Contents

I Isospin-breaking effects in $\eta \to 3\pi$ decays 1
 1 Introduction 3
 2 Formalism 9
 2.1 Chiral perturbation theory preliminaries 9
 2.1.1 Chiral perturbation theory with virtual photons 9
 2.1.2 Meson masses and $\pi^0\eta$ mixing at leading order 11
 2.1.3 Quark mass ratios 12
 2.2 $\eta \to 3\pi$ basics 14
 2.2.1 Kinematics 14
 2.2.2 Amplitudes at leading order 16
 2.2.3 Symmetry properties and the $\Delta I = 1$ amplitude relation 17
 2.2.4 Dalitz plot distributions and the branching ratio 21
 3 Electromagnetic corrections in $\eta \to 3\pi$ decays 27
 3.1 Real-photon radiation 27
 3.2 Subtraction of universal soft-photon corrections 29
 3.3 Corrections to Sutherland’s soft-pion theorem 30
 3.4 Numerical results 33
 3.4.1 Amplitudes 33
 3.4.2 Dalitz plot parameters 35
 3.4.3 Decay widths, branching ratio, and quark mass double ratio 38
 4 Isospin-breaking corrections to the $\Delta I = 1$ amplitude relation 41
 4.1 $\Delta I = 1$ relations for Dalitz plot parameters 43
 4.2 Isospin-breaking corrections to the $\Delta I = 1$ Dalitz relations 47
 5 Conclusion 55

A $\eta \to 3\pi$ decay amplitudes at next-to-leading order 59
 A.1 Loop functions 59
 A.2 Amplitudes at second order in isospin breaking 61
 A.2.1 $\eta \to \pi^0\pi^+\pi^-$ decay amplitude 64
 A.2.2 $\eta \to 3\pi^0$ decay amplitude 66
 A.3 Numerical input 66

B Derivation of the $\Delta I = 1$ amplitude relation 69
II Roy–Steiner equations for πN scattering 73

6 Introduction 75

7 Preliminaries 81
 7.1 Kinematics 81
 7.2 Isospin structure 86
 7.3 Unitarity and partial-wave amplitudes 90
 7.4 Hyperbolic dispersion relations 95

8 Partial-wave projection for the s-channel amplitudes 101
 8.1 Nucleon exchange 102
 8.2 s- and u-channel exchange 104
 8.3 t-channel exchange 113

9 Partial-wave projection for the t-channel amplitudes 117
 9.1 Nucleon exchange 118
 9.2 s- and u-channel exchange 120
 9.3 t-channel exchange 125

10 Ranges of convergence 129
 10.1 Boundaries of the double spectral regions 130
 10.2 Lehmann ellipse constraints 133
 10.3 s-channel partial-wave projection 138
 10.4 t-channel partial-wave projection 140

11 Asymptotic regions and Regge theory 143
 11.1 s-channel asymptotics 144
 11.2 t-channel asymptotics 147

12 Roy–Steiner system for πN scattering 149
 12.1 Partial-wave unitarity relations 149
 12.2 Partial-wave hyperbolic dispersion relations 154
 12.3 The t-channel: from Roy–Steiner to Muskhelishvili–Omnès
 12.3.1 Threshold behavior of the t-channel partial waves 156
 12.3.2 Muskhelishvili–Omnès problem for the t-channel partial waves 157

13 Subtracted Roy–Steiner system for πN scattering 161
 13.1 Subthreshold expansion 161
 13.2 Sum rules for the subthreshold parameters 162
 13.3 Subtracted hyperbolic dispersion relations 164
 13.4 Subtracted asymptotics 165
 13.5 Subtracted kernels: t-channel partial-wave projection 169
 13.6 Subtracted t-channel Muskhelishvili–Omnès problem 173
 13.7 Subtracted kernels: s-channel partial-wave projection 175
14 Generalized Muskhelishvili–Omnès problem
- 14.1 Consistency condition ... 180
- 14.2 Homogeneous problem ... 181
- 14.3 Inhomogeneous problem 183
- 14.4 Subtractions ... 184
- 14.5 Numerical treatment ... 186
- 14.6 Continuity at the matching point 187

15 Solving the t-channel Muskhelishvili–Omnès problem
- 15.1 Explicit analytical solutions 189
- 15.2 Numerical input .. 193
 - 15.2.1 $\pi\pi$ phases and Omnès functions 193
 - 15.2.2 Remarks on existing πN partial-wave analyses 195
 - 15.2.3 s-channel partial waves 196
 - 15.2.4 t-channel partial waves 197
 - 15.2.5 Subthreshold parameters 198
- 15.3 Numerical results .. 199
 - 15.3.1 Contributions to the inhomogeneities 200
 - 15.3.2 Comparison with KH80 202
 - 15.3.3 Variation of the matching point 206
 - 15.3.4 Application to nucleon form factors 208

16 Conclusion .. 211

C Higher kernels for the s-channel driving terms
- C.1 s-channel partial-wave projection 213
- C.2 t-channel partial-wave projection 214

Bibliography ... 219