Modellunabhängige Berechnung der zeitlichen Äquilibrautionskonstante k_{e0} von volatilen Inhalationsanästhetika

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Hohen Medizinischen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität
Bonn

Michael Kehrer
aus Schwäbisch Hall
2013
Angefertigt mit Genehmigung der
Medizinischen Fakultät der Universität Bonn

1. Gutachter: PD Dr. med. Richard Ellerkmann
2. Gutachter: Prof. Dr. med. Burger

Tag der Mündlichen Prüfung: 29.04.2013

Aus der Klinik und Poliklinik für Anästhesiologie und Operative Intensivmedizin
Direktor: Professor Dr. med. Andreas Hoeft
Meinen lieben Eltern
Inhaltsverzeichnis

Abkürzungsverzeichnis .. 8

1. Einleitung ... 10
 1.1 Narkose ... 10
 1.2 Klinische Bedeutung der Narkose ... 11
 1.3 Bestimmung der Narkosetiefe .. 12
 1.3.1 EEG-Monitoring .. 12
 1.3.2 Prozessiertes EEG-Monitoring und Narkoseindizes .. 15
 1.4 Pharmakokinetische/pharmakodynamische Modelle für volatile Inhalationsanästhetika ... 15
 1.4.1 Beschreibung von Dosis-Wirkungsbeziehungen ... 15
 1.4.2 Pharmakokinetische und pharmakodynamische Berechnungen 17
 1.4.2.1 Äquilibrierung zwischen zentralem Kompartiment und Effektkompartiment 17
 1.4.2.2 Problematik der Hystereseschleife ... 18
 1.4.2.3 Bestimmung der Äquilibrationskonstante \(k_{e0} \) ... 20
 1.5 Ziele dieser Arbeit .. 21

2. Grundlagen .. 22
 2.1 Volatile Inhalationsanästhetika .. 22
 2.1.1 Eigenschaften der Flurane ... 23
 2.1.2 Wirkungsmechanismus der volatile Inhalationsanästhetika ... 23
 2.2 Pharmakokinetik volatile Inhalationsanästhetika ... 24
 2.2.1 Pharmakokinetisches Basismodell .. 24
 2.2.2 Verteilungskoeffizienten volatile Inhalationsanästhetika ... 24
 2.3 Pharmakodynamik volatile Inhalationsanästhetika ... 26
 2.3.1 MAC-Werte als Ausdruck der Pharmakodynamik volatile Anästhetika 26
 2.3.2 EEG-Analyse mittels Fast-Fourier-Transformation ... 27
 2.3.3 Bispectral-Index-Scale (BIS) ... 29
 2.3.4 Narkosespezifische EEG-Veränderungen und Burst Suppression 32
 2.4 Pharmakokinetische Modellierung zur Bestimmung von Dosis-Wirkungs-Kurven 33
2.4.1 Wirkortäquilibrationskonstante k_{eq} .. 33
2.4.2 Dosis-Wirkungsbeziehungen zwischen volatilen Inhalationsanästhetika und BIS-Index 33
2.4.3 Klassisches sigmoidales E_{max}-Modell (Hill-Gleichung) .. 34
2.4.4 Plateaueffekt und bi-sigmoidales Modell .. 35
2.5 Modellunabhängige Untersuchungen zu Dosis-Wirkungsbeziehungen 37
 2.5.1 Modellunabhängiger Ansatz zur Berechnung von Dosis-Wirkungs-Kurven 37
 2.5.2 Prediction Probability (P_k) und P_k-Wert-Optimierung .. 37
 2.5.3 Minimierung der Fläche unter der Hystereseschleife .. 38
3. Patienten und Methodik .. 39
 3.1 Prinzipien der Durchführung ... 39
 3.2 Datenübertragung und Ableitungsform .. 40
 3.3 Apparaturen und Materialen ... 40
 3.4 Patientenauswahl .. 41
 3.4.1 Einschlusskriterien .. 42
 3.4.2 Ausschlusskriterien ... 42
 3.5 Prämedikation .. 42
 3.6 Durchführung .. 42
 3.7 Erhebung der Studiendaten .. 44
 3.8 Statistische Auswertung .. 44
 3.8.1 Berechnung der k_{eq}-Werte durch Maximierung der Prediction Probability (P_k) 45
 3.8.2 Berechnung von k_{eq}-Werten durch Minimierung der Fläche unter der Hystereseschleife 46
 3.8.3 Statistische Auswertung ... 47
4. Ergebnisse .. 48
5. Diskussion .. 64
 5.1 Vorhersagewahrscheinlichkeit (Prediction Probability, P_k) .. 64
 5.2 Minimierung der Fläche unter der Hystereseschleife .. 66
 5.3 Anschlagzeit, „time to peak effect“ ... 67
 5.4 k_{eq}-Werte volatiler Anästhetika ... 67
6. Zusammenfassung .. 69
7. Literaturverzeichnis .. 70
8. Danksagung ... 76
Abkürzungsverzeichnis

Abb Abbildung
ASA American-Society-of-Anesthesiology
BIS bispectral index scale
BSR Burst Suppression Ratio
C_{eff} Effektkompartment-Konzentration
CO_{2} Kohlendioxid
EEG Elektroenzephalogramm
FFT Fast-Fourier-Transformation
HZV Herzzeitvolumen
i.v. intravenös
k_{2o} Äquilibrationskonstante
MAC minimale alveolare Konzentration
N_{2}0 Stickstoffdioxid (Lachgas)
NMT neuromuskuläre Transmission
OP Operation
O_{2} Sauerstoff
P_{d} discordant probability
P_{tx} x-only tie probability
P_{k} Prediction Probability
PDK Periduralkatheter
PK/PD Pharmakokinetisch/Pharmakodynamisch
pEEG processed EEG
R^{2} Korrelationskoeffizient
<table>
<thead>
<tr>
<th>Syn.</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sec</td>
<td>Sekunden</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TCI</td>
<td>Target-controlled-infusion</td>
</tr>
<tr>
<td>TOF</td>
<td>train-of-four</td>
</tr>
<tr>
<td>t-Test</td>
<td>Student`ischer t-Test</td>
</tr>
<tr>
<td>Vol%</td>
<td>Volumenprozent</td>
</tr>
<tr>
<td>ZNS</td>
<td>Zentrales Nervensystem</td>
</tr>
</tbody>
</table>
1. Einleitung

1.1 Narkose

Bei der heute überwiegend präferierten „balancierten Anästhesie“ bedient man sich der Kombination aus einem Analgetikum und einem volatilen Anästhetikum. Hierbei werden meist ein i.v.

1.2 Klinische Bedeutung der Narkose

1.3 Bestimmung der Narkosetiefe

1.3.1 EEG-Monitoring

Um die Narkosetiefe tatsächlich zu „objektivieren“, bedarf es einer Methode, die es erlaubt, den Bewusstseinszustand und die Hirntätigkeit des Patienten quantitativ zu erfassen. Wie in der Neurologie und Somnologie kommt hierfür das Elektroenzephalogramm (EEG) zum Einsatz, um das ZNS, das eigentliche Zielorgan der Anästhetika, näher zu betrachten. Es ist bekannt, dass Narkotika dosisabhängig zu Veränderungen der elektrischen Aktivität der Neuronen führen, die anhand des Elektroenzephalogramms (EEG) abgebildet werden können.

Das im Spontan-EEG abgeleitete Rohsignal repräsentiert dabei die Summe aller spontanen post-synaptischen exzitatorischen und inhibitorischen elektrischen Potentiale in der Hirnrinde.
(Cortex). Je nach Wachzustand lassen sich bei der elektrophysiologischen Ableitung verschiedene Frequenzbanden und Frequenzbereiche als Ausdruck der Hirnaktivität unterscheiden (Tab. 1).

<table>
<thead>
<tr>
<th>Frequenzband</th>
<th>Frequenzbereich (Hz)</th>
<th>Klinische Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ-Wellen</td>
<td>1 - 3</td>
<td>Tiefschlaf, Koma</td>
</tr>
<tr>
<td>θ-Wellen</td>
<td>4 - 7</td>
<td>Traumschlaf, Trance, Tiefenmeditation, Hypnose, normaler Bewusstseinszustand bei Kleinkindern</td>
</tr>
<tr>
<td>α-Wellen</td>
<td>8 - 12</td>
<td>Entspannter Wachzustand bei geschlossenen Augen, Meditation</td>
</tr>
<tr>
<td>β-Wellen</td>
<td>13 - 30</td>
<td>Angespannter Wachzustand, normale Tagesaktivität bei geöffneten Augen</td>
</tr>
<tr>
<td>γ-Wellen</td>
<td>30 - 80</td>
<td>Bindung und Aufmerksamkeit, Integration von Sinnesdaten zu Gestaltimpressionen, Bindung von Raum und Zeit</td>
</tr>
</tbody>
</table>

Tab. 1: Frequenzbanden und -bereiche eines Elektroencephalogramms (EEG) unter Angabe des entsprechenden klinischen Wachzustandes des Patienten (Roewer und Thiel, 2007)

Je nach Dosierung der Anästhetika findet man eine unterschiedliche Modifizierung dieser wellenförmigen Hirnaktivitätsmuster, die in Amplitude und Frequenz variieren. Typische, reproduzierbare EEG-Veränderungen lassen dabei quantitative Rückschlüsse auf die Narkosetiefe zu.
In Abb. 1 sind charakteristische EEG-Muster in Abhängigkeit des Narkoseniveaus dargestellt (von A – F zunehmende Narkosetiefe).

Bei zunehmender Narkosetiefe nimmt die Amplitude des EEG-Signals zu, die Frequenz jedoch ab (Abb. 1 B-E). Bei weiterer Vertiefung der Narkose, von E nach F (Abb. 1), ist zunächst ein sogenanntes Nulllinien-EEG zu beobachten, welches plötzlich in hochfrequente und von hoher Amplitude charakterisierten Entladungen umschlägt.

Diese Entladungen werden als „bursts“ (siehe Kapitel Grundlagen 2.3.4) bezeichnet und stellten in der Vergangenheit bei der Beschreibung von Dosis-Wirkungsbeziehungen unterschiedlicher Hypnotika ein Problem dar.
1.3.2 Prozessiertes EEG- Monitoring und Narkoseindizes

Heute stehen verschiedene rechnergestützte Standard-Monitorsysteme am Arbeitsplatz zur Verfügung, die automatisch das Rohsignal eines EEGs auswerten und mittels spezifischer Algorithmen in einen Index für die Wachheit des Patienten umrechnen. Dieses sogenannte prozessierte EEG (pEEG) hat den entscheidenden Vorteil, dass in der Klinik ein Index routinemäßig als Parameter für die Beurteilung der Narkosetiefe herangezogen werden kann. Somit kann zeitnah auf die Wirkung bzw. Effekte der Anästhetika am Zielorgan (ZNS) geschlossen werden. Dieser Narkoseindex wird in der Regel als dimensionslose Zahl auf einer Skala von 100 bis 0 angegeben, wobei 100 vollständige Wachheit und 0 den tiefst möglichen Narkosezustand (isoelektrisches EEG) wiedergeben. In mehreren Studien erwies sich diese Parameterabschätzung der Narkosetiefe für die Überwachung und Steuerung von Allgemeinanäthesien als sehr vorteilhaft. Es konnte nicht nur eine Senkung des Anästhetika-Verbrauchs erzielt werden (Kreuer et al., 2003; Vakkuri et al., 2005), sondern schnellere Aufwachzeiten generiert (Flaishon et al., 1997; Gan et al., 1997; Johansen et al., 2000) und das Risiko intraoperativer Wachheitszustände deutlich reduziert werden (Ekman et al., 2004; Luginbuhl und Schnider, 2002; Myles et al., 2004). Verschiedene Monitorsysteme mit entsprechenden Indices konnten sich dank rascher Innovationssprüngen in der Medizintechnologie auf dem Markt behaupten und erlauben seit geraumer Zeit eine zuverlässige Schnellanalyse des EEGs zur routinemäßigen Überwachung der Narkosetiefe im klinischen Alltag.

