Optische Spektroskopie von PTCDA auf Alkalihalogenidoberflächen: vereinzelte Moleküle und Monolagen

Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)
derMathematisch-Naturwissenschaftlichen FakultätderRheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Mathias Müller

aus Engelskirchen

Bonn, November 2011
Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. M. Sokolowski
2. Gutachter: Prof. Dr. T. Fritz
Fachnäher Gutachter: Prof. Dr. R. Glaum
Fachfremder Gutachter: Prof. Dr. D. Meschede

Tag der Promotion: 29.06.2012
Erscheinungsjahr: 2012

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn
http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert.
5.1.5. Einfluss der Aufdampfgeschwindigkeit ................................................ 55
5.1.6. Thermische Ausdehnung von NaCl und Ag(100) .................................. 56
5.1.7. Wachstum der ersten Einzel/Doppellage NaCl .................................. 58
5.1.8. Ursprung der azimuthalen Mosaizität .............................................. 58
5.1.9. Fazit zum Wachstum von NaCl auf Ag(100) ..................................... 63
5.2. Wachstum von KCl auf Ag(100) .............................................................. 64
5.2.1. LEED-Untersuchungen an KCl auf Ag(100) ....................................... 64
5.2.2. STM-Untersuchungen an KCl auf Ag(100) ......................................... 65
5.2.3. Diskussion des Wachstums von KCl auf Ag(100) .............................. 67
5.2.4. Vergleich zum Wachstum von NaCl auf Ag(100) .............................. 69

6. Wachstum von PTCDA auf dünnen Isolatorfilmen .......... 71
6.1. PTCDA auf KCl(100) – die BW-Phase .................................................. 71
6.2. PTCDA auf NaCl(100) ............................................................................ 74
  6.2.1. Die thermodynamisch stabile Q-Phase ....................................... 74
  6.2.2. Die metastabile HB*-Phase .......................................................... 77
6.3. Diskussion zu PTCDA-Monolagen auf AH-Filmen ..................... 80
6.4. Wachstum von PTCDA-Multilagen auf NaCl ................................. 83
  6.4.1. Struktur von PTCDA-Multilagen auf NaCl ..................................... 83
  6.4.2. Thermische Stabilität von PTCDA-Multilagen auf NaCl ......... 87
  6.4.3. Wachstumsmodus von PTCDA-Multilagen auf NaCl ............... 88
6.5. Diskussion zum Wachstum von PTCDA-Multilagen ..................... 90

7. Optische Eigenschaften der PTCDA-Phasen .................. 93
7.1. Vereinzelte Moleküle – d- und d'-Phase ............................................. 93
  7.1.1. Allgemeine Aspekte der Spektren vereinzelter PTCDA-Moleküle .... 94
  7.1.2. Analyse der Vibrationsmoden im FL-Spektrum der d'-Phase .......... 98
  7.1.3. Analyse der Vibrationsmoden im FLE-Spektrum der d'-Phase .... 106
  7.1.4. Zusammenfassung ...................................................................... 110
7.2. Polarisationsabhängige Spektroskopie ............................................. 111
  7.2.1. Details zu den Messungen und zur Auswertung der Daten ........... 111
  7.2.2. Idee und Theorie der Polarisationsabhängigen Spektroskopie .... 112
  7.2.3. Polarisationsabhängige Spektroskopie der BW-Phase ............... 115
  7.2.4. Polarisationsabhängige Spektroskopie der d'-Phase .................... 116
7.3. Zweidimensionale Kopplung – Q-, HB* - und BW-Phase ............... 119
  7.3.1. Monolagenspektren von PTCDA auf dünnen NaCl und KCl-Filmen 119
7.3.2. Zweidimensionale Kopplung und Exzitonenbandstrukturen..............124
7.3.3. Diskussion der Bandenverschiebungen in der Monolage..............130
7.4. Detaillierte Analyse der Spektren der BW-Phase..........................133
  7.4.1. Linienform der 0-0-Bande der BW-Phase bei tiefer Temperatur......133
  7.4.2. Abhängigkeit der spektralen Linienbreite von der Temperatur......140
  7.4.3. Analyse des FLE-Spektrums der BW-Phase..............................145
  7.4.4. Überhöhung des 0-0-Übergangs im FL-Spektrum......................149
  7.4.5. Diskussion der beobachteten Superradianz der BW-Phase............155

8. Zusammenfassung und Ausblick .............................................159

Anhang:

A. Sensitivität des PowerMeters PM120.........................................165

B. Sensitivität des CCD-Spektrometers.......................................167

C. Verwendete LabView Programme............................................169
   C.1 Messung der FLE-Spektren..................................................169
   C.2 Messung und Integration des QMS-Ionenstroms.......................170

D. FLE-Spektren erstellen mit SpectraSquared.............................173

E. Wichtige verwendete Abkürzungen.........................................175

Literaturverzeichnis.................................................................177
1 Einleitung


Für Bauelemente, die Licht emittieren (OLEDs) oder absorbieren (OPVCs) sind insbesondere die optischen Eigenschaften der molekularen organischen Materialien in den Bauelementen von Bedeutung. Um diese optischen Eigenschaften beschreiben und vorhersagen zu können, wurden in der Vergangenheit eine Reihe von theoretischen Modellen entwickelt [11-14]. In den in der Literatur verzeichneten experimentellen Untersuchungen wurden bislang vor allem Volumenkristalle oder dünne substratgestützte Filme, die aus sehr vielen molekularen Lagen bestehen, als Modellsysteme betrachtet, um die optischen Eigenschaften organischer Materialien zu verstehen. Diese Systeme eignen sich nur in begrenztem Umfang als Modellsysteme für organische Bauelemente, da in ihnen die Grenzfläche zwischen organischem und anorganischem Material komplett fehlt oder ihr Einfluss auf die optischen Eigenschaften experimentell nicht zugänglich ist. Zudem weisen diese Systeme, insbesondere im Fall von Filmen, häufig ein hohes Maß an struktureller Unordnung auf. Diese bewirkt eine Verbreiterung der optischen Übergänge und verhindert dadurch die Auflösung vibronischer Moden und damit ein detailliertes Verständnis der optischen Eigenschaften.


Für die Untersuchung der optischen Eigenschaften organischer Moleküle auf Oberflächen wurden in der vorliegenden Arbeit die Methoden der Fluoreszenz- (FL) und der Fluoreszenzanregungsspektroskopie (FLE) ausgewählt. Beide Methoden beruhen auf der Lumineszenz von Molekülen. Daher haben sie gegenüber Absorptions-
Einleitung

methoden den Vorteil, dass sie untergrundfrei sind und dadurch eine sehr hohe Sensitivität bis zum Limit eines einzelnen Moleküls bieten [23].


2. Theoretische und methodische Grundlagen

2.1. Beugung niederenergetischer Elektronen (LEED)

Seit der Entdeckung der Elektronenbeugung durch Davisson und Germer im Jahr 1927 [25], hat sich die Elektronenbeugung zu einer Standardmethode der Strukturauflösung an Oberflächen entwickelt. Je nach Energie der verwendeten Elektronen unterscheidet man verschiedene Methoden. Im Folgenden wird nur auf die Beugung niederenergetischer Elektronen (LEED von engl. low energy electron diffraction) Bezug genommen. Bei LEED werden Elektronen einer Energie von 20 bis 500 eV an einer Oberfläche gestreut und die elastisch gestreuten Elektronen detektiert. Die de-Broglie-Wellenlänge dieser Elektronen beträgt 0.5 Å bis 3 Å. Sie liegt damit in der Größenordnung atomarer und molekularer Strukturen, was bereits für niedrige Beugungsordnungen zu großen - und damit gut messbaren - Beugungswinkeln führt.

Aufgrund ihrer Ladung wechselwirken Elektronen stark mit Materie. Daher weisen niederenergetische Elektronen nur eine geringe Eindringtiefe von wenigen Atomlagen auf. Folglich eignet sich die Beugung langsamer Elektronen als oberflächen sensitive Methode [26,27].


Die Methode der Beugung niederenergetischerElektronen wurde in der vorliegenden Arbeit hauptsächlich verwendet, um die geometrische Struktur von Adsorbatfilmen zu bestimmen. Diese einfachste Form der Analyse der geometrischen Struktur erfolgt innerhalb einer geometrischen Theorie der Elektronenbeugung [27,29], in welche im Folgenden kurz eingeführt wird. Die Grundidee ist dabei, dass sich die untersuchten Adsorbatfilme als zweidimensionales Beugungsgitter beschreiben lassen. Für konstruktive Interferenz an diesen Beugungsgittern ergeben sich dann die folgenden Bedingungen:

\[ a \cdot \sin(\alpha) = H \lambda \]
\[ b \cdot \sin(\beta) = K \lambda \]

2.1

Hierbei bezeichnen a und b die Abstände der Gitterlinien, \( \alpha \) und \( \beta \) die Beugungswinkel relativ zur Oberflächennormalen und H und K die Beugungsordnungen. Im Vergleich mit der Theorie der Röntgenbeugung (Details z. B. in [30]), ist festzustellen,
2.1 Beugung niederenergetischer Elektronen (LEED)

daß aufgrund der verringerten Dimensionalität des Beugungsgitters die Interferenzbedingung senkrecht zur Oberfläche entfällt. In Folge dessen ergeben sich im reziproken Raum anstelle von diskreten Reflexen Beugungsstangen, welche parallel zur Oberflächennormalen angeordnet sind. Ihre laterale Anordnung ist durch die reziproken Gittervektoren gegeben [26,28,31].

Aus der geometrischen Auswertung eines LEED-Bilds erhält man die Einheitszelle des Adsorbatfilms. Falls systematische Auslöschung von Reflexen zu beobachten ist, kann zusätzlich auf die Anwesenheit bestimmter Symmetrieelemente geschlossen werden. Möchte man weitergehende Informationen über die Adsorbatfilme erhalten, so müssen aufwendigere Methoden verwendet werden.


Eine Analyse von I/V-LEED-Daten ermöglicht es Informationen über die Basis der Elementarzelle zu erhalten. Als I/V-LEED bezeichnet man dabei ein Elektronenbeugungsexperiment, bei dem die Intensität der Beugungsreflexe als Funktion der Elektronenenergie gemessen wird. Für eine erfolgreiche Analyse solcher Beugungsdaten muss Mehrfachstreuung berücksichtigt werden. Man bezeichnet die zugehörige Theorie als dynamische Streutheorie [31,32].

Zusätzlich zur geometrischen Information wird in der vorliegenden Arbeit an einigen Stellen die Halbwertsbreite der beobachteten Reflexe verwendet, um die effektive Transferweite \( T \) zu erhalten. Es gilt:

\[
T = a_0 \frac{k_{01}}{\Delta k_x}
\]

2.2

Dabei bezeichnet \( k_{01} \) den Abstand zwischen den betrachteten Reflexen, \( \Delta k_x \) die volle Halbwertsbreite (FWHM) eines Reflexes und \( a_0 \) die Länge des zu \( k_{01} \) gehörenden Realraumvektors.

Auf Grund der hohen Auflösung eines SPA-LEEDs ist die Transferweite ein gutes Maß für die Kohärenz der Oberfläche, da die Verbreiterung der Spots durch Oberflächenfehler (Versetzungen, Stufen, Domänen grenzen) viel größer ist als die Instrumentenverbreiterung [28].
2.2. Thermisch programmierte Desorption

Unter der Methode der thermisch programmierten Desorption (TPD) wird die kontrollierte Desorption adsorbiertener Teilchen und der simultane Nachweis der Teilchen verstanden. Die üblichste Nachweismethode, die auch im Rahmen der vorliegenden Arbeit verwendet wurde, ist die Massenspektrometrie. Die Desorption der adsorbierten Teilchen wird experimentell durch eine Temperaturerhöhung mit einer linearen Heizraten induziert.

In der vorliegenden Arbeit wurden bei der Auswertung von Thermodesorptionsexperimenten folgende zwei Näherungen verwendet: Erstens wurde angenommen, dass die Rate mit der die desorbierten Teilchen aus dem Ionisationsraum abgepumpt werden, viel größer ist als die Desorptionsrate der Teilchen von der Oberfläche. Für große organische Moleküle ist diese Näherung hervorragend erfüllt, da sie sehr effektiv abgepumpt werden können. Zweitens wurde davon ausgegangen, dass die Nachweiswahrscheinlichkeit der desorbierten Teilchen im Ionisationsraum des Massenspektrometers unabhängig von der Geschwindigkeit ist, mit der diese den Ionisationsraum durchqueren bzw. dass die Geschwindigkeit aller desorbiender Teilchen gleich ist. Innerhalb dieser Näherungen gilt dann, dass der mit dem Massenspektrometer detektierte Ionenstrom proportional zur zeitlichen Änderung der Oberflächenbedeckung, d. h. zur Desorptionsrate ist.

Als Desorptionsspektrum wird im Folgenden die Auftragung des Ionenstroms über die Substrattemperatur bezeichnet. Aus einem solchen Spektrum lassen sich Rückschlüsse auf Desorptionskinetik, Bindungszustand und Bindungsenergie der Adsorbatien gewinnen [31].

In vielen Fällen gelingt eine Interpretation der Ergebnisse auf Grundlage der Polanyi-Wigner-Gleichung [26,27,31]:

\[ R_{\text{des}} = - \frac{d\theta}{dt} = -\beta \frac{d\theta}{dT} = \nu \theta^m e^{-\frac{E_{\text{des}}(\theta)}{RT}}. \]

Hierbei bezeichnet \( \nu \) den Frequenzfaktor, \( m \) die formale Desorptionsordnung, \( E_{\text{des}} \) die Aktivierungsenergie der Desorption und \( R_{\text{des}} \) die Desorptionsrate [26,27,31]. \( \beta \) bezeichnet die Heizraten und \( -d\theta/dT \) bezeichnet die temperaturabhängige Änderung der Oberflächenbedeckung. Letztere ist unter den oben angegebenen Näherungen proportional zu dem Ionenstrom, der mit dem Massenspektrometer gemessen wird.

Für ganzzahlige Werte der Desorptionsordnung \( m \) lassen sich TPD-Spektren für folgende Fälle innerhalb einfacher Modelle interpretieren [26,27,31]:

- \( m=0 \): In diesem Fall fällt \( \theta \) in der Polanyi-Wigner-Gleichung weg. Daraus folgt, dass die Desorptionsrate \( R_{\text{des}} \) unabhängig von der Bedeckung ist. Diese Desorptionsart ist typisch für die Desorption von Multilagen. Die Multilagen dienen dabei als Teilchenreservoir. Die TPD-Signale unterschiedlicher Anfangsbedeckungen weisen eine gemeinsame Anstiegsflanke auf. Nach Durchlaufen
Die Thermisch programmierte Desorption

2.2 Thermisch programmierte Desorption

des Maximums fällt das Desorptionssignal instantan ab. Aufgrund der gemeinsamen Anstiegsflanke verschiebt es sich mit steigender Bedeckung zu höheren Temperaturen.


