reason for an insufficient γ-carboxylation are inhibiting effects on the VKOR as described for coumarins (62) but also seen for N-acteyl parabenzoquinone-imine a metabolite of the analgetic compound acetaminophen (paracetamol) (63). Determination of GGCX activity under several disease conditions might as well be of interest. This protocol is independent of the addition of a propeptide, underlining the practical aspect of the new assay. Measuring vitamin K dependent carboxylase activity by reversed phase HPLC enables us to calculate the activity in nmol/min/g protein, which offers the possibility to directly compare the results with the activities of DT-diaphorase and VKOR in one system.

The combination of the new GGCX assay with the assays to determine VKOR and DT-diaphorase activities enables one to investigate the complete vitamin K cycle in an in vivo model of CKD. For aim 2, the development of a rat model for uremia and vascular
calcification in rats, CKD was induced by 0.75% adenine diet. After 4 weeks of adenine diet, CKD was present as shown by increased creatinine and urea levels in serum (Table 3). Mild increase of the aortic calcium content was present after 4 weeks (Figure 38a) and to a calcification was established after 7 weeks of treatment (Figure 38b). The CKD rat model was also used to investigate aim 3 - the effect of uremia on the vitamin K cycle and aim 4 - the influence of vitamin K supplementation on vitamin K dependent enzyme activities. The activities of the enzymes of the vitamin K cycle were measured after 4 and 7 weeks of adenine diet. After 4 weeks – when the animals did not exhibit overt calcifications –, vitamin K deficiency was already present as evidenced by increased ucMGP serum levels (Figure 31). Typically, high serum levels of undercarboxylated proteins such as ucMGP indicate a vitamin K deficiency (64;65). At this time point the activity of the GGCX was already reduced at this stage of CKD (Figure 32), possibly contributing to the subsequent development of vascular calcification found at week 7 (Figure 38). After 4 weeks the VKOR activity was not reduced, and the DT-diaphorase was even more active, suggesting that in uremia GGCX is the rate-limiting enzyme in the vitamin K cycle and a potential major contributor to diminished vitamin K availability in tissues.

In addition, low dietary vitamin K intake has been noted in dialysis patients (7) augmenting vitamin K deficiency in uremia. Indeed, dietary vitamin K\textsubscript{2} supplementation (100 mg/kg, group c) in this present study lowered serum levels of ucMGP (Figure 31). These experimental observations parallel those made recently in hemodialysis patients where ucMGP serum levels were elevated and could be markedly reduced by dietary vitamin K\textsubscript{2} supplementation (64). Our 4 week CKD model contributes to the understanding of ucMGP action in the early stage. Vitamin K treatment resulted in significantly lower calcium tissue content in kidneys with a parallel trend in the aorta, strengthening the rationale for the planned vitamin K interventional trial \textit{VitaVasK} targeting cardiovascular calcification in HD patients. For aim 5, the influence of oral vitamin K supplementation on vitamin K dependent enzyme activites, I assessed in a two-step approach whether correcting vitamin K deficiency in this setting rescues the uremic alterations and whether differences exist between treatment with vitamin K\textsubscript{1} or K\textsubscript{2}.