Ein in den letzten Jahren besonders gut untersuchter Narkoseindex ist dabei der Bispektralindex (BIS) (siehe Kapitel Grundlagen 2.3.3) der Firma Covidien, der bei dieser Arbeit zugrundeliegenden Studien zur Beschreibung und Untersuchung von Dosis-Wirkungsbeziehungen der volatilen Inhalationsanästhetika Isofluran, Sevofluran und Desfluran zum Einsatz kam.

1.4 Pharmakokinetische/ pharmakodynamische Modelle für volatile Inhalationsanästhetika

1.4.1 Beschreibung von Dosis-Wirkungsbeziehungen

Bezüglich der Beschreibung und Untersuchung von Dosis-Wirkungsbeziehungen verschiedener Hypnotika war es durch das klassische sigmoidale E_{max}-Modell, sog. Hill-Funktion (Hill, 1910)

1.4.2 Pharmakokinetische und pharmakodynamische Berechnungen

1.4.2.1 Äquilibration zwischen zentralem Kompartiment und Effektkompartiment

Es ist bekannt, dass Inhalationsanästhetika eine gewisse Zeit für den Konzentrationsausgleich (Steady State) zwischen Lunge und ihrem Erfolgsorgan, dem Gehirn benötigen. Hat sich ein Konzentrationsausgleich eingestellt, sind die Plasma- bzw. endtidale Konzentration und die Effektkompartiment-Konzentration identisch. In einem Non-Steady-State-Zustand wiederum, z.B. während der Narkoseeinleitung, besteht ein Konzentrationsunterschied. Werden die endtidale Konzentration und die angenäherte Wirkortkonzentration (entspricht der Effektkompartiment-Konzentration) beide im Zeitverlauf aufgezeichnet, besteht im Allgemeinen eine zeitliche Verzögerung bis die endtidale Konzentration und die Wirkortkonzentration ihr Maximum erreichen (Abb. 2).

![Diagram](image_url)

Abb. 2: Endtidale Sevoflurankonzentrationen (graue Fläche; Vol.-%), BIS- (schwarze Punkte) und Narcotrend-Index (graue Punkte) im zeitlichen Verlauf während einer 2-maligen Konzentrationssteigerung und der Anästhesieausleitung bei einem Beispielpatienten. Die zeitliche Verzögerung zwischen der maximalen endtidalen Konzentration (roter Linie) und dem maximalen Effekt im EEG (blaue Linie) wird als Hysterese bezeichnet (Kreuer et al., 2007)
Die zeitliche Verzögerung in der Umverteilung (Äquilibration) vom Zentralkompartiment (Blut bzw. Plasma als Trägerstoff) in das Effektkompartiment (effect site) wird als Hysterese bezeichnet. Begrifflich stammt „Hysterese“ oder Hysteresis aus dem Griechischen; hysteros bedeutet so viel wie „hinterher, später“. Die Hysterese bezeichnet somit die Zeit zwischen maximaler endtidaler Konzentration und maximalen Effekt im EEG (maximale EEG-Suppression).

Empirische Modelle berücksichtigen diese Hysterese durch Zuhilfenahme des oben genannten fiktiven Effektkompartment (effect site). Um die Umverteilung vom zentralen Kompartiment (Plasma) in das Effektkompartiment (Wirkort) zu beschreiben, bedient man sich einer zeitlichen Transferkonstante, dem k_{e0}-Wert (Äquilibrationskonstante). Jedes Anästhetikum besitzt einen eigenen spezifischen k_{e0}-Wert und es besteht außerdem eine große interindividuelle Variabilität. Hysterese und k_{e0}-Wert verhalten sich in der Regel umgekehrt proportional zueinander, d.h. je kleiner der k_{e0}-Wert, umso größer ist die Hysterese und damit die zeitliche Verzögerung bis zum steady state zwischen den Kompartimenten (Kreuer et al., 2007).

Durch das empirische Modell und dem fiktiven Effektkompartment gelingt es, die Wirkung (EEG-Effekt) eines volatilen Narkoseanästhetikums am Erfolgsorgan (ZNS) parametrisch zu bestimmen, in dem die Effektkompartiment-Konzentration berechnet wird. Die Effektkompartiment-Konzentration wird rechnerisch aus der Plasma- oder der endtidalen Konzentration mithilfe des k_{e0}-Wertes durch Umformung folgender Gleichung bestimmt:

\[
\frac{dC_{eff}}{dt} = (C_{et} - C_{eff}) x k_{e0}
\]

(Gleichung 1)

Dabei bezeichnet C_{et} die endtidale Konzentration, C_{eff} die Effektkompartment-Konzentration und k_{e0} die Äquilibrationszeitkonstante.

1.4.2.2 Problematik der Hystereseschleife

Zur Bestimmung individueller k_{e0}-Werte wird die Anästhetikazufuhr standardisiert so lange gesteigert, bis ein maximaler EEG-Effekt (maximale EEG-Suppression) erreicht wird und danach wieder reduziert. Trägt man nun die endtidal gemessene Konzentration eines Inhalationsanästhetikums gegen den EEG-Effekt auf, in unserem Fall der Bispektral-Index, kommt es
aufgrund der Hysterese zur Ausbildung einer typischen Hystereseschleife bei der An- und Abflutung des volatilen Anästhetikums. In Abb. 3 lässt sich exemplarisch für Sevofluran bei der optischen Inaugenscheinnahme der Graphik die Problematik der Hystereseschleife deutlich erkennen:

\[\text{End-tidale Sevofluran Konzentration [Vol\%]} \]

Abb. 3: Ausbildung einer Hystereseschleife. Dargestellt sind zeitgleich aufgezeichnete endtidale Sevofluran-Konzentrationen und die entsprechenden Bispektral Index-Werte eines Patienten

Es kann je ein Indexwert während der Anflutung und während der Abflutung für ein- und dieselbe gemessene endtidale Konzentration von Sevofluran abgelesen werden (Abb. 3). Das bedeutet, dass trotz der Messung der gleichen endtidalen Konzentration sich unterschiedliche Aussagen über die Narkosetiefe im EEG treffen lassen, was auf die oben genannte Hysterese zurückzuführen ist. Daher ist eine eindeutige Zuordnung von endtidaler Narkosegaskonzentration und gemessener Narkosetiefe am Effektort nicht unmittelbar möglich.
1.4.2.3 Bestimmung der Äquilibrationskonstante k_{e0}

Sowohl modellabhängige als auch modellunabhängige Herangehensweisen sind für die Beschreibung der Dosis-Wirkungs-Kurve und für die Berechnung der zeitlichen Transferkonstante k_{e0} (Äquilibrationskonstante) verwendet worden. In der Regel erfolgt die Bestimmung von k_{e0}-Werten im Rahmen eines PK/PD-Modells mit Hilfe von zuvor antizipierten Dosis-Wirkungskurven. Ein Beispiel für einen parametrischen Ansatz ist die Berechnung von k_{e0} durch ein PK/PD-Modell (Sheiner et al., 1979; Rehberg et al., 1999; Ropcke et al., 2001; Ellerkmann et al., 2004), bei denen die Wechselbeziehung zwischen berechneter Effektkompartiment-Konzentration und der Wirkung am Effektort unter Verwendung eines einfachen sigmoidalen E_{max}-Modells (Hill- Gleichung) (Hill, 1910) beschrieben wird. In jüngerer Vergangenheit wurde ein bi-sigmoidales Modell eingeführt, um die Korrelation zwischen EEG-Indices und Anästhetikakonzentrationen zu verbessern (Ellerkmann et al., 2006; Kreuer et al., 2004; Kreuer et al., 2008a; Kreuer et al., 2008b). Diese bi-sigmoidale Kurve berücksichtigt ein pharmakodynamisches Plateau (Olofsen und Dahan, 1999), das vor dem Auftreten von „burst suppression“ zutage tritt. Jedoch unterscheiden sich die errechneten k_{e0}-Werte, die verwendet werden, um die Daten zu „fitten“, in Abhängigkeit des zugrunde-liegenden PK/ PD-Modells (Ellerkmann et al., 2006; Kreuer et al., 2008a; Kreuer et al., 2008b). Desweiteren wurde in Frage gestellt, ob das in der Dosis-Wirkungs-Kurve gesehene Plateau physiologisch oder durch die falsche Verwendung von sigmoidalen oder bi-sigmoidalen Modellen zum „Fitten“ der gesammelten Daten sogar künstlich erzeugt sein könnte. Demgegenüber sind modellunabhängige Ansätze zum „Fitten“ der Daten unabhängig von einem zuvor ausgewählten Modell (sigmoidal oder bi-sigmoidal) (Fuseau und Sheiner, 1984; Unadkat et al., 1986; Verotta und Sheiner, 1987).
1.5 Ziele dieser Arbeit

Die vorliegende Arbeit hatte die Zielsetzung, ohne ein zugrunde liegendes sigmoidales oder bi-sigmoidales pharmakokinetisch/pharmakodynamisches Modell (PK/PD-Modell) eine model-unabhängige Berechnung des Äquilibriationskoeffizienten k_{e0} für die volatilen Inhalationsanästhetika Isofluran, Sevofluran und Desfluran zu erarbeiten. Dabei wurde k_{e0} durch Optimierung bzw. Maximierung der Prediction Probability P_k und durch Minimierung der Fläche unter der Hystereseschleife ermittelt.
2. Grundlagen

2.1 Volatile Inhalationsanästhetika

Die verschiedenen Hypnotika sind eine sehr heterogene Gruppe, die sich in ihrer chemischen Struktur und Herkunft unterscheiden. Gemeinsam haben sie als ZNS-wirksame Pharmaka die Eigenschaft, neurophysiologisch Einfluss auf das Wachbewusstsein zu nehmen.

Abb. 4: Verdampfer mit Inhalationsanästhetika (Sevofluran, Isofluran)
Heute kommen vor allem die volatilen Inhalationsanästhetika der Flurane zum Einsatz, die aufgrund ihrer vorteilhaften pharmakologischen Eigenschaften breite Anwendung finden. Zu den Fluranen zählen Enfluran, Isofluran, Sevofluran und Desfluran sowie Methoxyfluran.

Volatile Inhalationsanästhetika werden dem inspiratorischen Gasgemisch (Sauerstoff/Druckluft oder Sauerstoff/Lachgas) beigemischt und durch den Patienten eingeadmet und so dem Organismus zugeführt. Durch Diffusion gelangen die volatile Narkotika aus den Alveolen der Lunge ins Blut und erreichen als gelöste Substanzen über den Blutstrom ihren Wirkort im ZNS, bevor sie anschließend zum größten Teil wieder pulmonal eliminiert werden.