- **m=2**: Die Abhängigkeit der Desorptionsrate von der Bedeckung ist nun quadratisch. Dies wird typischerweise beobachtet, falls die Adsorbate vor der Desorption miteinander reagieren. Dies kann zum Beispiel der Fall sein, wenn dissozierte Moleküle vor der Desorption rekombinieren. TPD-Spektren unterschiedlicher Bedeckung zeichnen sich für eine Desorptionsordnung von 2 dadurch aus, dass sich das Desorptionsmaximum mit steigender Bedeckung zu niedrigeren Temperaturen verschiebt.

Zur Auswertung von TPD-Spektren mit einer Desorptionsordnung von 1 oder 2 kann das Verfahren nach Redhead angewandt werden [33]. Voraussetzung hierfür ist, dass der Frequenzfaktor und die Desorptionsenergie von der Bedeckung unabhängig sind. Die Desorptionsordnung und der Frequenzfaktor müssen für dieses Verfahren abgeschätzt werden. Die Auswertung liefert dann die Desorptionsenergie $E_{des}$.

Desorptionsspektren nullter Ordnung lassen sich hingegen nach dem „leading-edge“-Verfahren auswerten [34]. In diesem Verfahren trägt man $\ln(-d\theta/dT)$ gegen $1/T$ auf. Nach der logarithmierten Form der Polanyi-Wigner-Gleichung für $m=0$:

\[
\ln\left(-\frac{d\theta}{dT}\right) = \ln\left(\frac{\nu}{\beta}\right) - \frac{E_{des}}{R} \cdot \frac{1}{T}
\]

kann man dann aus der Steigung leicht $E_{des}$ berechnen.

In der Literatur sind zur Auswertung von TPD-Spektren zahlreiche weitere Methoden zu finden. Einen detaillierten Überblick und den Vergleich gängiger Methoden bieten de Jong et al. [35].

In der vorliegenden Arbeit wurde die thermische Desorptionsspektroskopie vornehmlich angewendet, um Schichtdicken von PTCDA-Lagen zu bestimmen. Dabei wurde ausgenutzt, dass sich $E_{des}$ der verschiedenen molekularen Lagen für das untersuchte Probensystem so stark unterschieden, dass die zugehörigen Desorptionssignale im thermischen Desorptionsspektrum klar voneinander getrennt auftraten. Die Details dieser Methode zur Schichtdickenbestimmung sind in Abschnitt 4.1.3 erklärt.
2.3. Optische Spektroskopie und elektronische Anregung


Zwischen diesen Extremen befindet sich im mittleren Spektralbereich für das menschliche Auge wahrnehmbare elektromagnetische Strahlung, die wir üblicherweise als Licht (400 nm < \( \lambda \) < 800 nm) bezeichnen. Mit Licht oder UV-Licht können in Molekülen Elektronen in höherenergetische unbesetzte Molekülorbitale angeregt werden. In kondensierter Materie bezeichnet man diesen Zustand üblicherweise als Exziton [11,12,14].

Die zur Erzeugung eines Exzitons benötigte Energie hängt direkt von der Bindungssituation im Molekül ab. In gesättigten Kohlenwasserstoffen sind beispielsweise nur stark lokalisierte \( \sigma \)-Bindungen vorhanden. Die energetische Differenz zum nächsten unbesetzten Orbital (\( \sigma^* \)) ist daher so groß, dass für die Anregung eines Elektrons kurzwelliges UV-Licht benötigt wird. Die Verbindungen sind daher farblos.

In organischen, \( \pi \)-konjugierten Molekülen können Übergänge von delokalisierten \( \pi \)-Orbitalen in \( \pi^* \)-Orbitale häufig bereits mit energieärmere, sichtbaren Licht angeregt werden. Die benötigte Energie nimmt dabei mit der Größe des delokalisierten Elektronensystems ab: Während für den \( S_0 \rightarrow S_1 \) Übergang bei Benzen noch Licht einer Wellenlänge von 255 nm benötigt wird, kann der entsprechende Übergang in Tetracen (2,3-Benzanthracen) bereits durch Licht mit einer Wellenlänge von 480 nm angeregt werden [36]. Dieser Trend wird durch andere Polyacene wie Naphtalin und Antracen bestätigt und lässt sich qualitativ bereits durch das einfache Modell des Teilchens im Kasten verstehen [37].

2.3.1. Optische Anregung einzelner Moleküle

Wie oben bereits beschrieben, ist es mit Hilfe von Licht bei vielen Molekülen möglich Elektronen in höhere, unbesetzte Orbitale anzuregen. Die Elektronenkonfigurationen des Grund- und des angeregten Zustandes lassen sich durch Potentialkurven beschreiben. Die entsprechenden Termsymbole sind für die meisten organischen Moleküle \( S_0 \) und \( S_1 \).

Zunächst wird an dieser Stelle nur der Fall eines zweiatomigen Moleküls betrachtet. Die Beschreibung mehratomiger Moleküle ist jedoch in vollkommener Analogie mittels Normalkoordinaten möglich und folgt im weiteren Verlauf dieses Abschnitts. Abbildung 2.1 zeigt Potentialkurven von \( S_0 \) und \( S_1 \). Häufig ist, wie in Abbildung 2.1 gezeigt, das Potential des angeregten Zustands gegenüber dem des Grundzustands zu einem größeren Kernabstand verschoben. Dieser Richtungssinn der Verschiebung stellt den Normalfall dar, bei dem ein Elektron aus einem bindenden in ein antibindendes Orbital angeregt wurde. Es sind jedoch auch Fälle bekannt in denen...
die Potentialkurven nicht oder mit umgekehrtem Richtungssinn gegeneinander verschoben sind [38]. Die Verschiebung der Potentiale gegeneinander bewirkt die Ankopplung von Vibronen an elektronische Übergänge und wirkt sich dadurch auf die Form der gemessenen Spektren aus.

Im Rahmen der Born-Oppenheimer-Näherung bleiben die Positionen der Atomkerne während eines elektronischen Übergangs unverändert, da die elektronische Anregung um Größenordnungen schneller erfolgt als die Bewegung der Atomkerne [36,38,39]. Als Folge dessen ist derjenige Übergang der wahrscheinlichste, bei dem der Überlapp der Kernwellenfunktionen des Ausgangszustands \( (\varphi^0_n) \) und des Endzustands \( (\varphi^0_n') \) am größten ist. \( v \) und \( v' \) sind dabei die Schwingungsquantenzahlen der beiden Zustände. Die Intensität eines Übergangs ist proportional zum Betragsquadrat des Überlappintegrals:

\[ I \propto \left| \left( \varphi^0_n \right| \varphi^0_n' \right|^2 = f_{v,v'} \cdot \] 2.5


Abbildung 2.1: links: Grundzustandspotential \( (S_0) \) und Potential des ersten elektronisch angeregten Zustands \( (S_1) \) für ein zweiatomiges Molekül. Zusätzlich sind die vibronischen Zustände und die zugehörigen quadrierten Wellenfunktionen eingezeichnet. rechts: zugehöriges Absorptionsspektrum. Weitere Details im Text. Aus [41].

Um die theoretische Beschreibung von vibronischen Übergängen zu vereinfachen, wird häufig die Näherung des harmonischen Oszillators verwendet. Innerhalb dieser Näherung werden die asymmetrischen Potentiale durch symmetrische, parabelförmige Potentiale ersetzt. Die Lösung der Schrödinger-Gleichung für diese Potentiale liefert dann äquidistante Vibrationsniveaus im Abstand $\hbar \omega$, wobei $\omega$ die Schwingungsfrequenz bezeichnet [38,39].

Abbildung 2.2: Energiediagramm eines harmonischen Oszillators mit 2 Schwingungsmoden. Es sind Schnitte des $S_0$ und des $S_1$-Potentials entlang zweier Normalkoordinaten $q_n$ gezeigt. Für die Normalenschwingung 1 beträgt der Huang-Rhys-Faktor etwa 2.25 für die Normalenschwingung 2 etwa 5.5.

Anhand von Abbildung 2.2, die solche harmonischen Potentiale zeigt, werden nun die Begriffe der Kernrelaxationsenergie und des Huang-Rhys-Faktors erläutert. Dafür werden zunächst nur die schwarzen Potentialkurven in Abbildung 2.2 betrachtet. Die Kernrelaxationsenergie $\lambda_i$ entlang einer Normalkoordinate $q_i$ ergibt sich als die Energie differenz, die nach einem senkrechten Übergang zum Potentialminimum von $S_1$ besteht [42]. Der Huang-Rhys-Faktor $S_i$ ist definiert als [42,43]:

\[ S_i = \lambda_i \]
2.3 Optische Spektroskopie und elektronische Anregung

\[ S_i = \frac{M\omega_i \left( q_i^0 - q_i^e \right)^2}{2\hbar}. \]

Dabei ist \( M \) die reduzierte Masse und \( \omega_i \) die Schwingungsfrequenz. \( q_i^0 \) und \( q_i^e \) sind die Normalkoordinaten der Potentialminima des Grund- und des elektronisch ange- regten Zustands. Der Huang-Rhys-Faktor einer Normalmode und ihre Kernrelaxationsenergie sind über die folgende Beziehung verknüpft [42]:

\[ S_i = \frac{\lambda_i}{\hbar\omega_i}. \]

Mit Hilfe der Huang-Rhys-Faktoren lassen sich außerdem die Franck-Condon-Faktoren innerhalb der Näherung des harmonischen Oszillators über eine Poisson-Verteilung berechnen [42]:

\[ f_{00}(S) = \frac{S^0}{v!} \exp(-S). \]

Hieraus folgt, dass sich der Huang-Rhys-Faktor aus dem Intensitätsverhältnis von 0-0- und 0-1-Bande ergibt:

\[ \frac{l_{01}}{l_{00}} = \frac{S \exp(-S) \cdot 0!}{S^0 \exp(-S) \cdot 1!} = S \]

und somit experimentell leicht zu bestimmen ist.

Im Falle von Molekülen mit \( N \) Normalschwingungen (\( N \geq 2 \)) müssen für die Beschreibung \( N \)-dimensionale Potentiale verwendet werden, die sich durch Schnitte entlang der entsprechenden Normalkoordinaten \( q_n \) darstellen lassen. In Abbildung 2.2 sind zusätzlich zu den Potentialschnitten entlang von \( q_1 \) (schwarz) auch Potentialschnitte entlang von \( q_2 \) (rot) dargestellt. Man erkennt, dass sich für jede der \( N \) Normalschwingungen jeweils ein Huang-Rhys-Faktor und eine Kernrelaxationsenergie ergibt. Die Franck-Condon-Faktoren der Kombinationsmoden ergeben sich dann als Produkt der Franck-Condon-Faktoren entlang der einzelnen Normalkoordinaten:

\[ f_{0,\nu_1...\nu_i}(S_i) = \prod_i \frac{(S_i)^{\nu_i} \exp(-S_i)}{\nu_i!} \]

mit den vibronischen Anregungen \( \nu_i \) entlang der verschiedenen Normalmoden \( q_i \). Für den rein elektronischen Übergang vereinfacht sich Gleichung 2.10 zu:

\[ f_{0,\nu_1...\nu_i=0}(S_i) = \prod_i \exp(-S_i). \]

Nach der Lichtabsorption bestehen verschiedene Möglichkeiten, wie ein Molekül in den Grundzustand relaxieren kann. Die Relaxation kann entweder strahlungslos
erfolgen oder unter Lichtemission (Lumineszenz). Im Fall von Lumineszenz kann zwischen Fluoreszenz und Phosphoreszenz unterschieden werden. Fluoreszenz erfolgt ohne Spinumkehr zwischen zwei Zuständen (z. B. von S\textsubscript{1} nach S\textsubscript{0}), während Phosphoreszenz nach einem strahlungslosen Übergang auf ein Triplett-Niveau, von dort unter Spinumkehr erfolgt [41]. Experimentell lässt sich Phosphoreszenz durch eine deutliche Rotverschiebung und eine längere Lebensdauer von Fluoreszenz unterscheiden. Durch das Interkombinationsverbot (Auswahlregel: ΔS=0) sind Übergänge zwischen Zuständen unterschiedlicher Multiplizität verboten. Enthält ein Molekül, wie das in der vorliegenden Arbeit verwendete PTCDA, nur leichte Atome, so gilt das Interkombinationsverbot streng, und es ist keine Phosphoreszenz zu beobachten. Daher wird im Folgenden nur die Fluoreszenz behandelt.

Nach der Anregung in eines der vibronischen Niveaus des elektronisch angeregten Zustands S\textsubscript{1} relaxiert das Molekül bei diesem Prozess zunächst strahlungslos in den vibronischen Grundzustand von S\textsubscript{1}. Anschließend geht das Molekül durch spontane Emission eines Photons ohne Spinumkehr in den elektronischen Grundzustand S\textsubscript{0} über.

Ist die Form der Potentiale von Grundzustand und angeregtem Zustand identisch und jeweils symmetrisch zu den Potentialminima, so sind die Franck-Condon-Faktoren der Fluoreszenz identisch mit denen der Anregung. Dies ist häufig in guter Näherung erfüllt. In diesem Fall sind Fluoreszenzspektrum und Absorptionsspektrum spiegelbildlich zueinander.

### 2.3.2. Allgemeine Aspekte kollektiver Anregung organischer Moleküle


Im Bereich schwacher Kopplung kann die exzitonische Kopplung als Störung der vibronischen Struktur des elektronisch angeregten Zustandes verstanden werden. Wie in Abbildung 2.3 gezeigt, spaltet durch die Kopplung jedes Vibrationsniveau des einzelnen Moleküls in mehrere Zustände auf. Im Bereich schwacher Kopplung ist die Form des Absorptionsspektrums näherungsweise mit dem eines einzelnen Moleküls
identisch und Zweiteilchen-Zustände haben nur einen sehr geringen Einfluss auf die beobachteten Spektren [48].

Im Bereich *starker Kopplung* ist die Unterstruktur durch die Vibrationsmoden nicht länger vorhanden. Aufgrund der starken Kopplung findet keine Kernrelaxation nach vertikaler Anregung statt. Stattdessen geht die Anregung resonant auf das nächste Molekül über, bevor die Kernrelaxation stattfindet [48]. Die Anregung lässt sich dann als Born-Oppenheimer-Produkt eines freien Exzitons und eines Phonons beschreiben [48]. Zweiteilchen-Zustände haben bei starker Kopplung einen signifikanten Einfluss auf die optischen Spektren. Das Absorptionsspektrum unterscheidet sich im Bereich starker Kopplung deutlich von dem eines einzelnen Moleküls. Für die in Abschnitt 2.3.3 noch näher beschriebenen J-Aggregate gilt insbesondere, dass die Intensität des 0-0-Übergangs relativ zu den vibronischen Seitenbanden deutlich zunimmt [48].