To further analyze the influence of vitamin K treatment on tissue calcification, rats were also studied after 7 weeks of kidney failure, where overt vascular calcification was established as shown in \textit{von Kossa} stained aortic specimens (Figure 40). The activity of the GGCX was still reduced after 7 weeks of adenine in kidney, liver and aortic tissues (Figure 32). High dietary
vitamin K\textsubscript{2} (500 mg/kg) or K\textsubscript{1} (100 mg/kg) restored and even over-stimulated the activity of the GGCX in several tissues. In addition, this treatment also significantly reduced calcification of the kidneys and heart. In aortic tissue we failed to reach significant differences in calcium contents by ANOVA testing which might be due to a high inter-individual variability in the extent of aortic calcification in this model. In the heart and kidneys, lower dosages of vitamin K\textsubscript{1} (100 mg/kg) than vitamin K\textsubscript{2} (500 mg/kg) were comparably effective in preventing calcification (Figure 38). Although prior observations favour vitamin K\textsubscript{2} above K\textsubscript{1} in acting on MGP and vascular calcification (66), our data suggest that vitamin K\textsubscript{1} is also active in these processes. Another possibility is that vitamin K\textsubscript{1} can be converted to K\textsubscript{2} inside the body as proposed before (67). Why in this study the supplementation of 100 mg/kg vitamin K\textsubscript{1} was even more potent than 100 mg/kg vitamin K\textsubscript{2} in increasing the GGCX activity and reducing calcifications needs further investigation. Recently, McCabe found increased calcium contents in aortas after adenine diet in rats and successfully reduced vascular calcification by dietary vitamin K\textsubscript{1} without elucidating the underlying mechanism, i.e. activity of the GGCX (68).

Compared to the daily dietary recommendation for humans (1 µg/kg body weight), the dosage of vitamin K supplements was markedly higher in these rat experiments (up to 15 mg/kg body weight). Such high dosages were chosen given that there is no evidence of toxicity from even very high vitamin K doses in man (69) and based on dosages in prior experimental studies (30).

Unexpectedly, after 7 weeks of adenine treatment, ucMGP levels were on average 16% lower than in healthy controls and 41% lower than after 4 weeks of adenine treatment. One explanation may be the accumulation of ucMGP in calcified areas in uremia (Figure 40). In addition, transdifferentiation of MGP-producing vascular smooth muscle cells into an MGP-negative osteoblastic phenotype might further reduce ucMGP serum levels as published before (70). Our workgroup (unpublished data) and others have observed that MGP-synthesising VSMC undergo apoptotic processes in calcification (71) which also may lead to reduced ucMGP serum levels.

Because altered GGCX mRNA expression - possibly leading to reduced activity - was not detected in all animal groups, the influence of uremic toxins on the low activity of the GGCX in CKD was assessed as aim 6. To assess post-transcriptional alterations, I focussed on carbamylation of this enzyme by the elevated urea concentrations in CKD. As urea levels rise in CKD, it is spontaneously transformed into cyanate which is known to irreversibly carbamylate lysine residues. Reversible modifications occur at tyrosine, serine, threonine or
cysteine residues, resulting in modification of the activities of enzymes (72). However, in the present study in vitro urea concentrations similar to uremic serum levels failed to affect GGX enzyme activity (Figure 34). Two further uremic toxins tested in vitro, p-cresol and indoxylsulfate, did not result in altered GGX activity either. Therefore, the mechanism of reduced GGX activity presently remains unknown.

To summarize the influence of CKD and vitamin K supplementation on vascular calcification I found reduced activity of GGX in uremia in several tissues possibly contributing to the observed functional vitamin K deficiency in dialysis patients. This might represent a key contributor to the increased ucMGP levels and excess cardiovascular calcification in CKD in rats. Vitamin K1 and vitamin K2 were able to increase GGX activity and reduce extraosseous calcium content in the adenine nephropathy model. Thus, dietary vitamin K supplementation in CKD not only reverses the low intake but also rescues endogenous vitamin K recycling. By this dual action, the supplementation represents a promising therapeutic approach to the massively increased extraosseous calcification in CKD.

For aim 7, clarifying the role of Gas6 protein in vascular calcification I compared mice deficient for the protein Gas6 with WT mice. In vitro, VSMC from Gas6 deficient mice were challenged with calcification media and in vivo CKD was induced in mice to investigate uremic calcification. The main finding of this part of the study is that both in vitro and in vivo vascular as well as organ calcification of WT and Gas6−/− mice were not different between both genetic backgrounds (Figures 42 and 46).