2.1.1 Eigenschaften der Flurane

2.1.2 Wirkungsmechanismus der volatilen Inhalationsanästhetika

Bis heute sind die einzelnen pharmakologischen Wirkungsmechanismen, die zu einer reversiblen Minderung neuronaler Aktivität führen, nur unzureichend geklärt. Aufgrund der Tatsache, dass Narkotika pharmakologisch gesehen eine ausgesprochen heterogene Wirkstoffgruppe darstellen, ist eine einheitliche und konsistente Theorie des Wirkungsmechanismus einer Narkose eher abwegig. Verschiedene Erklärungstheorien, wie die der biophysikalischen (Lipidtheorie) und der biochemischen Theorie (Protein- bzw. Rezeptortheorie), werden diskutiert.

2.2 Pharmakokinetik volatiler Inhalationsanästhetika

2.2.1 Pharmakokinetisches Basismodell

2.2.2 Verteilungskoeffizienten volatiler Inhalationsanästhetika

Inhalationsanästhetika haben den großen Vorteil der guten Steuerbarkeit, da sie relativ schnell an- und abfluten. Die Geschwindigkeit, mit der der Übertritt von der Alveole ins Blut stattfindet, hängt zum einen von der inspiratorischen Konzentration ab (je höher die Konzentration in der Alveolarluft, desto höher das Konzentrationsgefälle zwischen Luft und Blut und desto schneller

Ein Blut-Gas-Verteilungskoeffizient beispielsweise von 0,45 für Desfluran bedeutet, dass im Steady-State-Zustand die Konzentration von Desfluran im Blut 45% der Konzentration in der Alveolarluft entspricht.

2.3 Pharmakodynamik volatiler Inhalationsanästhetika

2.3.1 MAC-Werte als Ausdruck der Pharmakodynamik volatiler Anästhetika

Um die Potenz bzw. Wirksamkeit volatiler Anästhetika zu vergleichen und eine Steuerung der Narkose interindividuell abzustimmen diente der MAC-Wert als indirektes Maß für die Wirkstärke. Diese sogenannte minimale alveoläre Konzentration (MAC) gibt damit ein Maß für die dosisabhängige Wirkungsstärke der Inhalationsanästhetika an. Der meist als MAC50 angegebene Wert eines Inhalationsanästhetikums definiert die minimale alveoläre Konzentration, bei der 50% der Patienten auf einen Schmerzstimulus, z.B. eine chirurgische Hautinzision, nicht reagieren. Daher galt der MAC-Wert in der Vergangenheit als Maß für die Narkosetiefe. Rampil et al. konnten allerdings in Versuchen an Ratten (Rampil, 1994; Rampil et al., 1993) sowie Antognini und Schwartz an Ziegen (Antognini und Schwartz, 1993) zeigen, dass es sich bei einer Bewegungsantwort auf einen schmerzhaften Reiz nicht um eine kortikale, sondern um eine spinale
Reaktion handelt. Die MAC-Werte spiegeln also kein Maß für die hypnotische Komponente einer Allgemeinanästhesie wieder, sondern sind lediglich ein Maß für die Unterdrückung von spinalen Reaktionen (Kreuer et al., 2007).

2.3.2 EEG-Analyse mittels Fast-Fourier-Transformation

Abb. 5: Vereinfachte schematische Darstellung einer EEG- Analyse mittels Fast-Fourier-Transformation (FFT) durch Zerlegung von Hirnaktivitätsmuster im EEG in einfache Sinusschwingungen sowie zugrundeliegenden Frequenz- und Amplitudenanteile

2.3.3 Bispectral-Index-Scale (BIS)

Der Bispektral-Index (BIS) basiert auf dem Monitorsystem BIS A-2000 XP™ der Firma Covidien (Abb. 6) und ist der bisher am besten untersuchte Hypnoseindex in der Literatur. Der BIS-Index stellt einen komplexen Parameter dar, der neben dem Leistungsspektrum auch das Phasenspektrum (Bispektalanalyse) bei der Berechnung des Bispektral-Index (BIS) integriert (Sigl und Chamoun, 1994; Rampil, 1998).

Abb. 6: Monitorsystem BIS A-2000 XP™ der Firma Covidien

Ein wesentlicher Subparameter, der beim BIS-Index berücksichtigt wird, ist die sogenannte „Burst Suppression Ratio“ (siehe Grundlagen 2.3.4.) (Bruhn et al., 2000). Der genaue Algorithmus für die Berechnung des BIS sowie die Gewichtung der berücksichtigten Subparameter sind Eigentum der Firma Covidien und urheberrechtlich geschützt (Abb. 7).
Der BIS-Index zeigt enge Übereinstimmungen mit verschiedenen anderen Sedierungsscores (Gan et al., 1997), dem Sedierungsgrad durch verschiedene Anästhetika sowie intraoperativer Patientenmotorik und Erinnerungsbildung an (Glass et al., 1997). In mehreren Studien konnte auch gezeigt werden, dass durch Anwendung des BIS während Allgemeinanäthesien es zu Einsparungen im Verbrauch von Anästhetika (Johansen et al., 2000; Kreuer et al., 2003; Yli-Hankala et al., 1999) kommt und zudem verkürzte Aufwach- bzw. Überwachungszeiten in der postoperativen Phase generiert werden können (Gan et al., 1997; Johansen et al., 2000; Kreuer et al., 2003; Yli-Hankala et al., 1999).

Entscheidende Vorteile des BIS-Monitor-Systems bestehen in der selbständig durchgeführten Artefaktanalyse (Rampil, 1998) und das Erkennen der eingangsbeschriebenen „burst suppression“-Muster im Roh-EEG, die bei tieferen Narkoseniveaus auftreten (Bruhn et al., 2000). Der BIS wird als dimensionslose Zahl zwischen 0 und 100 angegeben, wobei 0 keine kortikale Aktivität („cortical silence“, isoelektrisches Nulllinien-EEG) und 100 völliger Wachzustand bedeuten.

Abb. 7: Schematische Darstellung des Algorithmus zur Berechnung des BIS-Index, einschließlich der Summe der berücksichtigten Subparameter wie z.B. der Burst-Suppression-Ratio (BSR). Der genaue Algorithmus für die Berechnung des BIS sowie die Gewichtung der berücksichtigten Subparameter sind Eigentum der Firma Covidien und urheberrechtlich geschützt.
In der folgenden Abbildung (Abb. 8) ist die Einteilung des BIS-Index nach klinischen Gesichtspunkten angegeben:

Abb. 8: Darstellung der Bispectral-Index-Scale (BIS). Der BIS ist angegeben als dimensionslose Zahl zwischen 0 und 100, hier in Zusammenschau des korrespondierenden klinischen Wachzustandes des Patienten bzw. typischer Veränderungen im EEG

Für eine ausreichende Narkosetiefe während chirurgischer Eingriffe werden vom Hersteller BIS-Wertezwischen 40-60 empfohlen (Glass et al., 1997; Kerssens et al., 2001).
2.3.4 Narkosespezifische EEG-Veränderungen und Burst Suppression

Die während einer Allgemeinanästhesie im EEG aufgezeichneten wellenförmigen Aktivitätsmuster sind Ausdruck der neuronalen Spannungsschwankungen im Kortex und entsprechen der hirnelektrischen Aktivität.

2.4 Pharmakokinetische Modellierung zur Bestimmung von Dosis-Wirkungs-Kurven

2.4.1 Wirkortäquilibrationskonstante k_{e0}

Für die Untersuchung von Dosis- Wirkungsbeziehungen volatiler Anästhetika bedient man sich der pharmakokinetischen und pharmakodynamischen Modellierung („fitten“), um innerhalb eines ausgewählten Modells erfasste Datensätze parametrisch anzugeben und zu berechnen.

Empirische PK/PD- Modelle veranschaulichen dabei die Pharmakokinetik volatiler Anästhetika in den verschiedenen definierten Körperkompartmenten bis zu ihrem Wirkungseintritt im ZNS. Zur parametrischen Bestimmung der zeitlichen Verzögerung (Hysterese) bis zum Erreichen eines Konzentrationsausgleiches (steady state) zwischen zentralem Kompartiment (Plasma als Trägermedium) und Effektkompartment (Gehirn als Wirkort) in der Äquilibrationsphase der volatilen Anästhetika dient die Transferkonstante k_{e0}, welche einen Transportprozess 1. Ordnung entlang des Konzentrationsgefülles zwischen Plasma und Wirkort beschreibt.

2.4.2 Dosis-Wirkungsbeziehungen zwischen volatilen Inhalationsanästhetika und BIS-Index

Bei der Bestimmung individueller k_{e0}-Werte zeigte sich in der graphischen Gegenüberstellung der endtidalen gemessenen Konzentration und des EEG-Effektes, hier dem simultan aufgezeichneten Bispektral-Index, die Ausbildung einer Hystereseschleife. Insbesondere bei schnellen Konzentrationsveränderungen der Anästhetika während der An- und Abflutungsphase konnte aufgrund der beschriebenen Hysteresschleife verdeutlicht werden, dass sich die endtidale Konzentration nicht als zuverlässiger Parameter für die Beurteilung der Narkosetiefe eignet. Durch die Berrechnung der Effektkompartment-Konzentration mithilfe des k_{e0}-Werts kollabiert die Hystereseschleife und erlaubt weiterführende parametrische Berechnungen bei der Untersuchung der Pharmakokinetik und Pharmakodynamika volatiler Inhalationsanästhetika.

Um den Effekt eines Anästhetikums am Wirkort näher zu beurteilen, wird üblicherweise eine Dosis-Wirkungs-Kurve erstellt, bei der die berechnete Effektkompartment-Konzentration wiederum gegen den im zeitlichen Verlauf gemessenen BIS-Wert aufgetragen wird. Klassischer-
weise wird dabei die erhaltene Dosis-Wirkungs-Kurve als sigmoidale, sog. Hill-Funktion angegeben (Hill, 1910).

2.4.3 Klassisches sigmoidales E_{max}-Modell (Hill-Gleichung)

Die Berechnung der Effektkompartiment-Konzentration (C_{eff}) und die beobachteten BIS-Werte im zeitlichen Verlauf erlauben unter Verwendung des klassischen sigmoidalen E_{max}-Modells die theoretische Ermittlung optimaler Dosis-Wirkungsbeziehungen für jede interindividuelle Messung. Diese ursprüngliche Modellierung bzw. das „Fitten“ der Daten im klassischen E_{max}-Modell erfolgte durch Bestimmung folgender Gleichung (Hill-Gleichung) (Hill, 1910):

$$E = E_{\text{max}} * C / (EC_{50} + C)$$ \hspace{1cm} \text{(Gleichung 2)}

Um eine verbesserte mathematische Anwendung bei nicht-linearen Dosis-Wirkungsbeziehungen zwischen Effektkompartiment-Konzentration (C_{eff}) und dem Bispektral-Index (E) zu erzielen, wurden neben einem Ausgangswert (E_0), der maximale Effekt (E_{max}), der C_{50}-Wert sowie ein Hillkoeffizient Lamda (λ) eingeführt (Abb. 9) und zu folgender Hill-Gleichung (Hill, 1910) weiter entwickelt:

$$E = E_0 + (E_{\text{max}} - E_0) * \left[C_{\text{eff}}^\lambda / (EC_{50}^\lambda + C_{\text{eff}}^\lambda) \right]$$ \hspace{1cm} \text{(Gleichung 3)}