Um unterscheiden zu können, welcher Kopplungsfall vorliegt, vergleicht man die Kernrelaxationsenergie $\lambda$ mit der sogenannten *freien* Exzitonenbandbreite $W$ [49]. Für ein Molekül mit $N_{\text{vib}}$ Schwingungsfreiheitsgraden ($N_{\text{vib}} \geq 2$) ergibt sich die Kernrelaxationsenergie als Summe der Kernrelaxationsenergien entlang der einzelnen Normalkoordinaten:

$$\lambda = \sum_{i=1}^{N_{\text{vib}}} \hbar S_{i} \omega_{i}. \quad 2.12$$

Die *freie* Exzitonenbandbreite $W$ ergibt sich aus der Differenz des energetisch höchst- und tiefliegendsten Zustandes $E_H$ bzw. $E_L$ eines vibronischen Bandes und des zu diesem Band gehörigen Franck-Condon-Faktors $f_{0\nu}$ zu [50,51]:

$$W = \left| \frac{E_H - E_L}{f_{0\nu}} \right|. \quad 2.13$$

Schwache Kopplung liegt vor, wenn $W << \lambda$, mittlere Kopplungsstärke bei $W \approx \lambda$ und starke Kopplung bei $W >> \lambda$ [49]. Die im Rahmen der vorliegenden Arbeit untersuchten Systeme weisen schwache bis mittlere exzitonische Kopplungsstärken auf. Solche Systeme lassen sich in Störungstheorie erster Ordnung beschreiben, die im Folgenden kurz skizziert wird. Dabei beschränkt sich die folgende Darstellung auf die Einteilchenäquivalenz, da Zweiteilchenzustände, wie sie z. B. von Spano et al. diskutiert werden [48], nur bei sehr starker Kopplung einen nennenswerten Effekt auf die optischen Spektren haben.

---

1 Als Zweiteilchen-Zustände werden Zustände bezeichnet, bei denen neben der vibronischen Anregung eines Moleküls, zusätzlich eine Vibrationsanregung eines weiteren Moleküls vorliegt [48]. Solche Zustände werden häufig auch als Polaronen bezeichnet.
Für ein *einzeln*es Molekül \( n \) gilt, dass die Wellenfunktion \( \psi^f_n \) und der dazugehörige Energieeigenwert \( \varepsilon^f_n \) des Anregungszustandes \( f \) die Schrödingergleichung erfüllen:

\[
H_n \psi^f_n = \varepsilon_n \psi^f_n.
\]

Die Anregung in einem *Aggregat* von \( N \) Molekülen lässt sich durch Produktwellenfunktionen \( |n> \) beschreiben. Bei Beschränkung auf *Ein-Exiziton-Zustände*, d. h. Zustände bei denen nur ein Molekül \( n \) des Aggregats im angeregten Zustand \( |\phi^e_n> \) vorliegt und alle anderen \( N-1 \) Moleküle im Grundzustand vorliegen, lässt sich \( |n> \) schreiben als [14]:

\[
|n> = |\phi^e_n> \prod_{m=n}^{N} |\phi^0_m>.
\]

Die Wellenfunktionen des Aggregats werden im Folgenden mit \( |l> \) bezeichnet. Sie lassen sich in einer Basis der Wellenfunktionen \( |n> \) mit den Koeffizienten \( c_{l,n} \) schreiben als:

\[
|l> = \sum_{n=1}^{N} c_{l,n} |n>.
\]

Zur Berechnung von \( |l> \) muss die Coulomb-Wechselwirkung von Elektronen und Kernen verschiedener Moleküle berücksichtigt werden, so dass der Hamiltonoperator aus Gleichung 2.14 wie folgt modifiziert werden muss [48,50,52]:

\[
H = H_0 + H_{ex}.
\]

Dieser neue Hamiltonoperator setzt sich aus dem Operator \( H_0 \), der nur Diagonalelemente enthält und dem Operator \( H_{ex} \) zusammen, der nur Außerdiagonalelemente enthält. \( H_0 \) enthält die Übergangsenergie \( E_0 \) der Moleküle in der Gasphase sowie eine Verschiebung \( D \), die auf nicht-resonante Wechselwirkungen der Moleküle untereinander zurückgeht. \( D \) kann analog zu einer Lösungsmittelverschiebung betrachtet werden und wird zumeist als empirischer Parameter berücksichtigt. \( H_0 \) kann damit geschrieben werden als:

\[
H_0 = \sum_n (E_0 + D) |n><n|.
\]

\( H_{ex} \) enthält hingegen Außerdiagonalelemente, die die Austauschwechselwirkung zwischen den Molekülen \( n \) und \( m \) erfassen:

\[
H_{ex} = \sum_{m,n,m} J_{mn} |m><n|.
\]
Das Transfermatrixelement $M$ zwischen dem Zustand $|n, \nu\rangle$ (Molekül $n$ elektronisch angeregt, $\nu$ Schwingungsquanten) und dem Zustand $|m, \nu'\rangle$ ergibt sich dann zu [50]:

$$M = \langle n, \nu | H_{\text{ex}} | m, \nu' \rangle = J_0 f_{\nu\nu'}, \quad 2.20$$

wobei die einfachste Methode $J_0$ zu berechnen auf der Wechselwirkung zweier Punktdipole basiert [52]:

$$J_0 = \frac{1}{4\pi\varepsilon_0} \left( \frac{\bar{\mu}_n \bar{\mu}_m}{r^3} - 3 \left( \frac{\bar{\mu}_n \bar{r}}{r^5} \right) \left( \frac{\bar{\mu}_m \bar{r}}{r^5} \right) \right). \quad 2.21$$

Dabei bezeichnet $\bar{\mu}_n$ das Übergangsdipolmoment des Moleküls $n$ und $\bar{r}$ den Vektor der vom Schwerpunkt des Moleküls $n$ zum Schwerpunkt des Moleküls $m$ zeigt. Die Punktdipolannaherung ist gut, wenn die räumliche Ausdehnung der Übergangsdichte-Verteilung klein gegenüber den intermolekularen Abständen ist.

Für den auf diese Weise vollständig berechneten Hamilton-Operator aus Gleichung 2.17 berechnet man nun die Eigenwerte $E(l)$ sowie die Eigenvektoren $\tilde{c}_l = (c_{l1}, c_{l2}, ..., c_{ln})$. Die Eigenwerte entsprechen den Anregungenergien des Aggregats. Die normierten Eigenvektoren enthalten hingegen die Koeffizienten der Wellenfunktionen $|\phi\rangle$ des Aggregats aus Gleichung 2.16 [52]. Das zum Zustand $|\phi\rangle$ gehörende Übergangsdipolmoment ergibt sich analog aus den Übergangsdipolmomenten $\mu^0$ der einzelnen Moleküle:

$$\mu_l = \sum_n c_{ln} \mu^0_n. \quad 2.22$$

Im Rahmen der vorliegenden Arbeit wurden für molekulare Aggregate endlicher Größe die Anregungenergien, die Koeffizienten der Wellenfunktionen und die resultierenden Übergangsdipolmomente der Zustände des Aggregats berechnet (Abschnitt 7.4). Hierfür wurden MATLAB-Skripte [53] verwendet. Diese Skripte wurden auf Grundlage und unter partieller Erweiterung von Octave-Skripten [54], die von Dr. A. Eisfeld programmiert und zur Verfügung gestellt wurden [55], erstellt. Die Skripte liefern direkt ein theoretisches Spektrum des Aggregats, das zudem durch Faltung verbreitert und somit direkt mit den experimentell gemessenen FLE-Spektren verglichen werden konnte.

### 2.3.3. Kollektive Anregung in periodischen Strukturen

Die im vorherigen Abschnitt angestellten Überlegungen sind sehr allgemeiner Natur und beziehen sich nicht auf eine bestimmte Anordnung der Moleküle. Im Folgenden werden die Änderungen diskutiert, die sich ergeben, wenn eine periodische, unendlich ausgedehnte Anordnung von Molekülen vorliegt, wie das in molekularen Kristallen der Fall ist. Dabei werden hier nur die wichtigsten Punkte skizziert. Für eine vollständige Darstellung des Formalismus sei auf die Referenzen [11,13,14,56] verwiesen.
verwiesen. Die folgende Darstellung beschränkt sich zunächst auf den Fall von Kristallen mit nur einem Molekül pro Einheitszelle.

In einem periodischen Gitter mit den Gitterparametern a, b und c treten periodische Randbedingungen auf. Daher beschreibt man die Wellenfunktionen anstatt mit einer einfachen Linearkombination mit Bloch-Funktionen. Die Lösung der Schrödinger-Gleichung liefert unter diesen Vorraussetzungen für jedes Vibrationsniveau ω des elektronisch angeregten Zustands ein quasikontinuierliches Energieband (vgl. Abbildung 2.3) mit der Energie [11,13]:

\[ E(k) = \varepsilon_i + D + \sum_{n=0}^{\infty} J(n,0)f_{0n} \exp(\text{i}k(n - 0)). \]  \hspace{1cm} (2.23)

\( \varepsilon_i \) ist dabei die Energie des angeregten Zustands in der Gasphase und D die energetische Verschiebung aufgrund von nicht-resonanter Wechselwirkung. \( \tilde{n} \) ist der Vektor zum Schwerpunkt des Moleküls in der Einheitszelle \( n \) und \( \tilde{0} \) der entsprechende Vektor zum Schwerpunkt des Moleküls in einer beliebig zu wählenden Bezugseinheitszelle. \( \tilde{k} \) ist ein Vektor der Brillouin-Zone für den folglich gilt:

\[ \tilde{k} = \left( \left| k_x \right| \leq \frac{\pi}{a}, \left| k_y \right| \leq \frac{\pi}{b}, \left| k_z \right| \leq \frac{\pi}{c} \right). \]  \hspace{1cm} (2.24)

Die Berechnung der Exzitonenbandstruktur reduziert sich damit auf eine Summation über die Transformatrixelemente \( J_0(m,n)f_{0n} \).


Bezeichnet man den Vektor zum Schwerpunkt des i-ten Molekül der Einheitszelle \( n_i \) mit \( n_i \) und den zum Schwerpunkt des i-ten Moleküls einer beliebigen Bezugseinheitszelle mit \( 0_i \) so ergibt sich die Exzitonenbandstruktur im Falle von zwei Molekülen pro Einheitszelle zu [11,13]:

\[ E(\tilde{k}) = \varepsilon_i + D + \sum_{n_i,n_i=0}^{\infty} J(n_i,0_i)f_{0n_i} \exp(i\text{k}(\tilde{n_i} - \tilde{0}_i)) \pm \sum_{n_i}^{\infty} J(n_i,0_i)f_{0n_i} \exp(i\text{k}(\tilde{n_i} - \tilde{0}_i)). \]  \hspace{1cm} (2.25)

Im Gegensatz zu Gleichung 2.23 müssen nun 2 Summen ausgeführt werden. Die erste Summation erfasst dabei Wechselwirkungen von gleichartig orientierten Molekülen, während die zweite Summation die Wechselwirkung von unterschiedlich orientierten Molekülen berücksichtigt. Dadurch, dass sowohl eine Addition als auch eine Subtraktion der beiden Summanden möglich ist, ergeben sich dann zwei Exzitonenbänder.

Durch die periodischen Randbedingungen verändert sich aber nicht nur der mathematische Formalismus mit dem die Anregung beschrieben wird, sondern als wichtigs-
te Konsequenz tritt eine zusätzliche Auswahlregel auf. So sind im Falle einer periodischen, unendlich ausgedehnten Struktur nur Übergänge zu Zuständen ohne Knotenpunkte erlaubt ($k = 0$) [48]. Der Punkt $k = 0$ liegt im Zentrum der Brillouin-Zone und wird häufig auch als $\Gamma$-Punkt bezeichnet.

In Abschnitt 7.3.2 wird die Berechnung von Exzitonenbandstrukturen für die in der vorliegenden Arbeit beobachteten Monolagenstrukturen explizit ausgeführt. Vorher wird an dieser Stelle aber kurz auf die Bandstrukturen zweier linearer, periodischer Strukturen eingegangen, die sich gut eignen um einige grundsätzliche Begrifflichkeiten zu erklären. Die erste lineare Struktur ist eine Kette von Übergangsdipolen, die im Abstand $a$ senkrecht zur Ausbreitungsrichtung der Kette angeordnet sind (vgl. Abbildung 2.4 a)). Die zweite Struktur ist ebenfalls eine Kette bei der die Übergangsdipole im Abstand $a$ angeordnet sind. In diesem Fall sind sie aber entlang der Kette ausgerichtet (sog. Kopf-Schwanz Anordnung, vgl. Abbildung 2.4 b)). Berücksichtigt man nur die Kopplung der Übergangsdipole zwischen nächsten Nachbarn und setzt $D=0$ und $f_0=1$ so ergibt sich [14]:

\[
E(\tilde{k}) = \varepsilon_f + 2J_0 \cos(\tilde{k}a),
\]

wobei $J_0$ für die erste Struktur positiv und für die zweite Struktur negativ ist. Damit ergeben sich die in Abbildung 2.4 c) und d) gezeigten Bandstrukturen. Die in Abbildung 2.4 c) gezeigte Bandstruktur weist am $\Gamma$-Punkt mit $E = \varepsilon_f + 2|J_0|$ ein Maximum der Energie auf und fällt zum Brillouin-Zonenrand hin ab. Eine Struktur, die in einer solchen Exzitonenbandstruktur resultiert wird häufig als $H$-Aggregat bezeichnet.
H-Agregate zeichnen sich durch eine gegenüber dem Monomer blauverschobene Absorptionsbande aus [14].

Für die zweite Struktur (Abbildung 2.4 b)) ergibt sich eine gegensätzliche Situation. Die Bandstruktur weist am Γ-Punkt mit $E = \varepsilon_f - 2|J_0|$ ein energetisches Minimum auf und steigt zum Brillouin-Zonenrand hin an. Strukturen, die eine solche Exzitonenbandstruktur aufweisen, werden als J-Aggregate bezeichnet. J-Agregate weisen eine gegenüber dem Monomer rotverschobene Absorptionsbande auf [14].