Transformation of VSMC into an osteoblastic phenotype is a highly regulated process. Among these vitamin K dependent MGP carboxylation (73) and apoptosis (74;75) play a role in the calcification process. Previously, Gas6 mRNA stabilisation by statins was found to be a protective mechanism in cell culture experiments (21). In these in vitro experiments Gas6 protected against calcification. However, these findings were only seen in vitro and not reproduced in vivo yet.

Gas6 is also known to mediate antiapoptotic effects (20). In the experiments of this work I did not observe increased apoptosis in Gas6−/− mice in vivo and in vitro when compared to WT mice. The previous antiapoptotic findings of Gas6 mRNA cannot be confirmed by my results. Whether other antiapoptotic compensatory mechanisms are present remains speculative.

To test for potential other compensatory mechanisms avoiding the development of vascular calcification I analysed aortic MGP expression in Gas6−/− mice. MGP is known to be the most important local calcification inhibitor in the vessel wall (8) and could act as compensatory
mechanism the lack of Gas6. However, MGP was not upregulated in the vessel wall (Figure 49) indicating that Gas6 deficiency does not influence MGP production.

Interestingly, I observed a reduced survival of the knockout mice after electrocauterization compared to WT (Figure 44). But in mice reaching the designated end point of the treatment period, no augmented calcification was observed. As the mice died close to surgical procedures, calcification processes appear unlikely to be the reason for the increased mortality. One might speculate that inflammatory processes may play a role. Gas6 secretion is stimulated by TGF-β (76) and Gas6 expression in atherosclerotic plaques was inversely associated with inflammation (76). In these experiments neither signs of inflammation in the vessel wall nor accumulation of collagen were observed. Other potential reasons could play a role for the decreased survival rate e.g. the lower body weight of the knockout animals. Alternatively, Gas6 knockout mice were reported to be protected from arterial thrombosis (77). Thus, it could be speculated that altered coagulation of the uremic Gas6\(^{-/-}\) mice contributed to increased mortality. However, as we could not find tissue infarction or signs of bleeding, this mechanism does not seem to be responsible for the death rate of the Gas6\(^{-/-}\) mice.

Interestingly, Gas6\(^{-/-}\) mice had a higher left ventricular mass as assessed by heart ultrasound despite a smaller body weight (Table 6). This was accompanied with a lower, non significant reduction in ejection fraction (Table 8). Strikingly, calcium content of the myocardium was significantly lower in Gas6\(^{-/-}\) mice compared to WT after warfarin diet (Figure 46). The reasons for this phenomenon remain speculative but one should consider that the detected cardiac calcium content ranging at 0.1 mg/g is very low and does not resemble overt calcification. Cardiac calcification is also associated with fibrosis (78) and cardiac fibroblast growth was found to be stimulated by Gas6 (19). Therefore we speculated that protective effects of lacking Gas6 might depend on a different collagen content of the hearts. Also, Gas6 was found to inhibit mRNA expression of collagen II (79). However, in our study collagen staining was equal in both Gas6\(^{-/-}\) and WT mice.

One drawback of this part of the study is the use of the calcification resistant C57BL/6 genetic background of the mice in contrast to DBA/2 mice which are more prone to calcification (80). Mice deficient for Fetuin A on a C57BL/6 background (B6.129-Ahsgtm1Mbl) develop only minor ectopic microcalcifications in soft tissues (81). Fetuin A deficient mice backcrossed onto the DBA/2 background exhibit more severe calcification of different tissues (82). Nevertheless, in all of our models early calcification spots could be induced on the C57BL/6
background and the lack of aggravated calcification by depletion of Gas6 does not support a major role of Gas6 in vascular calcification pathogenesis.
5 CONCLUSIONS