Der E_0-Wert beschreibt hierbei den Ausgangswert ohne EEG-Effekt, der E_{max}-Wert hingegen den EEG-Indexwert bei einer maximalen Anästhetikum-Wirkung und der C_{50}-Wert die Anästhetika-konzentration, bei der 50% des maximalen EEG-Effekts gemessen werden. Der λ-Wert beschreibt die Steilheit der Dosis-Wirkungs-Kurve. Die Effektkompartiment-Konzentration C_{eff} wurde mithilfe des k_{e0}-Werts ermittelt.
Abb. 9: Sigmoidaler Verlauf der Dosis-Wirkungsbeziehung zwischen Bispektral Index und der Effektkompartiment-Konzentration eines Hypnotikums. \(E_0 \) = Ausgangswert ohne EEG-Effekt; \(C_{50} \) = Anästhetikakonzentration, bei der 50% des maximalen EEG-Effekts gemessen werden; \(\lambda \) = Steilheit der Dosis-Wirkungs-Kurve; \(E_{\text{max}} \) = maximaler EEG-Indexwert

2.4.4 Plateaueffekt und bi-sigmoidales Modell

Anhand der klassischen sigmoidalen Modellierung (Hill-Gleichung) (Hill, 1910) war es jedoch nicht möglich, das beobachtete Plateau zu integrieren und auftretende Burst Suppression bei der Beschreibung von Dosis-Wirkungs-Kurven zu berücksichtigen. Daraufhin wurde das klassische sigmoidale Modell durch Kreuer et. al. (KreuerBruhn et al., 2004) modifiziert und um eine zweite sigmoidale Kurve erweitert (bi-sigmoidales Modell).
Die Berechnung des bi-sigmoidalen Modells erfolgt mit der folgenden Gleichung:

Für $C_{\text{eff}} \leq C_{\text{plateau}}$:

$$E = 99 - (99 - E_{\text{plateau}}) \times C_{\text{eff}}^{\lambda_{\text{noBSR}}} / \left[\left(C_{50\text{noBSR}}^{\lambda_{\text{noBSR}}} + C_{\text{eff}}^{\lambda_{\text{noBSR}}}\right)\right]$$

(Gleichung 4)

Für $C_{\text{eff}} > C_{\text{plateau}}$:

$$E = E_{\text{plateau}} - E_{\text{plateau}} \times \left(\left(C_{\text{eff}} - C_{\text{plateau}}\right)^{\lambda_{\text{BSR}}} / C_{50\text{BSR}}^{\lambda_{\text{BSR}}} + (C_{\text{eff}} - C_{\text{plateau}})^{\lambda_{\text{BSR}}}\right)$$

Hierbei gilt:

C_{plateau} = Konzentration des Plateaus
E_{plateau} = EEG-Effekt im Bereich des Plateaus
$C_{50\text{noBSR/BSR}}$ = Konzentration, bei der 50% des maximalen Effekts vorliegen
$\lambda_{\text{noBSR/BSR}}$ = Steilheit der Dosis-Wirkungs-Kurve
BSR = Burst- Suppression-Ratio

Jede Kurve kann damit für sich parametrisch als sigmoidale Funktion angegeben werden und erlaubt das „Fitten“ von Daten über die gesamte Narkosebreite, einschließlich bis zum Einsetzen von Burst Suppression.
2.5 Modellunabhängige Untersuchungen zu Dosis-Wirkungsbeziehungen

2.5.1 Modellunabhängiger Ansatz zur Berechnung von Dosis-Wirkungs-Kurven

2.5.2 Prediction Probability (P_k) und P_k-Wert-Optimierung

Die Prediction Probability (P_k) (Smith et al., 1996b) ist zu einer fest stehenden Messgröße geworden, um die Leistungsfähigkeit von Monitoren zur Beurteilung der Narkosetiefe zu bestimmen (Ellerkmann et al., 2004; Ellerkmann et al., 2006; Vanluchene et al., 2004; Schmidt et al., 2002; Kreuer et al., 2004). P_k ist zum Zweck einer Erfolgsmessgröße zweier Datenbanken entwickelt worden, die polytonaler (mehrwertiger) Ordnung sind, wobei die eine Datenbank die Datenwerte der zweiten Datenbank voraussagen soll (Smith et al., 1996a).

In dieser Arbeit gibt der P_k-Wert die Vorhersagewahrscheinlichkeit von EEG- Indizes für die Effektkompartiment-Konzentration C_{eff} an. Der P_k-Wert ist dabei eine modellunabhängige Messgröße und von der Skalierung der zu untersuchenden Werte unabhängig. Bei zwei will-
kürlich bestimmten Datenpunkten mit den entsprechenden Anästhetikakonzentrationen beschreibt die Prediction Probability P_k, mit welcher Wahrscheinlichkeit der EEG-Parameter richtig wiedergibt, welcher der beiden Punkte derjenige mit der höheren bzw. niedrigeren Anästhetikakonzentration ist (Smith et al., 1996b). Er ist definiert als:

$$P_k = \frac{(P_c+0.5+P_{tx})}{(P_c+P_d+P_{tx})}$$ \hspace{1cm} \text{(Gleichung 5)}

wobei P_c, P_d und P_{tx} die Einzelwahrscheinlichkeiten repräsentieren, dass zwei zufällig aus einer Gesamtheit gezogenen Datenpunkte konkordant (P_c), diskordant (P_d) oder x-only tie (P_{tx}) sind (Luginbuhl und Schnider, 2002).

Ein P_k-Wert von 1 würde eine 100%ige Vorhersagewahrscheinlichkeit der Indexwerte für die Effektkompartment-Konzentration bedeuten, ein P_k-Wert von 0,5 entspricht einer 50/50-Chance. Der P_k-Wert kann zur Bestimmung der Effektkompartment-Konzentration bestimmt werden, indem der P_k-Wert für verschiedene k_{e0}-Werte berechnet wird. Der P_k-Wert ist maximal, wenn k_{e0} so gewählt wird, dass jedem BIS-Wert nur ein C_{eff}-Wert zugeordnet werden kann. Trägt man den P_k-Wert gegen den k_{e0}-Wert auf, kommt es zu einem Anstieg des P_k-Werts bis zu einem Maximum und einem anschließenden Abfall (vgl. Abb. 10 E, 11 E, 12 E). Der P_k-Wert wäre immer dann optimal hoch, wenn kein pharmakodynamisches Plateau existiert.

In dieser Arbeit zugrundeliegenden Studie werden k_{e0}-Werte durch Maximierung des P_k-Wertes bestimmt.

2.5.3 Minimierung der Fläche unter der Hystereseschleife

Die graphische Gegenüberstellung der endtidalen Konzentration eines volatilen Anästhetikums und einem EEG-Index-Wert führt zu einer Hystereseschleife, die sich als Fläche darstellt. Diese Fläche lässt sich durch die Berechnung der Effektkompartment-Konzentration mittels eines ausgewählten k_{e0}-Wertes minimieren. Umgekehrt kann zur Bestimmung eines k_{e0}-Wertes die Fläche unter der Hystereseschleife minimiert werden.

In dieser Arbeit zugrundeliegenden Studie wurden k_{e0}-Werte durch Minimierung der Fläche unter der Hystereseschleife bestimmt.
3. Patienten und Methodik

3.1 Prinzipien der Durchführung

Die in dieser Dissertation verwendeten Datensätze basieren auf 3 bereits veröffentlichten Studien (Kreuer et al., 2004; Kreuer et al., 2008a, 2008b). Die Studien erfolgten nach Zustimmung durch die Ethikkommission der Medizinischen Fakultät der Universität Homburg Saar. In der Studienreihe wurden die volatilen Inhalationsanästhetika Sevofluran, Isofluran und Desfluran bei 45 Patienten untersucht, die sich einer radikalen Prostatektomie unterziehen mussten. Ziel der Untersuchungen war es, Dosis-Wirkungs-Kurven für den BIS – Monitor zu erstellen und die kₙ₀- Werte für die 3 verschiedenen volatilen Anästhetika zu berechnen. Untersucht wurden jeweils 15 Patienten für Isofluran, Sevofluran und Desfluran.

Das Prinzip zur Erfassung der Datensätze bestand darin, bei Patienten die endtidale Konzentration der zu untersuchenden volatilen Inhalationsanästhetika in einem standardisierten Verfahren zu variieren und gleichzeitig über Frontalableitung den Bispektral Index (BIS) aufzuzeichnen, um die jeweiligen Dosiswirkungsbeziehungen zu ermitteln.

Um den Dosiswirkungsverlauf des Bispektral Index im EEG in Abhängigkeit von verändernden Effektkompartiment-Konzentrationen zu erfassen, wurde die Narkosegaskonzentration standardisiert erhöht und wieder reduziert.

Da der EEG-Effekt ohne Interaktion mit einem Opioid untersucht werden sollte, wurde bei allen Patienten ein Periduralkatheter (PDK) angelegt, der intraoperativ mit 15 ml 0,5%igem Bupivacain beschickt wurde. Dadurch konnte intraoperativ eine vollständige Schmerzfreiheit ohne den Einsatz von Opioiden gewährleistet werden. Die Narkoseeinleitung erfolgte durch eine intravenöse Applikation des Hypnotikums Propofol.

3.2 Datenübertragung und Ableitungsform

Der elektrische Widerstand zwischen Haut und Elektroden wurde durch die automatische Sensorkontaktprüfung nach Angaben des Herstellers für BIS < 7,5 kΩ gehalten.

3.3 Apparaturen und Materialen

Das Elektroenzephalogramm wurde unter Verwendung eines Aspect A-2000 BIS Monitor (Covidien, USA, version XP) und den dazugehörigen BIS-Messelektroden (BIS-XP sensor; Covidien, USA) aufgezeichnet.

Die endexspiratorischen Gaskonzentrationen von Isofluran, Desfluran und Sevofluran wurden mittels der Technologie der Infrarot- Absorption gemessen (PM 8050; Dräger, Lübeck, Schleswig-Holstein, Germany).

Die Prediction Probability (P_k) wurde unter Verwendung des Exel-Softwareprogramms PKMACRO berechnet.

Die Studiendaten wurden unter Verwendung der Software Programme Proto 99 (Version 1.02.0; Dräger) für die Messungen der endtidalen Konzentrationen und Hyperterminal (Microsoft, Remond, VA) für die Messungen der BIS-Werte aufgezeichnet.

Die statistische Auswertung erfolgte unter Verwendung der Computersoftware SigmaStat 2.03 und SigmaPlot 2000 (SPSS Inc., Erkrath, Germany).

Das Patientenmonitoring beinhaltete neben der Aufzeichnung des BIS die kontinuierliche Aufzeichnung des EKGs, die nicht- invasive automatische Blutdruckmessung alle 3 min, die in- und exspiratorischer Messung der Konzentrationen von O₂, CO₂ und des volatilen Anästhetikums sowie die Messung der pulsoxymetrischen Sauerstoffsättigung.
3.4 Patientenauswahl

Nach ausführlicher Aufklärung und schriftlicher Einwilligungserklärung wurden in der Studienreihe insgesamt 45 Patienten im Alter von 56 bis 72 Jahren untersucht, die sich einer radikalen Prostatektomie unterziehen mussten.

In der präoperativen Risikoevaluierung nach der Klassifikation der American Society of Anesthesiologists (ASA) entsprachen alle Patienten der ASA-Klasse I oder II, d.h. es handelte sich um ein Patientengut ohne Vorerkrankungen bzw. mit lediglich leichten Vorerkrankungen.