Lineare Ketten, die periodisch aufgebaut sind, aber aus endlich vielen (N) Übergangsdipolen bestehen, zeigen ähnliche Eigenschaften. Beschränkt man sich wiederum auf die Wechselwirkung zwischen nächsten Nachbarn kann die Hamilton-Matrix exakt diagonalisiert werden. Man erhält dann die Eigenfunktionen [52,57]:

$$|l\rangle = \sqrt{\frac{2}{N+1}} \sum_n \sin\left(\frac{\pi \cdot l \cdot n}{N+1}\right) |n\rangle$$  \hspace{1cm} \text{(2.27)}

mit den Energien:

$$E(l) = \varepsilon_f - 2J_0 \cos\left(\frac{\pi \cdot l}{N+1}\right)$$  \hspace{1cm} \text{(2.28)}

und den quadrierten Übergangsdipolmomenten:

$$|\mu_l|^2 = \left(\frac{2\mu_0^2}{N+1}\right) \cot^2\left(\frac{\pi \cdot l}{2(N+1)}\right) \quad \text{für ungerade } l$$  \hspace{1cm} \text{(2.29)}

$$|\mu_l|^2 = 0 \quad \text{für gerade } l.$$  \hspace{1cm} \text{(2.30)}

Bei der Ausbildung der neuen Übergangsdipolmomente bleibt die Gesamtöszillatorstärke des Systems erhalten. Die Öszillatorstärke des Zustandes $l=1$ beträgt $0.81N^1$ für große Werte von N. Die Erhöhung der Öszillatorstärke dieses Zustands gegenüber einem einzelnen Molekül führt zu einer Verkürzung seiner Lebensdauer. Man bezeichnet diesen Effekt als Superradianz [58]. Im Folgenden wird dieser Effekt kurz diskutiert jedoch ohne, dass auf Details der theoretischen Beschreibung der Superradianz eingegangen wird.

In molekularen Systemen, die eine vibronische Feinstruktur aufweisen, führt Superradianz zu einer Erhöhung des rein elektronischen Übergangs im Fluoreszenzspektrum. Im Idealfall ist diese Erhöhung proportional zu N. Aufgrund von Unordnung und thermischen Effekten ist die 0-0-Bande der Fluoreszenz in J-Aggregaten aber im Allgemeinen nur um $N_{coh} (<N)$ erhöht. $N_{coh}$ bezeichnet dabei die Anzahl der Moleküle über die die Wellenfunktion effektiv delokalisiert ist.

\footnote{Der Faktor 0.81 kommt durch die offenen Randbedingungen und die endliche Größe der Kette zustande. Er entfällt im Fall von periodischen Randbedingungen [48].}
Die Intensität der Fluoreszenz der vibronischen Seitenbanden ist hingegen nahezu unabhängig von $N$. Daher kann das Verhältnis der Intensität der 0-0-Bande zur 0-1-Bande:

$$R_{em} = \frac{I_{00}}{I_{01}}$$

als Maß für $N_{coh}$ verwendet werden. $N_{coh}$ (und damit $R_{em}$) ist stark von der Temperatur abhängig; mit steigender Temperatur nimmt $N_{coh}$ ab. Diese Abhängigkeit wird in Abschnitt 7.4.4 noch näher behandelt.

Aber selbst bei $T=0$ K kann $N_{coh}$ deutlich kleiner als $N$ sein, wenn im Aggregat Unordnung vorliegt. In der Literatur wird generell zwischen zwei verschiedenen Arten von Unordnung unterschieden [52,59,60]. Als \textit{diagonale Unordnung} bezeichnet man eine Variation in den Übergangsenergien der koppelnden Moleküle, als \textit{außerdiagonale Unordnung} eine Variation der Kopplungsstärken zwischen den Molekülen. Um Unordnung bei der theoretischen Beschreibung von Aggregaten zu berücksichtigen, können Unordnungsparameter $\Delta \varepsilon$ und $\Delta J$ in den Hamilton-Operator integriert werden.

Die folgende Darstellung beschränkt sich auf diagonale Unordnung. Nimmt man an, dass die Verteilungsfunktion der Übergangsenergien deutlich breiter ist, als die Verbreiterung durch die Lebensdauer und durch Phononen, so spiegelt die 0-0-Bande des Absorptionsspektrums im Falle von \textit{nicht} gekoppelten Molekülen direkt die Verteilungsfunktion der Unordnung wieder. Im Falle von gekoppelten Molekülen ist dies nicht länger der Fall. Aufgrund der Delokalisierung der Anregung „sieht“ das Exziton verschiedene Übergangsenergien und „mittelt“ über diese. In der Folge ist die Absorptionsbande häufig schmaler als die Breite der Verteilung der Übergangsenergien. Dieser Effekt wird daher als \textit{motional line narrowing} bezeichnet [61]. Der genaue Zusammenhang zwischen der Breite der Verteilung der Übergangsenergien und der Breite der Absorptionsbande hängt von der Art der Verteilung der Übergangsenergien ab [62].

\section*{2.3.4. Experimentelle Methoden}


\textbf{Fluoreszenzspektroskopie (FL)}

Bei der Methode der Fluoreszenzspektroskopie (FL-Spektroskopie) wird in Molekülen durch monochromatisches Licht der Übergang vom elektronischen Grundzustand in
einen elektronisch angeregten Zustand induziert. Als Lichtquellen eignen sich aufgrund der hohen Monochromasie, der hohen erreichbaren Anregungsintensitäten und der guten Fokussierbarkeit in besonderem Maße Laser.


Ein großer Vorteil bei der Methode der FL-Spektroskopie ist, dass die Messung untergrundfrei erfolgt. Dies führt zu einer hohen erreichbaren Empfindlichkeit. Der größte Nachteil der Fluoreszenzspektroskopie ist hingegen, dass in vielen Fällen die Quantenausbeute $\Phi_F$ schlecht ist. Als Quantenausbeute bezeichnet man dabei das Verhältnis von absorbieren den und emittierten Photonen. Eine schlechte Quantenausbeute kann eine intrinsische Eigenschaft der untersuchten Moleküle sein oder durch zusätzliche Umgebungseffekte, wie die räumliche Nähe eines metallischen Festkörpers, hervorgerufen werden (vgl. Abschnitt 2.3.5).

Zusätzlich muss bei der Interpretation von Fluoreszenzspektren stets bedacht werden, dass ein „relaxierter“ angeregter Zustand beobachtet wird. Zum Beispiel kann in Mischungen zweier Chromophore ein effektiver Energietransfer dazu führen, dass nur noch das Fluoreszenzsignal einer Spezies zu beobachten ist.

**Absorptionsspektroskopie**

Bei der optischen Absorptionsspektroskopie wird die zu untersuchende Probe mit polychromatischem Licht der Intensität $I_0$ beleuchtet. Dadurch werden Moleküle vom elektronischen Grundzustand in einen elektronisch angeregten Zustand angeregt. Gemessen wird nun, wie stark das eingestrahlte Licht als Funktion der Wellenlänge absorbiert wird. Im Gegensatz zur FL-Spektroskopie ist die im Experiment messbare Schwingungsfeinstruktur durch die Schwingungsniveaus des elektronisch angeregten Zustands gegeben.

Absorption wird mathematisch durch das Lambert-Beer’sche Gesetz beschrieben:

$$A = \lg \frac{I_0}{I} = \varepsilon \cdot d \cdot c$$

Dabei ist die Absorbanz $A$ der dekadische Logarithmus des Verhältnisses der Intensität $I_0$, die in das absorbierende Medium eintritt, und der Intensität $I$, die aus dem Medium austritt. $\varepsilon$ ist der molare dekadische Absorptionskoeffizient, $d$ ist die durchstrahlte Schichtdicke und $c$ die Konzentration des absorbierenden Stoffs [38,39].

Als Spektroskopiemethode für Moleküle auf Oberflächen eignet sich die Absorptionsspektroskopie nur dann, wenn transparente Substrate, wie zum Beispiel Glimmer
oder Alkalihalogenide, verwendet werden. Für nicht transparente Substrate, zum Beispiel Metalle, kann jedoch häufig auf die verwandte Methode der differentiellen Reflexionsspektroskopie (DRS) zurückgegriffen werden [17,63].

Das Prinzip der differentiellen Reflexionsspektroskopie beruht darauf, dass sich die Reflektion der reinen Probe \( R(\omega,0) \) von der Reflektion der Probe mit aufgebrachter Molekülschicht \( R(\omega,d) \) unterscheidet. Das DRS-Signal ergibt sich dann gemäß:

\[
DRS = \frac{\Delta R}{R} = \frac{R(\omega,d) - R(\omega,0)}{R(\omega,0)}
\]

2.33

Für transparente Substrate und Molekülschichten die deutlich dünner sind als die Wellenlänge des Lichts, ist das DRS-Signal proportional zur Absorption. Im Fall von nicht-transparenten Substraten, kann das Absorptionsspektrum hingegen mit Hilfe einer Kramers-Kronig-Transformation aus dem DRS-Signal errechnet werden [17,64,65].

Für Molekülmonolagen ist die Differenz \( \Delta R \) sehr klein gegenüber den Messsignalen \( R(\omega,d) \) und \( R(\omega,0) \). Schon kleine Änderungen im Strahlengang können daher zu größeren Fehlern führen.

**Fluoreszenzanregungspektroskopie (FLE)**

Um Informationen über den elektronisch angeregten Zustand zu erhalten, kann neben Absorptions- und Reflexionsspektroskopie noch eine dritte Methode verwendet werden, die Fluoreszenzanregungspektroskopie (FLE-Spektroskopie, von engl. fluorescence excitation), die im Rahmen der vorliegenden Arbeit verwendet wurde.

FLE-Messungen sind vom experimentellen Aufbau FL-Messungen sehr ähnlich. Im Gegensatz zur FL-Spektroskopie wird bei der FLE-Spektroskopie die Anregungswellenlänge während des Experiments kontinuierlich innerhalb des Absorptionsbereichs der Probe verändert. Die Anregungswahrscheinlichkeit variiert dann abhängig davon, ob die eingestrahlte Wellenlänge \( (\lambda_{\text{exc}}) \) einem Übergang vom elektronischen Grundzustand in einen Schwingungszustand des elektronisch angeregten Zustands entspricht. Nach Lichtabsorption relaxiert der elektronisch und vibronisch angeregte Zustand zunächst in den Schwingungsgrundzustand und zerfällt von dort unter Emission von Fluoreszenzlicht, welches in einem FLE-Experiment bei einer festen Wellenlänge \( (\lambda_{\text{det}}) \) detektiert wird. Geht man nun davon aus, dass die Quanteneffizienz der Moleküle unabhängig von der Anregungswellenlänge ist und normiert man auf konstante Intensität des Anregungslichts, so gilt für die Intensität des FLE-Signals (\( I_{\text{FLE}} \)) als Funktion der Anregungswellenlänge:

\[
I_{\text{FLE}}(\lambda = \lambda_{\text{exc}}) \propto I_{\text{FL}}(\lambda = \lambda_{\text{exc}}, \lambda_{\text{det}} = \text{const.}) \propto I_{\text{abs}}(\lambda) = I_b \cdot (1 - e^{-\varepsilon \cdot d \cdot c})
\]

2.34

Für die in der vorliegenden Arbeit untersuchten Probensysteme ist \( d \) sehr klein. Für die daraus resultierenden geringen Werte von \( \varepsilon \cdot d \cdot c \), kann man die Exponentialfunk-
tion im Rahmen einer Taylorreihenentwicklung nähern. Bei Abbruch nach dem zweiten Glied ergibt sich:

\[ I_{\text{FLE}} \approx I_0 \cdot \varepsilon \cdot d \cdot c \propto A. \quad 2.35 \]

\( \varepsilon \cdot d \cdot c \) entspricht nach Gleichung 2.32 aber gerade der Absorbanz \( A \), so dass FLE-Spektrum und Absorptionsspektrum proportional zueinander sind. Die in der vorliegenden Arbeit enthaltenen FLE-Spektren können daher analog zu Absorptionsspektren diskutiert werden.

### 2.3.5. Lumineszenzlöschung auf metallischen Substraten

Die optischen Eigenschaften von organischen Molekülen ändern sich durch eine Anbindung an ein metallisches Substrat deutlich [66,67]. Es kommt zu einer deutlichen Intensitätsverringerung der Lumineszenz oder sogar zu einer vollständigen Lösung, die als Lumineszenzquenching bezeichnet wird. Hierfür sind drei unterschiedliche Mechanismen verantwortlich, die in unterschiedlichen Abstands bereichen relevant sind und im Folgenden kurz skizziert werden.


\[ \frac{k_{\text{nichtstrahlend}}}{k_{\text{strahlend}}} \propto \left( \frac{d_0}{x} \right)^3. \quad 2.36 \]

Dabei bezeichnet \( x \) den Abstand des betrachteten Moleküls zur Metalloberfläche und \( d_0 \) einen charakteristischen Quenchingabstand. In einer Molekülschicht der Dicke \( d \) ergibt sich dann für die durchschnittliche Quantenausbeute die nachfolgende Proportionalität [68]:

\[ \bar{n}_q \propto \frac{1}{d_0^3} \int \frac{1}{1 + \left( \frac{d_0}{x} \right)^3} \, dx. \quad 2.37 \]

Für kleine Abstände der Moleküle vom Metallssubstrat sind Beispiele bekannt, in denen die CPS-Theorie den Verlauf der Intensität der Photolumineszenz nicht korrekt beschreibt [68-70]. Speziell für die erste molekulare Lage eines organischen Adsorbats auf einem Metallsubstrat wird die Lumineszenzlöschung besser durch den Mechanismus des ultraschnellen Ladungstransfers beschrieben [68-70].

Für Schichten oberhalb der ersten molekularen Lage, insbesondere für die zweite molekulare Lage, können weitere auf dem ultraschnellen Ladungstransfer basierende Mechanismen zum Quenching beitragen. Der oben beschriebene Ladungstransfer kann aus der zweiten molekularen Lage über einen Tunnelprozess durch die erste Lage hindurch in das Metallsubstrat stattfinden. Alternativ dazu kann die elektronische Anregung auch zunächst über einen Energietransfer auf ein Molekül der ersten Lage übertragen werden, welches dann die Anregung über einen ultraschnellen Ladungstransfer an das Substrat abgibt.

