Hinweis zum Urheberrecht| Allgemeine Informationen | FAQ
Beim Zitieren dieses Dokumentes beziehen Sie sich bitte immer auf folgende URN: urn:nbn:de:hbz:5n-34356

 

Landwirtschaftliche Fakultät - Jahrgang 2013

 

Titel Man-made Surface Structures from Triangulated Point Clouds
Autor Falko Schindler
Publikationsform Dissertation
Abstract Photogrammetry aims at reconstructing shape and dimensions of objects captured with cameras, 3D laser scanners or other spatial acquisition systems. While many acquisition techniques deliver triangulated point clouds with millions of vertices within seconds, the interpretation is usually left to the user. Especially when reconstructing man-made objects, one is interested in the underlying surface structure, which is not inherently present in the data. This includes the geometric shape of the object, e.g. cubical or cylindrical, as well as corresponding surface parameters, e.g. width, height and radius. Applications are manifold and range from industrial production control to architectural on-site measurements to large-scale city models.
The goal of this thesis is to automatically derive such surface structures from triangulated 3D point clouds of man-made objects. They are defined as a compound of planar or curved geometric primitives. Model knowledge about typical primitives and relations between adjacent pairs of them should affect the reconstruction positively.
After formulating a parametrized model for man-made surface structures, we develop a reconstruction framework with three processing steps: During a fast pre-segmentation exploiting local surface properties we divide the given surface mesh into planar regions. Making use of a model selection scheme based on minimizing the description length, this surface segmentation is free of control parameters and automatically yields an optimal number of segments. A subsequent refinement introduces a set of planar or curved geometric primitives and hierarchically merges adjacent regions based on their joint description length. A global classification and constraint parameter estimation combines the data-driven segmentation with high-level model knowledge. Therefore, we represent the surface structure with a graphical model and formulate factors based on likelihood as well as prior knowledge about parameter distributions and class probabilities. We infer the most probable setting of surface and relation classes with belief propagation and estimate an optimal surface parametrization with constraints induced by inter-regional relations. The process is specifically designed to work on noisy data with outliers and a few exceptional freeform regions not describable with geometric primitives. It yields full 3D surface structures with watertightly connected surface primitives of different types.
The performance of the proposed framework is experimentally evaluated on various data sets. On small synthetically generated meshes we analyze the accuracy of the estimated surface parameters, the sensitivity w.r.t. various properties of the input data and w.r.t. model assumptions as well as the computational complexity. Additionally we demonstrate the flexibility w.r.t. different acquisition techniques on real data sets. The proposed method turns out to be accurate, reasonably fast and little sensitive to defects in the data or imprecise model assumptions.
Zusammenfassung Künstliche Oberflächenstrukturen aus triangulierten Punktwolken
Ein Ziel der Photogrammetrie ist die Rekonstruktion der Form und Größe von Objekten, die mit Kameras, 3D-Laserscannern und anderern räumlichen Erfassungssystemen aufgenommen wurden. Während viele Aufnahmetechniken innerhalb von Sekunden triangulierte Punktwolken mit Millionen von Punkten liefern, ist deren Interpretation gewöhnlicherweise dem Nutzer überlassen. Besonders bei der Rekonstruktion künstlicher Objekte (i.S.v. engl. man-made = „von Menschenhand gemacht“ ist man an der zugrunde liegenden Oberflächenstruktur interessiert, welche nicht inhärent in den Daten enthalten ist. Diese umfasst die geometrische Form des Objekts, z.B. quaderförmig oder zylindrisch, als auch die zugehörigen Oberflächenparameter, z.B. Breite, Höhe oder Radius. Die Anwendungen sind vielfältig und reichen von industriellen Fertigungskontrollen über architektonische Raumaufmaße bis hin zu großmaßstäbigen Stadtmodellen.
Das Ziel dieser Arbeit ist es, solche Oberflächenstrukturen automatisch aus triangulierten Punktwolken von künstlichen Objekten abzuleiten. Sie sind definiert als ein Verbund ebener und gekrümmter geometrischer Primitive. Modellwissen über typische Primitive und Relationen zwischen Paaren von ihnen soll die Rekonstruktion positiv beeinflussen.
Nachdem wir ein parametrisiertes Modell für künstliche Oberflächenstrukturen formuliert haben, entwickeln wir ein Rekonstruktionsverfahren mit drei Verarbeitungsschritten: Im Rahmen einer schnellen Vorsegmentierung, die lokale Oberflächeneigenschaften berücksichtigt, teilen wir die gegebene vermaschte Oberfläche in ebene Regionen. Unter Verwendung eines Schemas zur Modellauswahl, das auf der Minimierung der Beschreibungslänge beruht, ist diese Oberflächensegmentierung unabhängig von Kontrollparametern und liefert automatisch eine optimale Anzahl an Regionen. Eine anschließende Verbesserung führt eine Menge von ebenen und gekrümmten geometrischen Primitiven ein und fusioniert benachbarte Regionen hierarchisch basierend auf ihrer gemeinsamen Beschreibungslänge. Eine globale Klassifikation und bedingte Parameterschätzung verbindet die datengetriebene Segmentierung mit hochrangigem Modellwissen. Dazu stellen wir die Oberflächenstruktur in Form eines graphischen Modells dar und formulieren Faktoren basierend auf der Likelihood sowie auf apriori Wissen über die Parameterverteilungen und Klassenwahrscheinlichkeiten. Wir leiten die wahrscheinlichste Konfiguration von Flächen- und Relationsklassen mit Hilfe von Belief-Propagation ab und schätzen eine optimale Oberflächenparametrisierung mit Bedingungen, die durch die Relationen zwischen benachbarten Primitiven induziert werden. Der Prozess ist eigens für verrauschte Daten mit Ausreißern und wenigen Ausnahmeregionen konzipiert, die nicht durch geometrische Primitive beschreibbar sind. Er liefert wasserdichte 3D-Oberflächenstrukturen mit Oberflächenprimitiven verschiedener Art.
Die Leistungsfähigkeit des vorgestellten Verfahrens wird an verschiedenen Datensätzen experimentell evaluiert. Auf kleinen, synthetisch generierten Oberflächen untersuchen wir die Genauigkeit der geschätzten Oberflächenparameter, die Sensitivität bzgl. verschiedener Eigenschaften der Eingangsdaten und bzgl. Modellannahmen sowie die Rechenkomplexität. Außerdem demonstrieren wir die Flexibilität bzgl. verschiedener Aufnahmetechniken anhand realer Datensätze. Das vorgestellte Rekonstruktionsverfahren erweist sich als genau, hinreichend schnell und wenig anfällig für Defekte in den Daten oder falsche Modellannahmen.
Inhaltsverzeichnis pdf-Dokument Hier können Sie den Adobe Acrobat Reader downloaden
Komplette Version pdf-Dokument (10,5 MB) Hier können Sie den Adobe Acrobat Reader downloaden
© Universitäts- und Landesbibliothek Bonn | Veröffentlicht: 10.12.2013