<table>
<thead>
<tr>
<th>Klassifikation</th>
<th>Patientencharakteristik</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA I</td>
<td>Patient ohne organische Erkrankung oder Störung des Allgemeinbefindens</td>
</tr>
<tr>
<td>ASA II</td>
<td>Patient mit leichter Allgemeinerkrankung ohne Leistungseinschränkung</td>
</tr>
<tr>
<td>ASA III</td>
<td>Patient mit schwerer Allgemeinerkrankung mit Leistungseinschränkung</td>
</tr>
<tr>
<td>ASA IV</td>
<td>Patient mit lebensbedrohlicher Allgemeinerkrankung</td>
</tr>
<tr>
<td>ASA V</td>
<td>Moribunder Patient, der mit oder ohne Operation 24 Std. voraussichtlich nicht überleben wird</td>
</tr>
<tr>
<td>ASA VI</td>
<td>Hirntoter Patient oder Organspender</td>
</tr>
</tbody>
</table>

Tab. 2: Klassifikation der American-Society-of-Anesthesiology (ASA) zur Abschätzung des perioperativen Risikos
3.4.1 Einschlusskriterien

- Patienten der ASA-Klassifikation I – II
- Alter zwischen 56 und 72 Jahren

3.4.2 Ausschlusskriterien

Ausschlusskriterien für die durchgeführten Studien waren alle in der Anamnese enthaltenen Erkrankungen und Medikamente, die möglicherweise mit einer Veränderung des spontanen Roh-EEGs oder der Empfindlichkeit des ZNS gegenüber Anästhetika einhergehen und somit zu nicht repräsentativen Dosis-Wirkungs-Kurven führen können. Insbesondere zählen zu diesen:

- Erkrankungen des Zentralen Nervensystems
- Kardiovaskuläre Erkrankungen
- Einnahme von ZNS-wirksamen Substanzen (Medikamente, Drogen, Alkohol etc.)
- Hypo-/Hyperthyreose

3.5 Prämedikation

Zur Prämedikation erhielten alle Patienten 45 Minuten vor der Einleitung der Narkose 7,5 mg Midazolam oral.

3.6 Durchführung

Die Vorbereitung des Patienten für die klinische Studie erfolgte im Zeitfenster zwischen Eintreffen des Patienten in der Einleitung und Transport in den OP-Saal.

Vor Beginn der Messung wurde zunächst die Haut der Stirnpartie des liegenden Patienten mit 70% Isopropanol (Desinfektionsalkohol) gereinigt, um die auf der Hautoberfläche befindlichen Fett, Schweiß und Staubpartikeln zu reduzieren. Dies diente der Zielsetzung, den elektrischen
Widerstand zu verringern und die Übertragung des EEG- Signals zu verbessern. Im Anschluss wurde wie vom Hersteller angegeben, die BIS- Messelektrode aufgeklebt und das Verbindungskabel an den zugehörigen BIS- Monitor angeschlossen.

Nach der automatischen Kalibrierung und Kontakprüfung des Sensors durch den BIS- Monitor erfolgte der Beginn der Datenaufzeichnung. Durch die Betätigung des „Flush“ (Durchspülen der Atemgasleitungen mit \(O_2 \)) wurden eventuell noch vorhandene Restmengen eines zuvor verwendeten abweichenden Inhalationsnarkotikums aus dem Beatmungsgerät entfernt.

Der Patient wurde zunächst für ca. 5 min mit 100 % Sauerstoff durch eine vor Mund und Nase gehaltene Maske präoxygениert, die der \(O_2 \)- Aufsättigung des Patienten diente. Zeitgleich wurde dabei ein Ruhe- EEG des Patienten aufgezeichnet.

Die Einleitung der Anästhesie erfolgte intravenös durch Remifentanil in einer Dosierung von 0,4 \(\mu g/kg/min \) und ca. 5 min nachfolgend durch das Hypnotikum Propofol in einer Dosierung von 2,0 mg/kg. Nach Ausschaltung des Bewusstseins wurde der Patient manuell über einen Beatmungsbeutel mit Sauerstoff ventiliert. Die Patienten erhielten zudem intravenös das Muskelrelaxans Atracurium in einer Dosierung von 0,5 mg/kg. Nach weiteren 3 Minuten erfolgte die endotracheale Intubation und maschinelle Beatmung mit dem Ziel einer endtidalen \(CO_2 \)- Konzentration von 35 mmHg. Unmittelbar nach der Intubation wurde die Infusion mit Remifentanil gestoppt und der Patient in den OP- Saal geschoben.

Um den EEG- Effekt ohne Interaktion mit einem Opioid untersuchen zu können, wurde bei allen Patienten vor Einleitung der Narkose ein Periduralkatheter (PDK) im lumbalen Bereich angelegt, der präoperativ mit einer Testdosis von 3 ml 0,5%igem Bupivacain beschickt wurde. Nach der vollständigen Einleitung der Anästhesie erhielten die Patienten 12 ml 0,5% Bupivacain über den PDK, um eine intraoperative Analgesie sicherzustellen. Um eine komplette neuromuskuläre Blockade zu erzielen, wurden während der Operation wiederholt Injektionen von 0,25 mg/kg Atracurium intravenös vorgenommen. Zur Überwachung der neuromuskulären Blockade diente die Aufzeichnung des NMT (neuromuskuläre Transmission) anhand des TOFs (train-of-four). Zur Aufrechterhaltung und Fortführung der Narkose erhielten die Patienten nun die zu untersuchenden volatile Inhalationsanästhetika Sevofluran, Isofluran und Desfluran bei einem Frischgaszufluss (Flow) von 1,5 l/min in der Zusammensetzung von 0,5 l/min \(O_2 \) und 1 l/min Frischluft.
3.7 Erhebung der Studiendaten

Die Messungen wurden mit einer anfänglichen endtidalen Konzentration von 0,5 vol % für Isofluran, 1,0 vol % für Sevofluran und 3,0 vol % für Desfluran begonnen. Anschließend wurde der Vaporisator bis zu einem Konzentrationsmaximum von jeweils 5 vol %, 8 vol % bzw. 14 vol % eingestellt, bis eine endtidale Konzentration von 2,3 vol %, 4 vol % oder 10 vol % für das jeweilige volatile Anästhetikum Isofluran, Sevofluran und Desfluran erreicht wurde. Anschließend wurde der Vaporisator solange verschlossen (0 vol % Konzentration), bis die endtidale Konzentration wieder Werte von 0,5 vol %, 1,0 vol % oder 3,0 vol % oder ein BIS-Wert von 60 erreicht wurde. Nach 15 min wurde dieses Verfahren in gleicher Vorgehensweise ein zweites Mal wiederholt.

3.8 Statistische Auswertung

Die gespeicherten BIS-Daten wurden in das Programm Excel 97 von Microsoft (Redmond, VA, USA) überführt und ausgewertet. Die Dimension der endtidalen Atemgaskonzentration wurde in
(Vol%) angegeben. Die modellunabhängige Berechnung von \(k_{e0}\)-Werten erfolgte durch zwei Herangehensweisen:

- Maximierung der Vorhersagewahrscheinlichkeit (Prediction Probability, \(P_k\)-Wert)
- Minimierung der Fläche unter der Hystereseschleife

3.8.1 Berechnung der \(k_{e0}\)-Werte durch Maximierung der Prediction Probability (\(P_k\))

In einem ersten Schritt wurden die angesetzten Effektkompartiment-Konzentrationen entsprechend folgender Gleichung berechnet:

\[
C_{\text{eff}}(\text{now}) = C_{\text{et}}(\text{now}) + [(C_{\text{eff}}(\text{prior}) - C_{\text{et}}(\text{now})) \cdot e^{k_{\text{e0}} \cdot (t_{\text{now}} - t_{\text{prior}})}] \\
\text{(Gleichung 6)}
\]

Dabei ist \(C_{\text{eff}}(\text{now})\) die angesetzte Effektkompartiment-Konzentration der gegenwärtigen Zeit, \(C_{\text{et}}(\text{now})\) die gemessene endtidale Konzentration der gegenwärtigen Zeit (bei der angenommen wird, dass sie über das Zeitintervall \(t_{\text{now}} - t_{\text{prior}}\) konstant bleibt), \(C_{\text{eff}}(\text{prior})\) ist die berechnete Effektkompartiment-Konzentration des vorherigen Datenpunktes (in unserer Untersuchung wurde ein Datenpunkt alle 5 Sekunden aufgezeichnet) und \(k_{\text{e0}}\) ist die zeitliche Transferkonstante in \(\text{min}^{-1}\) für die Umschalung zwischen endtidaler und Effektkompartiment-Konzentration. Da die Erstellung der Daten in einem Zeitintervall von 5 sec erfolgte, wurde dem Terminus \((t_{\text{now}} - t_{\text{prior}})\) in der gesamten Berechnung ein Wert von 5 sec bzw. \(1/12 \text{[min]}\) zugeordnet. Die Berechnungen wurden mit Hilfe der Excel-Software durchgeführt.

Es wurden hypothetische Effektkompartiment-Konzentrationen für folgende \(k_{e0}\)-Werte berechnet: 0.05; 0.06; 0.07 … 0.3; 0.4; 0.5; … 1.2 \text{min}^{-1}. Diese Berechnung führte zu 35 verschiedenen Datensätzen hypothetischer Effektkompartiment-Konzentrationen mit den entsprechenden gemessenen BIS- Werten für jeden Patienten.

In einem zweiten Schritt wurde die Prediction Probability (\(P_k\)) wie von Smith et al. (Smith et al., 1996b) beschrieben, berechnet. \(P_k\) wurde unter Verwendung der Excel-Software PKMACRO für jeden der 35 Datensätze berechnet.

In einem dritten Schritt ermittelten wir unter den 35 Datenpaaren die höchste Prediction Probability für jeden Patienten (Abbildung 10 E, 11 E, 12 E) und somit die entsprechenden \(k_{e0}\)-
Werte, die für die Beschreibung der Dosis-Wirkungsbeziehung zwischen den untersuchten volatilen Anästhetika und BIS für jeden einzelnen Patienten individuell als optimal definiert werden konnte.

Die Abbildungen 10-12 zeigen die Auswirkung verschiedener k_{et}-Werte auf die berechneten Effektkompartiment-Konzentrationen der volatilen Anästhetika und die korrespondierenden Dosis-Wirkungs-Kurven.

Wählt man einen hypothetischen k_{et}-Wert zu hoch, wird eine sofortige Umverteilung zwischen endtidaler und Effektkompartiment-Konzentration, wie in Abb. 10B, 11B und 12B für einen k_{et}-Wert von 1 min⁻¹ dargestellt, angenommen und die endtidale Konzentration gleicht sich umgehend der Effektkompartiment-Konzentration an, so dass die Hystereseschleife nicht kollabiert. Wählt man dagegen k_{et} zu klein, ist davon auszugehen, dass die Umverteilung zwischen C_{et} und C_{eff} nur sehr langsam geschieht und die resultierende Dosis-Wirkungs-Kurve (Abb. 10D, 11D, 12D) sich überschneidet. Damit konnte gezeigt werden, dass sowohl zu hoch als auch zu niedrig gewählte Werte für k_{et} eine direkte Auswirkung auf P_k haben (Abb. 10 E, 11 E, 12E). Aus diesem Grund erfolgte die Ermittlung optimaler k_{et}-Werte durch die Maximierung der Prediction Probability P_k.