Die Lumineszenzunterdrückung auf Grundlage eines ultraschnellen Ladungstransfers ist üblicherweise nur für die ersten beiden Moleküllagen stark. Ab der dritten Molekülage ist zumeist Lumineszenz zu beobachten [24,68,69].
3. Literaturüberblick


3.1. Wachstum von Alkalihalogeniden auf fcc-Metalloberflächen


Die verwendeten Alkalihalogenide waren LiF [83], KF [80], LiCl [79,85], NaCl [72-74], KCl [85], RbCl [85] und KBr [86,92]. Im überwiegenden Teil der Fälle wurde für das Wachstum bei Raumtemperatur berichtet, dass die Alkalihalogenide in Form von (100)-terminierten Inseln aufwachsen. Es wurden jedoch unterschiedliche epitaktische Beziehungen zwischen dem Alkalihalidfilm und dem Metallsubstrat gefunden. So wurde festgestellt, dass auf gestuften und facettierten Metalloberflächen starke Gitterverzerrungen auftreten können, die vermutlich durch elektrostatische Wechselwirkungen stabilisiert werden [81,90]. Im Gegensatz dazu ist die Gitterübereinstimmung nicht das vorherrschende Kriterium auf niedrig indizierten Metalloberflächen wie (100)-, (110)- und (111)-Oberflächen [78,79].

Auch die azimuthale Orientierung zwischen Substrat und Isolatorfilm wurde in der Literatur bereits eingehend untersucht [79]. Die folgende Zusammenfassung beschränkt sich jedoch auf die für die vorliegende Arbeit relevanten Beobachtungen auf (100)-Oberflächen. Auf Oberflächen dieser Orientierung wurden im Wesentlichen drei verschiedene Situationen beobachtet: 1) ausgerichtetes Wachstum (0°-Wachstum), bei dem die Vektoren der primitiven Oberflächeneinheitszellen von Alkalihalogenid und Substrat zueinander parallel sind [79], 2) 45° Wachstum, bei
3.2 Wachstum \(\pi\)-konjugierter Moleküle auf Isolatoroberflächen

dem die Vektoren der Einheitszellen um 45° zueinander verdreht sind [79] und 3) Rotationsmosaizität, bei der der Winkel zwischen den Vektoren der Einheitszellen nicht einen bestimmten Wert annimmt, sondern durch eine Winkelverteilung beschrieben werden muss [73,78]. Eine Diskussion dieser verschiedenen Fälle findet sich bei Kiguchi et al. [79].

Auch zu einer, der in der vorliegenden Arbeit verwendeten Kombinationen von Alkalihalogenid und Metallsubstrat, nämlich zu der aus NaCl und Ag(100) finden sich Untersuchungen in der Literatur. Als Methoden kamen dabei RHEED [79], LEED [78] und STM zum Einsatz [73]. In diesen Arbeiten wird für das Wachstum von NaCl auf Ag(100) übereinstimmend die Beobachtung von Rotationsmosaizität beschrieben. Im Detail wurde diese von Kramer et al. [78] mit Elektronenbeugung und von Pivetta et al. [73] mittels STM-Messungen untersucht. Die Schlussfolgerungen dieser Arbeiten sind jedoch teilweise widersprüchlich, so dass sich zusammenfassend sagen lässt, dass die azimuthale Mosaizität von NaCl-Filmen auf Ag(100) noch nicht vollständig verstanden ist.

Zusätzlich zu dem Wachstum von NaCl auf Ag(100) wurde im Rahmen der vorliegenden Arbeit auch das Wachstum von KCl auf Ag(100) untersucht. Zu dieser Kombination ist in der Literatur nur eine Arbeit verzeichnet. Kiguchi et al. haben dünne KCl-Filme auf Ag(100) mittels NEXAFS untersucht [93]. Diese Arbeit beschränkt sich allerdings auf elektronische Eigenschaften und liefert keine Informationen zur Epitaxie der Filme.

3.2 Wachstum \(\pi\)-konjugierter Moleküle auf Isolatoroberflächen


### 3.3. Optische Eigenschaften von PTCDA

In Folgenden wird eine kurze Übersicht über die bislang aus der Literatur bekannten optischen Eigenschaften, d. h. Absorptions- und Fluoreszenzeigenschaften, von PTCDA gegeben. Dabei werden zunächst Ergebnisse wiedergegeben, die für vereinzelte PTCDA-Moleküle gewonnen wurden. Daran anschließend werden kondensierte PTCDA-Phasen behandelt. Die Ergebnisse aller in diesem Abschnitt vorgestellten Arbeiten beruhen auf elektronischen Übergängen zwischen S0 und S1. Dieser Übergang ist im Fall von PTCDA entlang der langen molekularen Achse polariert [126].

Im Gegensatz zu Perylen [127] sind für PTCDA keine Gasphasenspektren in der Literatur zu finden. Die Spektroskopie vereinzelter Moleküle in ultrakalten Helium Tröpfchen liefert aufgrund der schwachen Wechselwirkung der Moleküle mit der Heliumhülle jedoch Spektren, die sehr ähnlich zu Gasphasenspektren sind [128]. Solche Experimente wurden auch mit PTCDA durchgeführt [129-131]. Die hierbei erhaltenen FLE- und FL-Spektren zeichnen sich durch eine sehr hohe Auflösung aus (FLE: Linienbreite $\ll 1\text{cm}^{-1}$). In Folge dessen kann eine Vielzahl von vibronischen Banden aufgelöst und im Detail analysiert werden.
Ebenso wie bei der Spektroskopie in Helium-Tröpfchen, so liegen (bei ausreichender Verdünnung) auch in Lösung vereinzelt PTCDA-Moleküle vor. Aufgrund der stärkeren Wechselwirkung mit dem Lösungsmittel und der höheren Temperatur sind Lösungsmittelpektrten von PTCDA in DMSO allerdings deutlich weniger aufgelöst [132]. Anstelle von einzelnen Schwingungsnormalmoden, ist hier in den Spektren nur noch eine effektive Schwingungsmode mit einer Linienbreite von \( \approx 1000 \text{ cm}^{-1} \) zu erkennen. Zusätzlich zu dieser Verbreiterung sind die Lösungsmittelpektrten gegenüber den Spektren in He-Tröpfchen um etwa 1750 cm\(^{-1} \) zu geringerer Energie verschoben.

Spektren, deren Form den Lösungsmittelpektrten sehr ähnlich sind, wurden auch für PTCDA, das auf ultradünnen Glasfasern adsorbiert wurde [133,134] sowie für zweidimensionale, monomolekulare Filme auf Isolatoroberflächen [16,125] gemessen. Letztere Spektren sind vergleichbar mit denen in der vorliegenden Arbeit präsentierten, weshalb auf sie später noch Bezug genommen wird.

Monomolekulare PTCDA-Filme, die epitaktisch auf Metallen aufgewachsen wurden, unterscheiden sich deutlich von solchen, die auf Isolatoren aufgewachsen wurden. Durch die chemische Bindung zwischen den PTCDA-Molekülen und dem Metallsubstrat wird ein Ladungstransfer auf das Molekül ermöglicht, der sich im Absorptionspektrum in einer zusätzlichen, niederenergetischen Komponente manifestiert [66]. Übereinstimmend konnte diese Komponente auch für PTCDA-Moleküle auf Glimmer, die nach Koadsorption von atomarem Kalium eine negative Ladung trugen, festgestellt werden [135].

Für dickere, epitaktisch aufgewachsene PTCDA-Filme verändern sich die optischen Eigenschaften drastisch. Proehl *et al.* konnten durch in-situ DRS-Messungen zeigen, dass bereits ab einer Dicke von etwa 2 Monolagen die Absorptionsspektren deutlich verbreitert sind und keine molekulare vibronische Signatur mehr aufweisen [18]. Die nun in den Spektren vorhandene Struktur ist vielmehr durch die relative Anordnung der Moleküle zueinander bestimmt, wie Schneider *et al.* durch die Untersuchung von 30 ML dicken PTCDA-Filmen auf Ag(111) zeigen konnten [136]. Die Lumineszenz solcher mehrlagigen PTCDA-Filme ist gegenüber den monomolekularen Filmen um \( \approx 3500 \text{ cm}^{-1} \) zu niedrigerer Energie verschoben [125,136].

Abbildung 3.1: Lumineszenz von 3 ML PTCDA auf NaCl(100) gemessen bei 20 K. $\lambda_{exc}=476$ nm.

Das Spektrum weist drei Banden bei etwa 16000 cm$^{-1}$, 14700 cm$^{-1}$ und 13400 cm$^{-1}$ auf, die jeweils eine Halbwertsbreite von über 1000 cm$^{-1}$ haben. Verglichen mit den FL-Spektren der PTCDA-Monolagen auf NaCl und KCl (Abschnitt 7.3) ist die Fluoreszenz damit deutlich (>3000 cm$^{-1}$) zu niedrigerer Energie verschoben und die Banden weisen eine vielfach höhere Halbwertsbreite auf. In Folge dessen ist eine Auflösung einzelner vibronischer Modi nicht möglich.


Schneider et al. konnten zeigen, dass die Lumineszenz der α- und β-Phase von PTCDA sich sehr ähnlich ist. In beiden Fällen wird die Lumineszenz durch eine Bande bei 16000 cm⁻¹ dominiert, die von den Autoren als 0-0-Übergang der Emission interpretiert wird. Zwei zusätzliche Banden, die den Banden bei 14700 und 13400 cm⁻¹ der Abbildung 3.1 entsprechen, führen die Autoren auf die Anwesenheit von Übergangsphasen oder strukturellen Defekten, wie z. B. Stapelfehler zurück. Im Falle der HB-Phase könnten solche Stapelfehler insbesondere durch eine Versetzungsebene zwischen der Monolage (quadratische Struktur) und den höheren Lagen (Fischgrätsch Struktur) gegeben sein, wie sie in Abschnitt 6.4 diskutiert wird.

Das in Abbildung 3.1 gezeigte FL-Spektrum kann aufgrund der Ähnlichkeiten mit den Literaturspektren als typisch für eine PTCDA-Multilage angesehen werden. Die klare Unterscheidbarkeit dieser Spektren von Monolagenspektren ermöglicht daher anhand des FL-Spektrums Multi- und Monolagenphasen zu unterscheiden¹.


¹ Dies ist von Bedeutung für die Diskussion der HB*-Phase. Die FL-Spektren dieser Phase (Abschnitt 7.3) sind ein unabhängiger Beleg dafür, dass sie eine Monolagenphase ist, und dass sie nicht identisch ist mit der HB-Phase, die ähnliche Gitterkonstanten aufweist (aber eine Multilagenphase ist). Zur strukturellen Charakterisierung der HB- und der HB*-Phase sei auf Abschnitt 6.2.2. und 6.4 verwiesen.
4. Experimentelle Grundlagen


4.1. Versuchsaufbau und verwendete Messmethoden


Der verwendete Ag(100)-Kristall ist auf einem Manipulator der Firma VAB montiert, welcher eine Translation in alle drei Raumrichtungen und zusätzlich eine Rotation um die y-Achse ermöglicht. Die Temperatur der Probe kann durch einen integrierten Helium-Verdampferkryostaten verringert werden. Die minimal erreichbare Temperatur am Kryostatenkopf betrug 16 K. Die Messungen dieser tiefen Temperaturen erfolgt über eine Siliziumdiode (Model DT-670B-SD, Fa. LakeShore Cryotronics) welche am Kryostatenkopf angeklemmt ist. Die Umrechnung der an der Diode gemessenen Spannung in einen Temperaturwert erfolgte anhand der Kalibrierung des Herstellers. Eine exakte Temperaturmessung direkt am Kristall ist bei diesen tiefen Temperaturen nicht mehr möglich, da das dort befindliche Thermoelement vom Typ K (Chromel/Alumel) bei tiefen Temperaturen keine zuverlässigen Werte liefert. Da aber auf der kalten Probe Argon adsorbiert werden konnte und aus der Literatur bekannt ist, dass die Desorption von Argon bereits bei etwa 25 K einsetzt [140-142], wurde die tiefste erreichbare Kristalltemperatur mit 20 K abgeschätzt. Höhere Temperaturen ab etwa 60 K konnten hingegen wieder über das Thermoelementpaar vom Typ K zuverlässig gemessen werden. Dieses Thermoelement befindet sich direkt unter der Probe.
34 4.1 Versuchsaufbau und verwendete Messmethoden

Abbildung 4.1: Schematische Zeichnung des verwendeten Versuchsaufbaus (nicht maßstabsge recht).

Geheizt werden kann die Probe durch Wärimestrahlung, die von einem Wolframfilament unter der Probe emittiert wird. Die Probe kann zusätzlich durch Anlegen eines positiven Potentials mit Elektronenstoß geheizt werden. Auf diese Weise können Temperaturen bis 1350 K erreicht werden. Wird nur durch Wärimestrahlung geheizt, so kann die Probentemperatur durch einen Temperaturkontroller vom Typ Eurotherm 2704 geregelt werden. Dieser ermöglicht eine Regelung bis auf 0.1 K genau. Bei Hochspannungsheizung wurde die Probentemperatur hingegen von Hand geregelt.


Gegenüber den Aufdampföfen waren zwei Schwingquarze montiert, die eine absolute Dickeneichung der aufgedampften Schichten ermöglichten. Da eine Schichtdickenbestimmung mit Hilfe einer Schwingquarzwägung aber erst ab Schichtdicken von einigen Ångström mit hinreichender Genauigkeit möglich ist, wurde bei der Bestimmung von Schichtdicken zusätzlich das Massenspektrometer eingesetzt, das eine vielfach höhere Empfindlichkeit aufweist. Die Details zu dieser Technik sind in Abschnitt 4.2.4 beschrieben.

Zur strukturellen Charakterisierung befindet sich ein SPA-LEED-Instrument der Firma Omicron an der Kammer. Experimentelle und technische Details hierzu sind in Abschnitt 4.1.2 zu finden.

**4.1.1. Optische Spektroskopie**

Der wesentliche Teil der in der vorliegenden Arbeit geschilderten Experimente basiert auf dem optischen Versuchsaufbau, der die Detektion von Lumineszenz der organischen Filme ermöglicht. Hierzu muss die verwendete Probe in einen Glaskopf (Quarzglas, Fa. Vacom, Typ VP63Q) transferiert werden, der an der linken Seite der UHV-Kammer angebracht ist (siehe Abbildung 4.1).


Zur Bestimmung der Leistung der beiden Laser wurden zwei unterschiedliche Powermeter genutzt. Das thermisch arbeitende Powermeter des Typs LaserMate der Firma Coherent kann Leistungen von 1 mW bis 10 W mit einer Genauigkeit von 1 mW messen. Eine Einstellung der Wellenlänge ist nicht erforderlich. Das mit einer
Photodiode arbeitende Powermeter vom Typ PM120 der Firma Thorlabs kann hingegen deutlich kleinere Leistungen in einem Messbereich von 50 nW bis 50 mW zuverlässig messen, benötigt aber eine Kalibrierung auf die Wellenlänge des Lichts (siehe Anhang A).