The importance of vitamin K besides blood coagulation is a topic of current interest. All vitamin K dependent blood coagulation factors contain 9-12 Glu residues. Calcium binding is the crucial mechanism of all vitamin K dependent proteins. In their carboxylated form, Gla residues are capable to bind to phospholipid layers coupled with calcium ions. Vitamin K is regarded to prevent calcification of soft tissues by carboxylating MGP and the calcium binding property gained by this procedure is regarded as the main reason of MGP acting as a calcification inhibitor. A functional vitamin K deficiency is found in dialysis patients as shown by increased serum levels of ucMGP, ucOcn and PIVKAI. These patients exert pronounced vascular calcification which contributes to a highly increased mortality and morbidity. The reduced vitamin K deficiency under uremia is the topic of this work. Here I demonstrated that under uremic conditions the activity of the key enzyme of the vitamin K cycle γ-glutamyl carboxylase is reduced and can be reversed by high dose vitamin K supplementation whereas the remaining enzymes were unaffected by uremia. Further research will be needed to investigate the mechanism underlying the reduced GGCX activity in kidney disease. Vitamin K supplementation was able to reduce the extent of soft tissue calcification in rats with kidney failure. This was paralleled by an increase of the activity of the GGCX and a reduction of ucMGP serum levels. This suggests that increasing the amount of dietary vitamin K offers a therapeutic target to prevent calcification processes in patients with kidney disease. Not only for vitamin K deficient patients like kidney patients but also for healthy people a higher daily, dietary vitamin K recommendation should be taken under consideration. But special care might be taken in diabetic patients, because the carboxylated form of osteocalcin is associated with decreasing insulin sensitivity although data on a direct harmful effect is lacking.

Some studies suggest a role of the vitamin K dependent protein Gas6 in preventing vascular calcification. Here I did not detect any effects of Gas6 deficiency on the development of vascular calcification in mice.

Human interventional trials are still needed to clarify the efficacy of vitamin K treatment. Of interest are also potential beneficial effects of high vitamin K intake in healthy individuals as well as differences of vitamin K subforms on metabolic and clinical effects.

ii Danksagungen

Ein ganz herzlicher Dank gilt allen, die das Gelingen dieser Arbeit überhaupt erst möglich gemacht haben! Insbesondere möchte ich mich bedanken bei:

Dr. med. Thilo Krüger für die nette umfassende Betreuung im Labor, spaßigen Dienstreisen und Unterstützung in allen Lebenslagen.

Frau Prof. Brigitte Schmitz für die Übernahme des Erstgutachtens und ihr Bemühen zu Zeiten des thematischen Wechsels.

Frau Prof. Simone Diestel für die Übernahme des Zweitgutachtens.

PD Dr. med. Vincent Brandenburg für die unterhaltsame Betreuung, allzeit verlässliche Rückendeckung und vor allem seinen unermüdlichen Einsatz gegen die dunkle Seite der Macht.

PD Dr. med. Georg Schlieper für die nette Betreuung und sein organisatorisches Talent.

CTA Katrin Härthe für die nette Aufnahme im Labor, stets offenen Ohren, technischen Support insbesondere bei den molekularbiologischen Methoden, bastlerisches Geschick und kompetentes brainstorming für neue Experimente.

Herr Prof. Dr. med. Jürgen Floege für die Aufnahme ins Team der Med. Klinik II.

Herr Dr. rer. nat. Thomas Schettgen für die Überlassung des HPLC Arbeitsplatzes und die MS Messungen.

Petra Dewes für die Einarbeitung in die HPLC.

Elke Magdeleyns und Marjolein Herfs für die ucMGP Messungen.

Svenja Immendorf für die Kultivierung der murinen VSMC.

Chun Ouyang für die Unterstützung bei der Elektrokauterisierung der Nieren.

Vasantha Mutucumarana für die 14CO$_2$ Incorporationsmessung und die Berechnung des zugehörigen kcat/Km.

Prof. Peter Carmeliet für die Überlassung zweier Gas6$^{-/-}$ Zuchtpaare.

Allen Kollegen der Medizinischen Klinik II für das freundschaftliche Miteinander.

Zu guter letzt Daniel für die letzten 15 Jahre.