3.8.2 Berechnung von k_{et}-Werten durch Minimierung der Fläche unter der Hystereseschleife

Parallel wurden in einem zusätzlichen Ansatz weitere k_{et}-Werte für volatile Anästhetika berechnet. In einer Tabellenkalkulation wurde unter Zuhilfenahme des Softwareprogramms Excel 2000 die Fläche unter der Hystereseschleife berechnet. In einem ersten Schritt wurden die Effektkompartiment-Konzentrationen in Anlehnung an Gleichung 1 für folgende k_{et}-Werte berechnet: 0.05; 0.06; 0.07 … 0.3; 0.4; 0.5 … 1.2 min⁻¹. Diese Vorgehensweise führte zu 35 Datensätze hypothetischer Effektkompartiment-Konzentrationen und ihren korrespondierenden gemessenen BIS-Werten für jeden Patienten.
Die Summe, die die Fläche unter der Hystereseschleife ergibt, wurde für jedes der 35 Datensätze mit folgender Gleichung berechnet:

\[\sum_{i=1}^{n} (\text{BIS}_i - \text{BIS}_{\text{Ceff}(i)})^2 \]

(Gleichung 7)

Wobei \(n \) die Anzahl der gemessenen BIS-Werte bezeichnet, \(\text{BIS}_i \) ist der \(i \)-te gemessene BIS-Wert und \(\text{BIS}_{\text{Ceff}(i)} \) ist der durchschnittliche BIS-Wert aller BIS-Werte, die bei der gleichen Effekt-kompartiment-Konzentration (\(\text{C}_{\text{eff}} \)) gemessen wurden. Die berechneten \(\text{C}_{\text{eff}} \)-Werte leiteten sich über die Gleichung 1 her und wurden bis zu einer Dezimale hinter dem Komma aufgerundet.

3.8.3 Statistische Auswertung

Die statistische Auswertung erfolgte unter Verwendung der Computersoftware SigmaStat 2.03 und SigmaPlot 2000 (SPSS Inc., Erkrath, Germany). Die statistische Berechnung erfolgte durch einen zweiarmigen Student’schen t-Test mit einer statistischen Signifikanz definiert mit \(p < 0.05 \), um \(k_{\text{eo}} \) Werte zu vergleichen, die durch Maximierung von \(P_k \) oder Minimierung der Fläche unter der Hystereseschleife gewonnen werden konnten. Die \(k_{\text{eo}} \)-Werte von Isofluran, Sevofluran und Desfluran wurden mit Zwischengruppen von ANOVA und des Tukey HSD post-hoc Test verglichen, da das Ergebnis der globalen ANOVA signifikant war. Falls nicht anders angezeigt, sind die Daten als Mittelwert und Standardabweichung angegeben.
4. Ergebnisse

Für alle Patienten konnten k_{e0}-Werte für Isofluran, Sevofluran und Desfluran modellunabhängig so bestimmt werden, dass entweder die Vorhersagewahrscheinlichkeit (P_k) maximiert oder die Fläche unter der Hystereseschleife minimiert wurde. Die Beziehung zwischen den in einem Bereich gewählten k_{e0}-Werten (0.05-1.2 min$^{-1}$) und der Prediction Probability P_k als auch der Fläche unter der Hystereseschleife sind für 3 verschiedene Patienten exemplarisch für Isofluran (Abb. 10 E und F), für Sevofluran (Abb. 11 E und F) und für Desfluran (Abb. 12 E und F) dargestellt.

Die berechneten k_{e0}-Werte für Isofluran waren unabhängig von der angewendeten Methode. Durch die Maximierung der Prediction Probability P_k wurde ein $k_{e0} = 0.18 \pm 0.06$ min$^{-1}$ bestimmt und durch die Minimierung der Fläche unter der Hystereseschleife wurde ein $k_{e0} = 0.15 \pm 0.04$ min$^{-1}$ bestimmt ($p = 0.14$). Desweiteren konnten zwischen beiden genannten Methoden keine für die Bestimmung der k_{e0}-Werte signifikanten Unterschiede für Sevofluran ($k_{e0} = 0.17 \pm 0.08$ min$^{-1}$ bei Maximierung der Prediction Probability und $k_{e0} = 0.16 \pm 0.11$ min$^{-1}$ bei Minimierung der Fläche unter der Hystereseschleife, $p = 0.73$) und Desfluran ($k_{e0} = 0.30 \pm 0.17$ min$^{-1}$ bei Maximierung der Prediction Probability und $k_{e0} = 0.32 \pm 0.25$ min$^{-1}$ bei Minimierung der Fläche unter der Hystereseschleife, $p = 0.46$) festgestellt werden.

Während für Isofluran und Sevofluran ($p = 0.97$) keine signifikanten Unterschiede zwischen den k_{e0}-Werten gefunden wurden, waren die k_{e0}-Werte für Desfluran im Vergleich zu Isofluran ($p = 0.02$) und Sevofluran ($p = 0.003$) signifikant höher. Die p-Werte sind für die statistische Auswertung der k_{e0}-Werte angegeben, die durch Maximierung von P_k ermittelt wurden.

Die k_{e0}-Werte, die entsprechend unserer modellunabhängigen Herangehensweise berechnet wurden, waren für Desfluran und Sevofluran im Vergleich niedriger als die k_{e0}-Werte, die in vorherigen Studien für die gleichen Datensätze durch das klassische sigmoidale oder bi-sigmoidale „Fitting“ hergeleitet wurden (vgl. Tabelle 3). Unsere modellunabhängig hergeleiteten k_{e0}-Werte waren jedoch näher an den k_{e0}-Werten des bi-sigmoidalen Modells als an denen des klassischen sigmoidalen Modells (vgl. Tabelle 3).

Die Beziehung zwischen Prediction Probability und k_{e0} als auch zwischen der Fläche unter der Hystereseschleife und k_{e0} ist für alle Patienten in Abb. 13 A und 13 B dargestellt.
Für alle Untersuchungen sind die Daten, die die Beziehung zwischen modelunabhängigen hergeleiteten Effektkompartiment-Konzentrationen und BIS zeigen, in den Abbildungen 14 A, B und C für das jeweilige volatile Inhalationsanästhetikum dargestellt. Die optische Inaugenscheinnahme deutet auf eine scheinbar bi-sigmoidale (nicht sigmoidale) Beziehung der Dosis-Wirkungs-Kurve für alle untersuchten volatile Inhalationsanästhetika hin.

<table>
<thead>
<tr>
<th>k_{e0} von</th>
<th>Modellabhängige Herangehensweise</th>
<th>Modellunabhängige Herangehensweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isofluran (min$^{-1}$)</td>
<td>Bissigmoidales Modell</td>
<td>Klassisches sigmoidales Modell</td>
</tr>
<tr>
<td>k_{e0} von Sevofluran (min$^{-1}$)</td>
<td>0.16 [±] 0.03 (Kreuer et al., 2004)</td>
<td>Nicht anwendbar</td>
</tr>
<tr>
<td>k_{e0} von Desfluran (min$^{-1}$)</td>
<td>0.19 [±] 0.08 (Kreuer et al., 2008)</td>
<td>0.25 [±] 0.22 (Kreuer et al., 2008)</td>
</tr>
<tr>
<td>k_{e0} von Desfluran (min$^{-1}$)</td>
<td>0.38 [±] 0.42 (Kreuer et al., 2008)</td>
<td>0.57 [±] 0.36 (Kreuer et al., 2008)</td>
</tr>
</tbody>
</table>

Tab. 3: Aufstellung von k_{e0} Werten in Abhängigkeit der gewählten Herangehensweise für die volatilen Inhalationsanästhetika Isofluran, Sevofluran und Desfluran. Die Werte sind als Mittelwert ± Standardabweichung angegeben.
Abb. 10 A: Bispetral-Index-Werte sind gegen die endtidale Isofluran-Konzentrationen aufgetragen. Die Abb. 10 A zeigt ein Beispiel eines narkotisierten Patienten mit steigender und sinkender Isofluran-Konzentrationen unter Ausbildung einer Hystereseschleife

Abb. 10 B: Erhaltene Dosis-Wirkungskurve für Isofluran durch Auftragen der Effektkompartiment-Konzentrationen gegen die BIS-Werte. Für den entsprechenden Datenersatz wurde ein k_{e0}-Wert = 1 min⁻¹ gewählt und die korrespondierenden Werte für P_k und die Fläche unter der Hystereseschleife errechnet
Abb. 10 C: Erhaltene Dosis-Wirkungskurve für Isofluran durch Auftragen der Effektkompartiment-Konzentrationen gegen die BIS-Werte. Für den entsprechenden Datenersatz wurde ein k_{e0}-Wert = 0.16 min⁻¹ gewählt und die korrespondierenden Werte für P_k und die Fläche unter der Hystereseschleife errechnet.

Abb. 10 D: Erhaltene Dosis-Wirkungskurve für Isofluran durch Auftragen der Effektkompartiment-Konzentrationen gegen die BIS-Werte. Für den entsprechenden Datenersatz wurde ein k_{e0}-Wert = 0.05 min⁻¹ gewählt und die korrespondierenden Werte für P_k und die Fläche unter der Hystereseschleife errechnet.
Abb. 10 E: Graphische Darstellung der Beziehung zwischen P_k und k_{e0} in Bezug auf alle berechneten Datensätze (k_{e0} zwischen 0.05 und 1.2 min$^{-1}$) für Isofluran.

Abb. 10 F: Graphische Darstellung der Beziehung zwischen der Fläche unter der Hystereseschleife und k_{e0} in Bezug auf alle berechneten Datensätze (k_{e0} zwischen 0.05 und 1.2 min$^{-1}$) für Isofluran.
Abb. 11 A: Bispektral-Index-Werte sind gegen die endtidalen Sevofluran-Konzentrationen aufgetragen. Abb. 11 A zeigt ein Beispiel eines narkotisierten Patienten mit steigenden und sinkenden Sevofluran-Konzentrationen, die zur Ausbildung einer Hystereseschleife führen.

Abb. 11 B: Erhaltene Dosis-Wirkungskurve für Sevofluran durch Auftragen der Effektkompartiment-Konzentrationen gegen die BIS-Werte. Für den entsprechenden Datenersatz wurde ein k_{e0}-Wert = 1 min-1 gewählt und die korrespondierenden Werte für P_k und die Fläche unter der Hypertreseseschleife errechnet.
Abb. 11 C: Erhaltene Dosis- Wirkungskurve für Sevofluran durch Auftragen der Effektkompartment-Konzentrationen gegen die BIS-Werte. Für den entsprechenden Datenersatz wurde ein k_{c0}-Wert = 0.16 min⁻¹ gewählt und die korrespondierenden Werte für P_k und die Fläche unter der Hystereseschleife errechnet.

Abb. 11 D: Erhaltene Dosis- Wirkungskurve für Sevofluran durch Auftragen der Effektkompartment-Konzentrationen gegen die BIS-Werte. Für den entsprechenden Datenersatz wurde ein k_{c0}-Wert = 0.05 min⁻¹ gewählt und die korrespondierenden Werte für P_k und die Fläche unter der Hystereseschleife errechnet.
Abb. 11 E: Graphische Darstellung der Beziehung zwischen P_A und k_{e0} in Bezug auf alle berechneten Datensätze (k_{e0} zwischen 0.05 und 1.2 min⁻¹) für Sevofluran.

Abb. 11 F: Graphische Darstellung der Beziehung zwischen der Fläche unter der Hystereseschleife und k_{e0} in Bezug auf alle berechneten Datensätze (k_{e0} zwischen 0.05 und 1.2 min⁻¹) für Sevofluran.