Der Strahl des für das jeweilige Experiment verwendeten Lasers wurde über einige Spiegel auf die Probe im Glaskopf justiert. In der Mehrzahl der Experimente traf er auf diese in einem Winkel von etwa 45°. Davon abweichend wurde bei den polarisationsabhängigen Messungen unter senkrechten Einfall gearbeitet; die experimentellen Details hierzu werden separat in Abschnitt 7.2.1 beschrieben. In einigen Experimenten wurde der Laser zusätzlich durch einen sphärischen Spiegel (f=250 mm) auf die Probe fokussiert.

Die durch das auf die Probe treffende Licht angeregte Fluoreszenz wurde zunächst von einer achromatischen Linse parallelisiert (Gläser: N-BAF10 / SF10, f=100 mm, Ø=50.8 mm) und anschließend von einer zweiten achromatischen Linse (Gläser: N-BK7 / SF2, f=200 mm, Ø=50.8 mm) auf den Eingangsspalt eines abbildenden Spektrometers fokussiert. Die geringe Brennweite der ersten Linse wurde gewählt, um in einem möglichst großen Raumwinkel Fluoreszenzflicht zu sammeln. Die Brennweite der zweiten Linse ist hingegen der Blendenzahl (f/#) des Spektrometers angepasst. Um an der Probe gestreutes Anregungsflicht zu unterdrücken, wurden Langpassfilter vor dem Eingangsspalt des Spektrometers verwendet. Hierbei wurden ausschließlich dielektrische Langpassfilter verwendet.

Bei dem verwendeten Spektrometer handelt es sich um ein N₂-gekühltes CCD-Spektrometer der Firma Acton vom Typ SpectraPro 2300i (fokale Länge 0.3 m, f/4). Mittels eines Drehkreuzes können drei verschiedene Gittern im Spektrometer verwendet werden (300, 600 und 1200 g/mm). Das CCD-Array des Spektrometers (Spec-10:100-BR(LN)) wurde bei -100°C betrieben. Für minimales Rauschen sind die gewählten Betriebsparameter des CCD-Arrays entscheidend: Typischerweise wurden etwa 10-100 Spektren bei einer Belichtungsdauer von 0,1 bis 1 s akkumuliert. Es wurde Hardware Binning im Spectroscopy Mode verwendet, der A-D-Wandler wurde bei 100 kHz betrieben und als Readout Port wurde low noise verwendet. Unter diesen Bedingungen wurde das Rauschen durch das von der Belichtungszeit unabhängige Ausleserauschen von etwa 100 Counts pro Belichtung dominiert.


Eine Intensitätskorrektur der detektierten Spektren im Hinblick auf die Transmission des Gitters und der spektralen Sensitivität des CCD-Arrays erfolgte innerhalb der vorliegenden Arbeit nicht, da aufgrund der Herstellerdaten davon auszugehen ist,
dass die Sensitivitätskurve im relevanten Wellenlängenbereich sehr flach verläuft. Details hierzu finden sich in Anhang B.

Da das Spektrometer die Intensität in äquivalenten Wellenlängenintervallen \( d\lambda \) misst, müssen die Intensitäten bei einer Auftragung über die Wellenzahl \( \nu \) gemäß

\[
\nu = \frac{1}{\lambda} \quad \Rightarrow \quad d\lambda \propto \lambda^2 d\nu.
\]

mit einem zu \( \lambda^2 \) proportionalen Faktor korrigiert werden. Die Auswirkungen dieser Korrektur auf die gemessenen Spektren sind allerdings klein, wenn, wie in der vorliegenden Arbeit, relativ kleine Wellenlängenbereiche betrachtet werden. Aus diesem Grund wurde die Korrektur in der vorliegenden Arbeit vernachlässigt. Der Fehler, der durch die Vernachlässigung dieser Korrektur entsteht, wird zudem teilweise durch die Sensitivitätskurve des Spektrometers kompensiert. Auch hierzu finden sich Details in Anhang B.


4.1.2. Niederenergetische Elektronenbeugung mit Spotprofilanalyse


UHV-seitig wurde die vor dem Channeltron angeordnete Lochblende durch eine Lochblende mit größerem Durchmesser ersetzt (300 \( \mu \)m, Fa. Plano, AZ313P). Hierdurch werden höhere Zählraten bei gleich bleibendem Probenstrom erreicht. Typische Probenströme während der LEED-Messungen betrugen 1 – 2 nA.

Die Steuerung des Oktupols ermöglicht werksseitig Ablenkspannungen von ±150 V. Im verwendeten Steuergerät sind die Ablenkspannungen um einen Faktor 3 reduziert, womit die maximale Ablenkspannung nur noch ±50 V beträgt. Das Ziel dieser Modifikation war eine Erhöhung der Stabilität von geringen Ablenkspannungen,
welche besonders häufig benötigt wurden. Die Kommunikation zwischen Messrechner und Steuergerät blieb jedoch unverändert. Dies führt dazu, dass die am Messrechner angezeigten Spannungen um einen Faktor 3 größer sind als die tatsächlich anliegenden Spannungen.

Neben diesen Modifikationen an der Hardware wurde auch die mitgelieferte Software (SPA4) weiterentwickelt. Die bisherige Software ließ die Aufnahme von eindimensionalen Profilen nur entlang von Geraden zu. Für die Analyse der Rotationsmosaizität von NaCl auf Ag(100) (vgl. Abschnitt 5.1) wurden jedoch Profile entlang von Kreisbögen benötigt. Eine entsprechende Funktion wurde in Turbo Pascal 7.0 programmiert und in das Programm implementiert. Außerdem wurde die maximal mögliche Anzahl von Datenpunkten in zweidimensionalen LEED-Bildern von 400×400 auf 800×800 erhöht.

4.1.3. Thermisch programmierte Desorption und Aufdampfkontrolle


Abbildung 4.2: Schemazeichnung des Messaufbaus zur Bestimmung der Aufdampfrate und zur Aufnahme von thermischen Desorptionsspektren.

Die beiden seitlichen Öffnungen des Gehäuses sind rechteckig und zeigen in Richtung der Aufdampfquellen. Durch diese Öffnungen wird einerseits der Ionisations-

Unter der kreisförmigen Öffnung am unteren Ende (Ø=7 mm) des Gehäuses kann die Probe mit einem sehr geringen Abstand (<1 mm) positioniert werden. Dadurch können Hintergrundsignale, welche durch die Desorption von Molekülen vom Probenhalter verursacht werden, effektiv unterdrückt werden [143]. In dieser Position wurden die thermischen Desorptionsspektren gemessen. Dafür wurde die Probe mit Hilfe des PID-Reglers der Firma Eurotherm mit einer konstanten Heizrate $\beta=1$ K/s bis 850 K geheizt. Gleichzeitig wurde durch das Massenspektrometer der Ionenstrom bei der PTCDA-Muttermasse (m/z 392) detektiert.

In der vorliegenden Arbeit wurde die thermische Desorptionsspektroskopie verwendet, um Schichtdicken von PTCDA-Lagen zu bestimmen.

4.2. **Präparation der Substrate und Filme**

4.2.1. **Präparation des Ag(100)-Einkristalls**

Als Substrat wurde in der vorliegenden Arbeit ein Silbereinkristall verwendet, der eine Oberfläche in (100)-Orientierung aufwies. Die Präparation der Oberfläche erfolgte in drei konsekutiven Schritten.

Um thermisch desorbierbare Substanzen vom Kristall zu entfernen, wurde dieser zunächst im ersten Schritt bis auf 850 K geheizt (+1 K/s), drei Minuten bei dieser Temperatur gehalten und anschließend wieder auf Raumtemperatur abgekühlt. Im zweiten Schritt wurde der Kristall durch Sputtern von Verunreinigungen befreit. Dafür wurde der Kristall 15 Minuten lang mit Argon-Ionen einer kinetischen Energie von 900 eV beschossen. Bei einem Argon-Druck von $p_{Ar}=2\cdot10^{-5}$ mbar und einem Emissionsstrom von 5 mA wurde ein Probenstrom von 4 – 5 $\mu$A erreicht. Die Probentemperatur während des Sputtern war 300 K. Da durch den Sputterprozess die Oberfläche nicht nur gesäubert, sondern auch mikroskopisch aufgeraut wird, wurde der Einkristall anschließend im dritten Schritt getempert, um wieder eine glatte Oberfläche zu erhalten. Der Kristall wurde zunächst bis 723 K geheizt (+1 K/s), 1 Stunde bei dieser Temperatur gehalten und anschließend wieder auf Raumtemperatur abgekühlt (-1 K/s).

Daran anschließend wurde die so erhaltene Oberfläche mit dem SPA-LEED kontrolliert. Nach dieser Prozedur wurde auf Grundlage der <1,0>-Reflexe eine typische Transferweite von 400 Å bestimmt (gemessen bei 81 eV, Gegenphase).
4.2.2. Wachstum von Alkalihalogeniden auf Ag(100)

Nach der Präparation des Ag(100)-Einkristalls wurden die Alkalihalogenidfilme durch Aufdampfen von NaCl bzw. KCl unter UHV-Bedingungen hergestellt. Das Vorgehen war für beide Substanzen sehr ähnlich.

Beide Salze wurden aus selbstgebauten Knudsen-Zellen mit Keramiktiegel (Aluminiumoxid bei NaCl, Bornitrid bei KCl) thermisch verdampft. Es wurden NaCl einer Reinheit von 99.999\% (Sigma-Aldrich) und KCl einer Reinheit von 99.5\% (Grüssing) verwendet.

Die Aufdampfgeschwindigkeit wurde über ein Massenspektrometer kontrolliert, dass den zeitlichen Verlauf der molekularen Muttermassen (m/z 58 für NaCl, m/z 74 für KCl) während des Aufdampfens überwacht. Da das Massenspektrometer nur einen Ionenstrom misst, aber keinerlei Information über die tatsächliche Schichtdicke auf der Probe liefert, wurde eine Eichung auf absolute Schichtdicken in Å im Fall von NaCl mit Hilfe einer Quarzmikrowaage durchgeführt. Aufgrund der vergleichbaren Geometrie zwischen Aufdampfquelle und Probe wurde diese Umrechnung für KCl übernommen.

Für NaCl wurden bei einer Zelltemperatur von 680 - 720 K Aufdampfraten von 0.05 ML/min bis 0.65 ML/min erreicht. Im Gegensatz dazu wurde im Falle von KCl für eine Aufdampfrate von 0.1 ML/min eine Zelltemperatur von 835 K benötigt. Dies ist unerwartet, da die Gitterenergie von NaCl (779 kJ/mol [144]) größer ist als die Gitterenergie von KCl (710 kJ/mol [144]). Daher muss davon ausgegangen werden, dass der große Unterschied in der Aufdampftemperatur artifiziell ist und durch die unterschiedliche Konstruktion der Knudsen-Zellen und die damit verbundene unterschiedliche Messung der Temperatur zustande kommt.

Während des Aufdampfens wurde die Temperatur des Ag-Substrats durch das Eurotherm kontrolliert und von diesem mittels des Probenfilaments geheizt. Dabei wurde der He-Kryostat mit einem geringen He-Fluss (≈0.5 L/h) gegengekühlt. Im Fall von NaCl wurden verschiedene Aufdampftemperaturen zwischen 200 K und 500 K verwendet (vgl. Abschnitt 5.1.3), wohingegen KCl durchgehend bei einer Substrattemperatur von 500 K aufgedampft wurde.

4.2.3. Wachstum von PTCDA auf Alkalihalogenidfilmen

Auf die dünnen, isolierenden Alkalihalogenid-Filme wurde im nächsten Schritt der Probenpräparation PTCDA unter UHV-Bedingungen aufgedampft. Es wurde gradientensublimiertes PTCDA, das in der Arbeitsgruppe bereits vorhanden war, verwendet. Das PTCDA wurde aus einer selbstgebauten Knudsen-Zelle, die einen kleinen Glastiegel (Außen-Ø=4 mm) enthält, thermisch verdampft.

Die Aufdampfgeschwindigkeit wurde analog zu den Alkalihalogeniden über das Quadrupol-Massenspektrometer kontrolliert. Die Detektion erfolgte hierbei bei der Muttermasse von PTCDA (m/z 392). Die Umrechnung in absolute Schichtdicken in Monolagen erfolgte auf der Grundlage von Desorptionsexperimenten auf der reinen
Ag(100)-Oberfläche. In diesen Experimenten kann die Desorption von erster, zweiter und höheren Lagen getrennt beobachtet werden [121]. Bei dieser Art der Kalibrierung wurde notwendigerweise von einem identischen Haftfaktor für PTCDA auf Ag(100) und NaCl(100) bzw. KCl(100) ausgegangen.

Bei einer Temperatur der Knudsen-Zelle von 780 K wurden typische Aufdampfraten von 0.05 ML/min bis 0.1 ML/min erreicht.


### 4.2.4. Eichung der PTCDA-Schichtdicke mit TPD

Die zeitliche Integration des Ionenstromes während des Aufdampfens ermöglicht zunächst nur eine relative Bestimmung der erhaltenen Schichtdicken. Für die Fragestellungen dieser Arbeit ist aber auch eine absolute Angabe der aufgedampften Schichtdicken in Monolagen wichtig. Eine solche Kalibrierung wurde unter Verwendung von thermisch programmierten Desorption vorgenommen.

Hierfür wurde im ersten Schritt bei Raumtemperatur PTCDA auf die reine Ag(100)-Oberfläche aufgedampft. Anschließend wurde der so erhaltene PTCDA-Film thermisch desorbiert und das desorbierende PTCDA mit dem Massenspektrometer detektiert. Abbildung 4.3 zeigt vier auf diese Art erhaltene thermische Desorptionspektren. In diesen können drei getrennte Desorptionssignale aufgelöst werden. Zunächst desorbieren oberhalb von 500 K die Moleküle der Multilage (ab dritter Lage) sowie die Moleküle der zweiten Lage. In beiden Fällen ist eine Desorptionskinetik nullter Ordnung anhand der gemeinsamen exponentiellen Anstiegsflanken zu erkennen. Das TDS von 2.03 ML PTCDA auf Ag(100) (grüne Kurve) zeigt Desorption aus der Multilage, obwohl die aufgedampfte Menge nicht für zwei geschlossene Lagen ausreichend ist. Dies zeigt, dass oberhalb der Monolage kein perfektes Frank-van-der-Merwe-Wachstum vorliegt. Bei höheren Temperaturen oberhalb von 750 K findet sich das Desorptionssignal der Monolage. Das Integral des Monolagedesorptionspeaks beträgt jedoch nur etwa 15% des entsprechenden Signals der zweiten Lage. Dies zeigt, dass die erste Monolage von PTCDA auf Ag(100) nicht intakt desorbiert, sondern Zersetzungsprozessen unterliegt.

---

1 Die zweite Lage ist bei 2.17 ML geschlossen, vgl. dazu Anmerkungen zur molekularen Dichte weiter unten im Text.
4.2 Praparation der Substrate und Filme

Abbildung 4.3: Thermische Desorptionsspektren von PTCDA auf Ag(100) mit einer Heizrate von 1 K/s. Es sind vier Spektren von PTCDA-Filmen unterschiedlicher Dicke gezeigt. Die Filme wurden bei Raumtemperatur mit einer Rate von 0.02 – 0.03 ML/min gewachsen. Drei Desorptionssignale können aufgelöst werden und der Desorption von Molekülen aus der ersten, der zweiten und höheren Lagen zugeordnet werden. Die angegebenen Schichtdicken sind nach der Methode von Abbildung 4.4 bestimmt und beziehen sich auf die molekulare Dichte der Monolage von PTCDA auf Ag(100) [124]. Im eingesetzten Graphen ist eine Auftragung gemäß des leading-edge-Verfahrens gezeigt. Die angegebenen Zahlenwerte entsprechen der Aktivierungsenergie der Desorption für die zweite Lage und für die höheren Lagen.

Dass sich bei thermischer Desorption von PTCDA auf Ag(100) die zweite Lage und die höheren Lagen getrennt auflösen lassen, ist in Einklang mit thermischen Desorptionsspektren von PTCDA auf Ag(111), für die dies ebenfalls möglich ist, wie von Killian et al. gezeigt werden konnte [121]. Gegenüber diesen Spektren sind die Spektren der vorliegenden Arbeit um 20 – 30 K zu höheren Temperaturen verschoben, was zumindestens für die zweite Lage noch mit der höheren Reaktivität der offeneren (100)-Oberfläche zusammenhängen könnte.

Um nun eine absolute Schichtdickenkalibrierung auf das integrale Aufdampfsignal vorzunehmen, wurde die getrennte Desorption der Monolage ausgenutzt. Für diese Auswertung wurden folgende Annahmen getroffen:

(1) Beim Aufwachsen von PTCDA auf Ag(100) bildet sich zunächst eine geschlossene Monolage aus und erst dann wachsen höhere Lagen auf, d. h. es liegt Frank-vander-Merwe oder Stranski-Krastanov-Wachstum vor.
(2) Der Haftfaktor von PTCDA auf Ag(100) ist identisch für die zweite Lage und für die Multilagen.

(3) Im Rahmen dieser Arbeit wurde die Kalibrierung, die für PTCDA auf der reinen Ag(100)-Oberfläche gewonnen wurde, auch für das Aufdampfen von PTCDA auf dünnen NaCl- und KCl-Filmen übernommen. Hierbei wird ein identischer Haftfaktor von PTCDA auf Ag(100) und auf den dünnen Alkalihalogenidfilmen angenommen.


Die Kalibration nach Abbildung 4.4 bezieht sich folglich auf die molekulare Dichte der ersten Monolage von PTCDA auf Ag(100). Für diese ist bekannt, dass sie kommensurabel mit einer Flächendichte von $\rho_1=7.49\cdot10^{13}$ cm$^{-2}$ wächst [124]. Weicht die molekulare Flächendichte des untersuchten Systems hiervon ab, so muss dies entsprechend berücksichtigt werden. Zusätzlich kann sich für ein gegebenes Stoffsystem auch die molekulare Dichte verschiedener Lagen unterscheiden. Dies ist auch für PTCDA auf Ag(100) der Fall, wo die zweite und die höheren Lagen inkommensurabel mit einer Flächendichte von $\rho_2=8.28\cdot10^{13}$ cm$^{-2}$ wachsen [124]. In einem solchen Fall, der auch für PTCDA auf NaCl(100) gegeben ist, muss stets angegeben werden, auf welche molekulare Dichte sich die verwendete Definition der Monolage bezieht (für PTCDA auf NaCl(100), vgl. Abschnitt 6.2).

Alternativ zu der bislang beschriebenen Methode kann auch aus einem einzigen thermischen Desorptionsspektrum das einer Monolage entsprechende Aufdampfintegral ermittelt werden, falls die zweite Lage komplett geschlossen ist und bereits Desorption aus der Multilage beobachtet werden kann. Hierfür muss allerdings eine numerische Trennung der (überlagerten) Desorptionssignale in das Signal der zweiten Lage und der höheren Lagen durchgeführt werden. Die Gesamtbedeckung $\theta$, die sich wiederum auf die Flächendichte in der Monolage bezieht, ergibt sich dann aus den integralen Desorptionssignalen der zweiten Lage ($I_{des_2}$) und der Multilage ($I_{des_3+}$) zu:

$$\theta = 1 + \frac{\rho_2}{\rho_1} + \frac{I_{des_3+}}{I_{des_2}} \cdot \frac{\rho_2}{\rho_1}.$$  

4.2

5. Wachstum von Alkalihalogeniden auf Ag(100)

Dieses Kapitel enthält die Ergebnisse struktureller Untersuchungen zum Wachstum von dünnen Alkalihalogenidfilmen (NaCl, KCl) auf einem Ag(100) Substrat. Diese Dünnfilme wurden anschließend als Substrat für das Wachstum von PTCDA verwendet. Die strukturelle Charakterisierung der so erhaltenen PTCDA-Phasen wird in Kapitel 6 thematisiert.

5.1. Wachstum von NaCl auf Ag(100)

5.1.1. Wachstum bei Raumtemperatur

Für das Wachstum von NaCl auf Ag(100) sind a priori im Wesentlichen zwei Wachstumsmodi denkbar, die in Abbildung 5.1 schematisch dargestellt sind. Gemeinsam ist beiden Fällen, dass die NaCl-Inseln der (100)-Fläche von NaCl-Volumenkristallen entsprechen. Sie unterscheiden sich aber in der azimuthalen Orientierung zum Ag(100)-Substrat. Im ersten Wachstumsmodus, dem 0°-Wachstum, sind die Basisvektoren der Oberflächenelementarzellen von Ag(100) und NaCl(100) zueinander parallel ausgerichtet. Im Gegensatz dazu schließen die Basisvektoren der Elementarzellen beim 45°-Wachstum einen Winkel von 45° ein. Es ist zu beachten, dass es sich aufgrund der unterschiedlichen Basis der Elementarzellen von Ag(100) und NaCl(100) für die Anordnung der dicht gepackten Reihen von Substrat und Adsorbat genau umgekehrt verhält: diese verlaufen gerade beim 45°-Wachstum in dieselbe Richtung.

Abbildung 5.1: Schematische Darstellung der zwei denkbaren Wachstumsmodi von NaCl auf Ag(100). Die Notation der Domänen als 0°- bzw. 45°-Domänen bezieht sich auf die Verdrehung der primitiven Oberflächenelementarzellen zueinander.

Der linke Teil von Abbildung 5.2 (a) zeigt ein LEED-Bild eines 1 ML dicken NaCl-Films auf Ag(100), gewachsen mit einer Aufdampfrate von 0.1 MLmin⁻¹ bei einer
Substrattemperatur von 300 K. Im rechten Teil der Abbildung ist eine Simulation des LEED-Bildes gezeigt. In dieser Simulation sind der spekulare (0,0)-Reflex und die Beugungsreflexe erster Ordnung für die Ag(100)-Oberfläche (schwarze Kreise) sowie für den NaCl(100)-Film (rote und blaue Kreise) markiert. Die zwei Möglichkeiten der Einheitszellen des NaCl(100)-Films (rot und blau) in Abbildung 5.2 gehören zu den zwei möglichen Domänenorientierungen aus der Abbildung 5.1. Aus Abbildung 5.2 erkennt man, dass das epitaktische Wachstum hauptsächlich derart erfolgt, dass die Einheitszelle der NaCl(100)-Domänen zur Ag(100)-Einheitszelle ausgerichtet ist. LEED-Reflexe, die 45° rotierten Domänen zuzuordnen sind, konnten ebenfalls detektiert werden. Sie weisen aber eine um einen Faktor 40 geringere Intensität auf.

Abbildung 5.2: (a) links: LEED-Bild eines bei Raumtemperatur gewachsenen, 1 ML dicken NaCl-Films (gemessen bei 95 eV). rechts: Simulationen von LEED-Bildern für eine (100)-terminierte Lage NaCl auf Ag(100). Zwei unterschiedliche azimuthale Orientierungen sind gezeigt: 0° (rot) und 45° (blau). Einsatz: dreidimensionale, eingefärbte Darstellung eines Teils des LEED-Bildes (schwarzer Kasten); zu erkennen ist ein kleiner Reflex der 45°-Phase und ein (1,1)-Reflex der 0°-Phase. (b) azimuthale (schwarz) und radiale (rot) Reflexprofile von (1,0)-Reflexen der 0°- und der 45°-Phase. Zur besseren Vergleichbarkeit wurden die Profile gegeneinander verschoben.

Diese Beobachtung zweier Domänentypen mit unterschiedlicher Orientierung, von denen eine deutlich vorherrscht, stimmt überein mit STM-Messungen von Pivetta et al. [73]. Die in Abbildung 5.2 gezeigte LEED-Simulation berücksichtigt nicht die azimuthale Verbreiterung der NaCl-Reflexe, welche durch Rotationsmosaizität der NaCl-Domänen in der (100)-Ebene hervorgerufen wird und auf die später im Detail eingegangen wird.

In Abbildung 5.2 (b) sind azimuthale (schwarz) und radiale (rot) Reflexprofile von NaCl(1,0)-Reflexen der ausgerichteten und der 45° Domänen gezeigt. Diese Reflexprofile wurden unter denselben Bedingungen gemessen, wie das Beugungsbild in Abbildung 5.2 (a). Die Profile beziehen sich alle auf dieselbe reziproke Längenskala. Für den Fall der azimuthalen Reflexprofile ist zusätzlich eine Winkelskala als obere Abszisse angegeben. Zunächst lässt sich feststellen, dass sich die azimuthalen
Reflexprofile der ausgerichteten Domänen nicht durch eine Lorentz-Funktion beschreiben lassen. Das Profil scheint vielmehr aus mindestens zwei Unterkomponenten zu bestehen. Das Reflexprofil und die Position der Komponenten wurden reproduzierbar bei einer Vielzahl von Proben, die unter denselben Bedingungen präpariert wurden, gefunden. Das Profil ist unabhängig von der Elektronenergie, die für die LEED-Messung verwendet wurde (getestet von 34 eV bis 110 eV). Die beobachtete Feinstruktur des Profils wird später in den Abschnitten 5.1.3 bis 5.1.8 im Detail diskutiert.

Tabelle 5.1 fasst die azimuthale und radiale volle Halbwertsbreite der NaCl<1,0>-Reflexe zusammen, welche durch Fits mit jeweils einer Lorentzkurve erhalten wurden. Bei dieser Auswertung wurde die oben erwähnte Aufspaltung, die im Falle der ausgerichteten Domänen beobachtet wurde, also nicht berücksichtigt. Unter Annahme einer isotropen Stufenverteilung auf den NaCl-Filmen, erwartet man bei völliger Abwesenheit von Rotationsmosaizität, dass die azimuthale und die radiale Breite übereinstimmen. Dies ist im Falle der 45° rotierten Domänen innerhalb von 10% erfüllt (vgl. Tabelle 5.1). Dies zeigt, dass für diese Domänen die NaCl[010]-Richtung mit der Ag[011]-Richtung exakt übereinstimmt. Daher wurde ein Wert von <<1° für die azimuthale Verbreiterung im Falle der 45° rotierten Domänen angegeben.

<table>
<thead>
<tr>
<th>Domänenorientierung</th>
<th>Azimuthale Breite (Å⁻¹)</th>
<th>Radiale Breite (°)</th>
<th>Azimuthale Mosaizitätsbreite</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>0.392 ± 0.005</td>
<td>14.3 ± 0.2</td>
<td>0.043 ± 0.001 ≈ 14°</td>
</tr>
<tr>
<td>45°</td>
<td>0.046 ± 0.001</td>
<td>1.66 ± 0.04</td>
<td>0.042 ± 0.001 &lt;&lt; 1°</td>
</tr>
</tbody>
</table>

Im Gegensatz dazu weisen die ausgerichteten Domänen (0° Domänen) eine azimuthale Breite auf, die mit 14° neunmal größer ist. Diese azimuthale Breite kann natürlich nur als grober und effektiver Parameter verstanden werden, da die azimuthalen Profile durch Lorentzkurven eben nicht adäquat beschrieben werden. Für eine genaue Bestimmung der azimuthalen Verbreiterung müsste eine Entfaltung des Profils mit der Instrumentenfunktion und der Verbreiterung aufgrund von Stufen erfolgen. Nichtsdestotrotz kann die azimuthale Breite (14°) als erste Näherung für die Mosaizitätsbreite verwendet werden, da die Rotationsmosaizität den größten Beitrag zur Verbreiterung liefert.

Für einen 5 ML dicken, ebenfalls bei Raumtemperatur gewachsenen NaCl-Film wurde eine detaillierte Analyse der NaCl-Reflexprofile in Abhängigkeit von der Elektronenergie (von 34 bis 110 eV) durchgeführt. Aus dieser Analyse, erhält man eine mittlere Stufenhöhe von 2.75 ± 0.03 Å (passend zu monoatomaren NaCl-Stufen [145]), eine mittlere Terassengröße von 100 ± 30 Å und eine effektive Transferweite.
von 500 ± 200 Å. Die azimuthale Breite der NaCl-Reflexe der ausgerichteten Domänen variierte von 12° bis 14° im untersuchten Energiebereich.

Diese Ergebnisse zeigen, dass die Verbreiterung aufgrund von Stufen weniger als 20% zur azimuthalen Breite beiträgt. Bemerkenswerterweise weisen 1 ML und 5 ML dicke, bei Raumtemperatur gewachsene NaCl-Filme eine vergleichbare Rotationsmosaizität auf. Dies zeigt, dass die Rotationsmosaizität nicht auf ultradünne Schichten beschränkt ist.

Diese bis hierher vorgenommene, grobe Schätzung der azimuthalen Verbreiterung stimmt gut mit bereits aus der Literatur bekannten Werten überein [73,78]. Kramer et al. haben aus LEED-Messungen eine azimuthale Verbreiterung von ≈18° für einen 1.6 ML dicken, bei Raumtemperatur gewachsenen NaCl-Film bestimmt [78]. Pivetta et al. haben auf der Grundlage einer statistischen Analyse von STM-Bildern eine azimuthale Breite von ≈14° für einen 1 ML dicken, bei Raumtemperatur gewachsenen Film bestimmt [73]. Die etwas größere Mosaizitätsbreite von Kramer et al. ist vermutlich auf Unterschiede in der Substratpräparation oder in der Bestimmungsmethode der azimuthalen Breite zu finden. Außerdem kann die höhere Aufdampfrate (0.3 ML min⁻¹) in den Experimenten von Kramer et al. zu einer breiteren azimuthalen Verteilung geführt haben. Auf den Einfluss der Aufdampfrate auf die azimuthale Breite wird in Abschnitt 5.1.5 im Detail eingegangen.