Abb. 12 B: Erhaltene Dosis- Wirkungskurve für Desfluran durch Auftragen der Effektkompartiment-Konzentrationen gegen die BIS-Werte. Für den entsprechenden Datener satz wurde ein k_{e0}-Wert = 1 min⁻¹ gewählt und die korrespondierenden Werte für P_k und die Fläche unter der Hystereseschleife errechnet.
Abb. 12 C: Erhaltene Dosis- Wirkungskurve für Desfluran durch Auftragen der Effektkompartment-Konzentrationen gegen die BIS-Werte. Für den entsprechenden Datenersatz wurde ein k_{eo}-Wert $= 0.4$ min$^{-1}$ gewählt und die korrespondierenden Werte für P_k und die Fläche unter der Hystereseschleife errechnet.

Abb. 12 D: Erhaltene Dosis- Wirkungskurve für Desfluran durch Auftragen der Effektkompartment-Konzentrationen gegen die BIS-Werte. Für den entsprechenden Datenersatz wurde ein k_{eo}-Wert $= 0.05$ min$^{-1}$ gewählt und die korrespondierenden Werte für P_k und die Fläche unter der Hystereseschleife errechnet.
Abb. 12 E: Graphische Darstellung der Beziehung zwischen P_k und k_{e0} in Bezug auf alle berechneten Datensätze (k_{e0} zwischen 0.05 und 1.2 min⁻¹) für Desfluran

Abb. 12 F: Graphische Darstellung der Beziehung zwischen der Fläche unter der Hystereseschleife und k_{e0} in Bezug auf alle berechneten Datensätze (k_{e0} zwischen 0.05 und 1.2 min⁻¹) für Desfluran
Abb. 13 A: Graphische Darstellung der Beziehung zwischen normierten P_k-Werten gegenüber k_{e0} für alle untersuchten Patienten, jeweils $n=15$ für Isofluran, Sevofluran und Desfluran. Die Daten sind als Durchschnittswert ± SEM angegeben. Jeder Datensatz (35 Datensätze) wurde für jeden Patienten für die Berechnung des maximalen P_k-Wert oder der Minimierung der Fläche unter der Hystereseschleife separat normiert.
Abb. 13 B: Graphische Darstellung der Beziehung zwischen normierter Fläche unter der Hystereseschleife gegenüber k_{e0} für alle untersuchten Patienten, jeweils $n=15$ für Isofluran, Sevofluran und Desfluran. Die Daten sind als Durchschnittswert ± SEM angegeben. Jeder Datensatz (35 Datensätze) wurde für jeden Patienten für die Berechnung des maximalen P_k-Wert oder der Minimierung der Fläche unter der Hystereseschleife separat normiert.
5. Diskussion

In dieser Studie konnten wir zeigen, dass die Maximierung bzw. Optimierung der Prediction Probability P_k einen alternativen modellunabhängigen Lösungsansatz darstellt, um die Äquilibriationskonstante k_{e0} als Transferkonstante zwischen Plasma (Zentralkompartiment) und Wirkort (Effektkompartiment) zu berechnen. Während die k_{e0}-Werte von Isofluran und Sevofluran vergleichbar sind, ist der k_{e0}-Wert von Desfluran signifikant höher. Die optische Inaugenscheinnahme der Beziehung zwischen modellunabhängig hergeleiteter Effektkompartiment-Konzentrationen aller 3 Narkosegase und dem BIS (Dosis-Wirkungs-Kurve) deutet auf eine biphasische (bi-sigmoidale) Korrelation hin.

5.1 Vorhersagewahrscheinlichkeit (Prediction Probability, P_k)

Die Prediction Probability wurde von Smith et. al. als Bestimmungsmaß für die Beurteilung und Vergleichbarkeit der Narkosetiefe eingeführt (Smith et al., 1996a). Wir wählten die Prediction Probability zur Berechnung des optimalen k_{e0}-Werts aus dem Grund, da P_k von der Skalierung unabhängig ist und weder Kenntnis der zugrundeliegenden Verteilung bzw. die Mühe einer linearen Umformung, noch einer Skalenänderung erfordert. Desweiteren schöpft P_k vollständig die vorliegende Datenmenge aus, ohne dass zusätzlich eine willkürliche Angleichung nötig wäre. Diesbezüglich gehen wir davon aus, dass P_k eine wirkliche Alternative für jegliche modellunabhängige Berechnung von k_{e0} darstellt, mit dem entscheidenden Vorteil, dass der Vorgang des Daten-„Fittens“ weder begrenzt ist, noch der Umwandlung der Daten bedarf, um lediglich dem gewählten Modell angepasst zu werden. Darüber hinaus ist es im Vorfeld schwierig vorauszusagen, ob ein gewähltes Modell das Kriterium erfüllt, die Dosis-Wirkungskurve am günstigsten wiederzugeben. Einer der entscheidenden Vorzüge dieser Herangehensweise ist die Befähigung, dass man tatsächlich den Zusammenhang zwischen Wirkung und Effektkompartiment-Konzentration erkennen kann, ohne zuvor ein Modell näher anzugeben. Dennoch ist unser Ansatz in der Berechnung von k_{e0} begrenzt. Vorausgesetzt, dass das Verhältnis von Wirkung und Effektkompartiment-Konzentration abnehmend ist, funktionierte diese Herangehensweise mit unseren Daten gut. In dem seltenen Fall einer „U“-förmigen Beziehung von
Wirkung und Effektkompartiment-Konzentration würde die Maximierung von \(P_k \) jedoch nicht zu angemessenen \(k_{\text{eff}} \)-Werten führen. Die Formfehler, die beim „Fitten“ des Modells entstehen könnten, wurden im Detail von Smith et al. erörtert (Smith et al., 1996b).

Die Prediction Probability wurde anfangs entwickelt, um zwei Skalierungen oder Datenbanken zu evaluieren, die von polynomialer (mehrwertiger) Ordnung sind und bei der eine Datenbank die Daten der anderen Datenbank vorhersagt. In unserer Untersuchung wendeten wir die Berechnung von \(P_k \) auf die Skalierung von BIS und der volatilen Narkosegaskonzentrationen an. Man könnte einwenden, dass die Skalierung letzterer über die Ordinalskaala bis zur Intervallskaala oder Verhältnisskaala hinausgeht. Wenn jedoch die Narkosetiefe als Messgröße (volatile Narkosegaskonzentration), die der Intervall- oder Verhältnisskaala entspricht, mit einer Messgröße verglichen werden soll, die lediglich einer Ordinalskaala (BIS) entspricht, dann kann zur Evaluierung der Vorhersagewahrscheinlichkeit dieser Datensätze nur eine Berechnungsweise zum Einsatz kommen, die lediglich eine Ordinalskaala voraussetzt. Aus diesem Grund entschieden wir uns die Skalierung der gemessenen volatilen Narkosegaskonzentration nicht höher zu behandeln, als die der Ordinalskaala.

Durch die Maximierung von \(P_k \) wird ein \(k_{\text{eff}} \)-Wert identifiziert, der die Hystereseschleife der Dosis-Wirkungs-Beziehung (in der ein BIS- Wert mindestens zwei verschiedenen \(C_{\text{eff}} \)-Werten entspricht) in eine Dosis-Wirkungs-Kurve umwandelt, die idealerweise monoton abnehmend ist und in der ein BIS- Wert nur einem \(C_{\text{eff}} \)-Wert zugeordnet werden kann.

Es wurde darauf hingewiesen, dass bei der Untersuchung der Dosis-Wirkungsbeziehung der volatilen Anästhetika oder Propofol über die gesamte Bandbreite der Dosis-Wirkungs-Kurve einschließlich des „burst suppression“- EEGs, ein anderes PK/PD- Modell angewendet werden muss (bi-sigmoidal) als beim „Fitten“ von Daten ohne Auftreten von „burst suppression“ (einfaches sigmoidales Modell) (Kreuer et al., 2004; Kreuer et al., 2008a, 2008b; Ellerkmann et al., 2006). Bis jetzt waren Daten, bei denen „burst suppression“ auftrat, entweder ausgenommen (Ellerkmann et al., 2004) oder die Untersuchungen auf lediglich zunehmende Anästhetika-konzentrationen (Vanluchene et al., 2004) begrenzt, um eine Hystereseschleife zu verhindern, ohne dabei einen \(k_{\text{eff}} \)-Wert berechnen zu können. Andere sehen schlichtweg davon ab, ein Modell auf ihre Daten anzuwenden (Schmidt et al., 2002) und bewerten ausschließlich die Güte ihrer Messgrößen der Narkosetiefe durch die Berechnung von \(P_k \). Dieser hier vorgestellte neue Ansatz der Verwendung der Prediction Probability, kann herangezogen werden, um die Hystereseschleife in
An- als auch Abwesenheit von „burst suppression“ kollabieren zu lassen und k_{e0}-Werte ohne ein zugrunde liegendes Modell zu erhalten. Interessanterweise waren unsere k_{e0}-Werte sehr nah an den k_{e0}-Werten, die vorher für dieselben Datensätze durch ein bi-sigmoidales Modell von Kreuer et. al. (Kreuer et al., 2004; Kreuer et al., 2008a, 2008b) (vgl. Tabelle 3) bestimmt wurden. Da auch die optische Inaugenscheinnahme der Dosis-Wirkungs-Kurven (Abb. 10-12 C, 14 A-C) von C_{eff} und BIS ein gekennzeichnetes Plateau für die meisten Patienten vor Auftreten von „burst suppression“ zeigte, obwohl k_{e0}-Werte unter Verwendung des Pk-Ansatzes berechnet wurden – d.h. ohne ein spezifisches Modell vorzugeben - glauben wir, dass dieses Plateau nicht artifiziell sondern vielmehr physiologischer Natur ist.

5.2 Minimierung der Fläche unter der Hystereseschleife

Wir berechneten zusätzlich einen k_{e0}-Wert durch Minimierung der Fläche unter der Hystereseschleife. Fuseau und Sheiner waren die Ersten, die ein pharmakokinetisch-pharmakodynamisches Modell einführten, bei dem das pharmakodynamische Modelling (Bestimmung von k_{e0}) durchgeführt wurde, ohne irgendeine bestimmte Form der untersuchten Dosis-Wirkungskurve vorauszusetzen (Fuseau und Sheiner, 1984). Ihr Modell wurde weiter ausgearbeitet, um auch die pharmakokinetischen Datenwerte ohne ein zugrunde liegendes Modell zu beschreiben (Unadkat et al., 1986; Verotta und Sheiner, 1987). Ein Programm, das k_{e0}-Werte auf der Basis dieses Modells berechnet, wurde von Steven Shafer geschrieben und $k_{e0, obj}$ genannt. Dieses Programm wurde in mehreren Veröffentlichungen verwendet, um modellunabhängig k_{e0} zu berechnen (Kharasch et al., 2004a, 2004b; Visser et al., 2002). Während das Modell von Fuseau und Sheiner für Datensätze mit nur einer Hystereseschleife entwickelt wurde, erweiterten wir dieses Modell für unsere Daten mit mehr als einer nachfolgenden Hystereseschleife. Anstatt die Abweichung im Quadrat zwischen den einzigen beiden BIS Index-Werten für dieselbe Anästhetikakonzentration an ihrem Wirkort (Effektkompartment) nach dem Modell von Fuseau und Sheiner zu berechnen, haben wir nun die Abweichungen im Quadrat zwischen jedem (z.B. mehr als zwei) BIS Index-Wert und dem arithmetischen Mittel des BIS Index-Wert bei der gleichen berechneten Effektkompartment-Konzentration ermittelt. Während unsere Herangehensweise eine Verallgemeinerung des $ke0obj$-Ansatzes darstellt, könnte in Frage gestellt werden, ob es angemessen ist, es weiter als Fläche zu bezeichnen. Eine Einschränkung unseres
Denkansatzes stellt sich bei der Messung der Fläche unter der Hystereseschleife bei Ausbleiben einer ausreichenden Datenmenge ein. Unsere Herangehensweise der Minimierung der Fläche unter der Hystereseschleife ist von mehr als einem (mindestens zwei und mehr) Datenpunkt (BIS) für jeden \(C_{\text{eff}} \)-Wert abhängig. Anderenfalls müssten BIS-Werte extrapoliert werden. Diese Einschränkung hatte jedoch keinen Einfluss auf unsere Berechnungen, da jedem \(C_{\text{eff}} \)-Wert mehrere BIS-Werte zugeordnet waren.

5.3 Anschlagzeit, „time to peak effect“

Kürzlich veröffentlichten Minto et al. (2003) einen alternativen Ansatz \(k_\text{e0} \)-Werte für intravenöse Anästhetika zu berechnen, indem die Zeit der maximalen Dosiswirkung (\(t_{\text{peak}} \)) im Effektkompartiment (Gehirn) nach einem submaximalen Anästhetika-Bolus gemessen wird. Der Vorteil der \(t_{\text{peak}} \) – Methode besteht darin, dass \(t_{\text{peak}} \) dosisunabhängig ist, solange die Dosis submaximal ist. Desweiteren ist es nicht notwendig, zunehmende und abnehmende Schleifen der intravenösen oder volatilen Anästhetika zu untersuchen. Ferner ist \(t_{\text{peak}} \) ein nützlicher pharmacodynamischer Parameter, der es erlaubt, separate pharmakokinetische und pharmacodynamische Parameter von verschiedenen Studien zu koppeln (Munoz et al., 2004; Minto et al., 2003). Jedoch ist dieser Ansatz auf intravenöse Anästhetika begrenzt, bei denen ein vorbestimmter Bolus gegeben werden kann. Cortinez et al. konnte veranschaulichen, dass \(k_\text{e0} \)-Werte, die durch den „time-to-peak-effect“ für Rocuronium berechnet wurden, den \(k_\text{e0} \)-Werten ähnlich waren, die durch den traditionellen sigmoidal \(E_{\text{max}} \)-Modellansatz berechnet wurden (Cortinez et al., 2007).

5.4 \(k_\text{e0} \)-Werte volatiler Anästhetika

Rehberg et al. (Rehberg et al., 1999) hat im Vorfeld von einem signifikant höheren \(k_\text{e0} \)-Wert für Desfluran im Vergleich zu Isofluran und Sevofluran berichtet, wobei der Effekt dieser volatilen Anästhetika im Bezug auf die spektrale Grenzfrequenz (EEG) untersucht wurde. Desfluran ist dank seines geringeren Fett/Blut- Verteilungskoeffizienten für seine vorteilhaften pharmakologischen Eigenschaften bekannt, die besonders nach langen chirurgischen Eingriffen dennoch eine schnellere Narkoseausleitung ermöglichen (Bailey, 1997). Jedoch sind die hier erhaltenen
k_{e0}-Werte der Wirkortäquilibrationskonstante vermutlich eher von dem Blut/Gas- und dem Hirn/Blut-Verteilungskoeffizienten abhängig, die beide für Desfluran im Vergleich zu Isofluran und Sevofluran geringer ausfallen. Eine Steigerung der endtidalen Desfluran-Konzentration wird daher im Vergleich zu Isofluran und Sevofluran zu einem schnelleren Anstieg der Narkosetiefe führen, die durch den BIS ausgedrückt wird. Die beinahe identischen k_{e0}-Werte für Isofluran und Sevofluran können auch durch den Blut/Gas- und Hirn/Blut-Verteilungkoeffizienten erklärt werden. Obwohl der Blut/Gas-Koeffizient von Sevofluran im Vergleich zu Isofluran geringer ist, ist der Hirn/Blut-Koeffizient größer, was zu gleichen Wirkortäquilibrationskonstanten zwischen endtidalen und Effektkompartment-Konzentrationen führt.

Schlussfolgernd ist festzuhalten, dass wir eine alternative Herangehensweise für die Berechnung von k_{e0}-Werten für Isofluran, Sevofluran und Desfluran ohne ein zugrunde liegendes Modell eingeführt haben, in dem wir die maximal mögliche Prediction Probability (P_k) berechnen. Dieser Ansatz scheint ein vielversprechendes Verfahren zu sein, das Wissenschaftler für Forschungszwecke nutzen könnten. Der k_{e0}-Wert für Desfluran war verglichen mit Sevofluran und Isofluran signifikant höher. Die erhaltene Dosis-Wirkungs-Kurve zwischen BIS und C_{eff} deutet scheinbar auf eine bi-sigmoidale Form mit einem Plateau für alle drei untersuchten volatilen Anästhetika hin.
6. Zusammenfassung

Sowohl modellabhängige als auch modellunabhängige Herangehensweisen sind für die Berechnung der Äquilibriationskonstante k_{e0} und der Beschreibung für Dosis-Wirkungs-Kurven verwendet worden. In dieser vorliegenden Arbeit führen wir einen modellunabhängigen Ansatz zur Berechnung von k_{e0}-Werten für Isofluran, Sevofluran und Desfluran ohne ein zugrunde liegendes sigmoidales PK/ PD-Modell ein, in dem wir die maximal mögliche Prediction Probability (P_k) berechnen. Die erhaltene Dosis-Wirkungs-Kurve zwischen BIS und C_{eff} deutet auf eine bi-sigmoidale Form mit einem Plateau für alle drei untersuchten volatilen Anästhetika hin.

Die Daten von 45 Patienten, die sich einer radikalen Prostatektomie unterziehen mussten, wurden analysiert. Nach Anlage eines Periduralkatheters erhielten die Patienten zur Induktion der Narkose lediglich Remifentanil und Propofol. Nach Einleitung der epiduralen Analgesie wurden anschließend Isofluran, Sevofluran und Desfluran (jeweils 15 Patienten) zur Ausschaltung des Bewusstseins ergänzt. Nach spätestens 45 min wurden die endtidalen Konzentrationen zwischen 0.5 und 2.0 MAC variiert. Wir errechneten einen individuellen k_{e0}-Wert für jeden Patienten, indem wir entweder die Prediction Probability P_k (P_k-basierter k_{e0}) optimiert oder die Fläche unter der Hystereseschleife (flächen-basierter k_{e0}) minimiert haben. Die Daten sind gemittelt ± Standardabweichung.

Beide modelunabhängigen Ansätze führen zu vergleichbaren k_{e0}-Werten mit $0.18 \pm 0.06 \text{ min}^{-1}$ (P_k-basiert) und $0.15 \pm 0.04 \text{ min}^{-1}$ (flächen-basiert) für Isofluran und $0.17 \pm 0.08 \text{ min}^{-1}$ (P_k-basiert) und $0.16 \pm 0.11 \text{ min}^{-1}$ (flächen-basiert) für Sevofluran. k_{e0}-Werte für Desfluran (P_k-basiert: $0.30 \pm 0.7 \text{ min}^{-1}$; flächen-basiert: $0.32 \pm 0.25 \text{ min}^{-1}$) waren signifikant höher als für Isofluran und Sevofluran.

Die Maximierung der Prediction Probability P_k für die Berechnung von k_{e0} scheint ein vielversprechendes Verfahren zu sein, das Wissenschaftler für Forschungszwecke nützen könnten.
7. Literaturverzeichnis

Bruhn J. Vergleich verschiedener EEG-Parameter: Spektrale Eckfrequenz 95, approximale Entropie, Bispektral-Index. Anästhesiol Intensivmed 2003; 17-21

Bruhn J, Bouillon TW, Shafer SL. Bispectral index (BIS) and burst suppression: revealing a part of the BIS algorithm. J Clin Monit Comput 2000; 8: 593-596

Cortinez LI, Nazar C, Munoz HR. Estimation of the plasma effect-site equilibration rate constant (ke0) of rocuronium by the time of maximum effect: a comparison with non-parametric and parametric approaches. Br J Anaesth 2007; 5: 679-685

Cromwell TH, Eger EI 2nd, Stevens WC, Dolan WM. Forane uptake, excretion, and blood solubility in man. Anesthesiology 1971; 4: 401-408

Eger EI 2nd, Johnson BH. MAC of I-653 in rats, including a test of the effect of body temperature and anesthetic duration. Anesth Analg 1987; 10: 974-976

Ellerkmann RK, Bruhn J, Soehle M, Kehrer M, Hoeft A, Kreuer S. Maximizing prediction probability P_K as an alternative semiparametric approach to estimate the plasma effect-site equilibration rate constant k_{e0}. Anesth Analg 2009; 5: 1470-1478

Hill AV. The possible effect of aggregation of the molecules of hemoglobin on its dissociation curves. J Physiol 1910; 40: iv-vii

Kreuer S. Application of Narcotrend index and bispectral index to the measurement of the EEG-effects of isoflurane with and without burst suppression. Anesthesiology 2004: 847-854

Kreuer S. Dose-response relationship between sevoflurane concentrations and Narcotrend index. Anesthesiology 2005: 823
Kreuer S. Dose-response relationship between sevoflurane concentrations and Narcotrend or bispectral index. Eur J Anaesth 2005b; Suppl 34: A-100

Kreuer S. Pharmakodynamisches Plateau im prozessierten EEG bei Sevofluran-Anästhesien. Wissenschaftliche Arbeitstage der DGAI, Würzburg, 2005

Luginbuhl M, Schnider TW. Detection of awareness with the bispectral index: two case reports. Anesthesiology 2002; 96: 241-243

Minto CF, Schnider TW, Gregg KM, Henthorn TK, Shafer SL. Using the time of maximum effect site concentration to combine pharmacokinetics and pharmacodynamics. Anesthesiology 2003; 2: 324-333

Munoz HR, Cortinez LI, Ibacache ME, Altermatt FR. Estimation of the plasma effect site equilibration rate constant (k_e0) of propofol in children using the time to peak effect: comparison with adults. Anesthesiology 2004; 101: 1269-1274

Olofsen E, Dahan A. The dynamic relationship between end-tidal sevoflurane and isoflurane concentrations and bispectral index and spectral edge frequency of the electroencephalogram. Anesthesiology 1999; 90: 1345-1353

Rampil IJ. Anesthetic potency is not altered after hypothermic spinal cord transection in rats. Anesthesiology 1994; 3: 606-610

Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology 1998; 4: 980-1002

Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 1993; 4: 707-712

Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 1998; 5: 1170-1182

Smith WD, Dutton RC, Smith NT. A measure of association for assessing prediction accuracy that is a generalization of non-parametric ROC area. Stat Med 1996a; 11: 1199-1215

Vanluchene AL, Vereecke H, Thas O, Mortier EP, Shafer SL, Struys MM. Spectral entropy as an electroencephalographic measure of anesthetic drug effect: a comparison with bispectral index and processed midlatency auditory evoked response. Anesthesiology 2004; 1: 34-42

8. Danksagung

An dieser Stelle möchte ich mich bei Herrn Privatdozent Dr. med. Richard Ellerkmann, Klinik und Poliklinik für Anästhesiologie und Operative Intensivmedizin der Rheinischen Friedrich-Wilhelms-Universität Bonn, sowohl für die freundliche Überlassung des Themas als auch für die ausgezeichnete Betreuung und bedingungslose Unterstützung bei der Entstehung dieser Arbeit bedanken.

Insbesondere möchte ich mich bei meiner Familie und bei meiner Freundin für deren konstruktive Kritik sowie andauernde und großzügige Unterstützung bedanken.