5.1.2. Gitterkontraktion bei Raumtemperatur

In Abbildung 5.3 sind für NaCl Schichtdicken von 1.2 ML bis 14 ML radiale Reflexprofile eines NaCl(T,0)-Reflexes einer ausgerichteten Domäne (0°-Wachstum) gezeigt. Aus der Abbildung erkennt man, dass sich die NaCl(T,0)-Reflexe als Funktion der Schichtdicke verschieben. Das bedeutet, dass sich die NaCl-Gitterkonstante mit der Schichtdicke verändert.

Um möglichst exakte $k_{ij}$-Werte für die Position der NaCl-Reflexe zu erhalten, wurde ein Beugungsbild einer PTCDA-Monolage auf Ag(100) gemessen. Die Struktur von PTCDA auf Ag(100) ist kommensurabel und bereits ausgiebig untersucht worden [124]. Da die Differenz in der Position des NaCl(T,0)-Reflexes und des PTCDA-(3,3)-Reflexes klein ist und die Gitterkonstante der PTCDA-Überstruktur genau bekannt ist, wurde der PTCDA(3,3)-Reflex als interne Referenz benutzt, um die Messgenauigkeit zu erhöhen.

Die Gitterkonstante von NaCl im Festkörper wurde durch Röntgenbeugungsmessungen bestimmt und beträgt bei Raumtemperatur $a = 5.6042$ Å [145]. Hieraus ergibt sich die Größe der Oberflächeninhaltzelle $a_{100} = 3.988$ Å. Dieser Wert wurde als Referenz benutzt, um die Veränderung der NaCl-Gitterkonstante beim Übergang zu dünnen, bei Raumtemperatur gewachsenen Schichten zu berechnen. Die Ergebnisse dieser Berechnung sind in Abbildung 5.3 (b) zusammen mit experimentellen Ergebnissen von Kramer et al. [78] (blaue Dreiecke), die ebenfalls für NaCl-Filme auf Ag(100) erhalten wurden, dargestellt. Zusätzlich sind theoretische Ergebnisse für
NaCl-Filme ohne Metallsubstrat, die von Hebenstreit et al. durch Berechnungen mit Dichtefunktionaltheorie (DFT) erhalten wurden [146], dargestellt (rote Punkte).

Abbildung 5.3: (a) radiale Profile eines NaCl(1 ¯,0)-Reflexes in Abhängigkeit von der Filmdicke des NaCl-Films. Die Filme wurden bei Raumtemperatur gewachsen und mit Elektronen einer Energie von 34 eV untersucht. Zusätzlich zu den Reflexen der NaCl-Filme, ist ein (3,3)-Reflex einer Monolage PTCDA auf Ag(100) gezeigt, der zur Kalibrierung verwendet wurde. Da PTCDA auf Ag(100) kommensurabel aufwächst, ist der \( k_\parallel \)-Wert dieses Reflexes genau bekannt [124]. (b) relative Veränderung der NaCl-Gitterkonstante von bei RT auf Ag(100) aufgewachsenen NaCl-Filmen als Funktion der Filmdicke. Zusätzlich zu den Ergebnissen der vorliegenden Arbeit (schwarz) sind Ergebnisse aus LEED-Messungen von Kramer et al. (blau, [78]) und aus ab-initio Rechnungen von Hebenstreit et al. (rot, [146]) dargestellt.

Die in der vorliegenden Arbeit ermittelten Werte für \( a_{100} \) betragen 3.952 ± 0.008 Å für eine Dicke von 1.2 ML und 3.957 ± 0.008 Å für eine Dicke von 3.5 ML. Dies entspricht einer Kontraktion des NaCl-Gitters von 0.9 ± 0.2%, bzw. 0.8 ± 0.2%. Bei höheren Schichtdicken wird die Kontraktion zunehmend schwächer. Bei einer Dicke von 14 ML ist \( a_{100} = 3.981 ± 0.008 \) Å und damit innerhalb der Fehlertoleranz bereits mit dem Wert von Volumenkristallen identisch. Der Fehler der Messung wurde hierbei über das Vertrauensintervall definiert, das sich bei einem Fit des Reflexprofils mit einer Lorentzkurve ergibt.

Eine signifikante Abweichung von der NaCl-Festkörpergitterkonstante konnte bis zu einer Schichtdicke von 7 ML festgestellt werden. Bei dieser Dicke betrug die Kontraktion noch 0.6 ± 0.2%. Das bei dieser relativ großen Filmdicke noch Kontraktion messbar ist, kann damit zusammenhängen, dass die Elektronen tiefer als eine atonare Lage in den NaCl-Film eindringen und die Messung daher auch Beiträge von Lagen enthält, die sich näher an der Grenzfläche NaCl/Ag(100) befinden.

Zusammenfassend wurde eine Kontraktion des NaCl-Gitters von etwa 0.9% bezüglich des Festkörperwerts für die ersten Lagen festgestellt. Bei höheren Schichtdicken wurde eine Relaxation auf den Wert von NaCl-Volumenkristallen beobachtet. Im Gegensatz dazu fanden Kramer et al. [78] eine Kontraktion von 2% für einen 1.6 ML dicken NaCl-Film auf Ag(100) und keine Veränderung der Gitterkonstante mit stei-

Hebenstreit et al. [146] haben für einen freien NaCl-Film (ohne metallische Unterlage) auf der Grundlage von DFT-Rechnungen Gitterkontraktionen von 5.7% für einen 1 ML dicken Film und 3.4% für einen 3 ML dicken Film vorhergesagt. Diese Kontraktionen lassen sich durch die verringerte Koordinationszahl der Ionen in den Filmen verstehen. Das Ag(100) Substrat wirkt vermutlich durch koordinative Absättigung des NaCl-Films dieser starken Kontraktion des freien NaCl-Films entgegen, wie bereits von Pivetta et al. angeführt wurde [73].

Der in der vorliegenden Arbeit ermittelte Wert für die Kontraktion von 0.9 ± 0.2% stimmt gut mit dem Wert von 0.8% überein, der von Pivetta et al. auf der Grundlage von STM-Messungen für 45° rotierte NaCl-Domänen erhalten wurde [73].

5.1.3. Einfluss der Substrattemperatur während des Wachstums

Die linke Hälfte von Abbildung 5.4 (a) zeigt ein LEED-Bild eines 0.5 ML dicken, bei 400 K gewachsenen NaCl-Films. Zusätzlich ist in der rechten Hälfte der Abbildung eine Simulation des Beugungsbilds gezeigt. Bei dieser Wachstumstemperatur wurde hauptsächlich das Wachstum von ausgerichteten NaCl(100)-Domänen beobachtet - die Reflexe der 45° rotierten Domänen sind fast undetektierbar. Die schwache Intensität der Reflexe von 45° Domänen bei einer Wachstumstemperatur von 400 K war dabei unabhängig von der Schichtdicke (gemessen bis 10 ML). Im Folgenden werden daher nur die dünnsten NaCl-Filme betrachtet, da diese die meiste Information über den Wachstumsmechanismus enthalten.

Abbildung 5.4: (a) links: LEED-Bild eines 0.5 ML dicken, bei 400 K gewachsenen NaCl-Films (95 eV). rechts: Simulation des LEED-Bildes. (b) azimuthale Profile von NaCl<1,0>-Reflexen von 0.5 ML dicken NaCl-Filmen, die bei Substrattemperaturen zwischen 200 K und 500 K gewachsen wurden. Die Profile wurden normiert und vertikal gegeneinander verschoben.
In Abbildung 5.4 (b) ist das azimuthale Profil von NaCl(1,0)-Reflexen 0.5 ML dicker NaCl-Filme gezeigt, die bei unterschiedlichen Wachstumstemperaturen von 200 K bis 500 K präpariert wurden. Zunächst lässt sich feststellen, dass die azimuthalen Profile bei allen Wachstumstemperaturen eine Feinstruktur aufweisen, die je nach Wachstumstemperatur aus Schultern oder Satellitenreflexen besteht.

Bei Erhöhung der Wachstumstemperatur verändern sich die Profile kontinuierlich. Insbesondere kann eine Verschmälerung der azimuthalen Breite beobachtet werden. So unterscheiden sich die vollen Halbwertsbreiten der azimuthalen Profile bei 200 K und bei 500 K um einen Faktor 2.5. Es muss an dieser Stelle allerdings darauf hingewiesen werden, dass die azimuthale Verbreiterung der Reflexe durch die bloße Angabe der vollen Halbwertsbreite nur unreichend beschrieben wird. Insbesondere bei Wachstumstemperaturen von 400 K und mehr ist es schwer die azimuthale Verbreiterung zu beschreiben, da die azimuthalen Profile hier deutlich von einer Lorentzkurve abweichen. Bei diesen erhöhten Wachstumstemperaturen, lassen sich in den Profilen deutlich einzelne Reflexe erkennen, die symmetrisch um einen zentralen Reflex angeordnet sind. Dies zeigt, dass individuelle, bevorzugte Domänenorientierungen vorliegen. Der Zentralreflex entspricht einer perfekten azimuthalen Ausrichtung der NaCl-Domänen bezüglich des Ag(100)-Substrats, wohingegen die Satellitenreflexe zu wohldefinierten Abweichungen von dieser Orientierung gehören.


Im Bereich erhöhter Temperaturen (von 400 K bis 500 K), ist hingegen eindeutig zu erkennen, dass die Profile aus einem Satz von mindestens fünf Peaks zusammengesetzt sind. Die Positionen dieser Peaks sind nur bei bestimmten, wohldefinierten Winkeln zu finden. Neben dem Zentralreflex bei 0°, sind Reflexe bei Azimuthalwinkeln von ±3.0° und ±5.7° zu finden. Außerdem gibt es bei Wachstumstemperaturen zwischen 323 K und 450 K zusätzliche schwache Peaks bei ±13.5°. Diese Peaks wurden bei einer Wachstumstemperatur von 500 K allerdings nicht mehr beobachtet, was darauf hindeutet, dass die entsprechenden Domänenorientierungen oberhalb von 450 K nicht stabil sind.
5.1 Wachstum von NaCl auf Ag(100)


Zusammenfassend lässt sich feststellen, dass für das Wachstum von NaCl auf Ag(100) die Substrattemperatur während des Wachstums einen entscheidenden Einfluss auf die Rotationsmosaizität hat. Die bis hierhin präsentierten Daten lassen allerdings keinen Schluss darüber zu, ob die Substrattemperatur die Rotationsmosaizität nur zu Beginn des Wachstumsprozesses (bei der Nukleation) beeinflusst oder ob die Substrattemperatur während des gesamten Wachstumsprozesses und eventuell sogar noch nach dessen Abschluss von Bedeutung ist. Um hier weiteren Einblick zu erhalten, wurden dünne NaCl-Filme zunächst bei tiefer Temperatur gewachsen und anschließend getempert. Diese Messungen werden im folgenden Abschnitt beschrieben.
5.1.4. Einfluss der Substrattemperatur nach dem Wachstum

Abbildung 5.6 (a) zeigt ein LEED-Bild eines 0.5 ML dünnen NaCl-Films, der bei einer Substrattemperatur von 200 K gewachsen wurde. Abbildung 5.6 (b) zeigt ein LEED-Bild desselben Films nach Tempern. Das Tempern bestand aus Heizen des Films mit +1 K/s auf 450 K, Halten dieser Temperatur für 30 min und Abkühlen zurück auf 200 K mit einer Rate von -1 K/s.

Abbildung 5.6: LEED-Bilder (jeweils links) und Simulationen (jeweils rechts) eines 0.5 ML dicken NaCl-Films: (a) gewachsen bei 200 K. (b) gewachsen bei 200 K und anschließend 30 min bei 450 K getempert. Die LEED-Bilder wurden bei 95 eV gemessen.

Abbildung 5.7 (a) zeigt zwei azimuthale Scans, die entlang eines Halbkreises in den LEED-Bildern der Abbildung 5.6 gemessen wurden. Der Radius des Halbkreises entsprach dabei dem Abstand der <1,0>-Reflexe zum spekularen Reflex und der Mittelpunkt des Halbkreises lag auf dem spekularen Reflex. In diesen azimuthalen Scans sind die <1,0>-Reflexe sowohl der ausgerichteten als auch der 45°-Domänen zu erkennen.

Zwischen Abbildung 5.6 (a) und (b) lassen sich zwei Unterschiede feststellen. Erstens sind die Reflexe der 45° rotierten Domänen nur vor dem Tempern zu beobachten, danach sind die Reflexe nahezu undetektierbar (vgl. Abbildung 5.7 (a)). Zweitens sind vor dem Tempern sowohl nach außen als auch nach innen gebogene Reflexe (auf den rot gepunkteten bzw. rot gestrichelten Kreisbögen in Abbildung 5.6 (a)) zu beobachten, wohingegen nach dem Tempern nur nach innen gebogene Reflexe zu beobachten sind (Abbildung 5.7 (b)). Die nach außen gebogenen Reflexe weisen dabei die gleiche azimuthale Breite und die gleichen Radien wie die nach innen gebogenen Reflexe auf. Im Gegensatz zu letzteren liegen die Zentren der nach außen gebogenen Reflexe nicht auf dem spekularen Reflex, sondern auf Beugungs-
reflexen erster und zweiter Ordnung des Ag(100)-Substrats. In Abbildung 5.6 (a) ist dies mit Hilfe einer einfachen geometrischen Konstruktion gezeigt.

Abbildung 5.7: Azimuthale Reflexprofile von unterschiedlich präparierten NaCl-Filmen auf Ag(100) gemessen bei E=95 eV. Alle Filme hatten dieselbe nominelle Filmdicke von 0.5 ML. Sofern nicht anders vermerkt, wurden die Filme mit einer Rate von 0.1 ML min⁻¹ aufgedampft. Im einzelnen: (a) Azimuthale Profile zu den LEED-Bildern der Abbildung 5.6. Die Reflexe der ausgerichteten Domänen sind bei 0° und 90° dargestellt. Die Reflexe der 45°-Domänen sind durch Pfeile markiert. Nach dem Tempern bei 450 K sind letztere nahezu verschwunden. (b) Azimuthale Profile von NaCl<1,0>-Reflexen zweier NaCl-Filme einer Dicke von 0.5 ML. Der eine Film wurde bei 200 K aufgewachsen und anschließend bei 450 K getempert (rot), der andere bei 450 K gewachsen (blau). (c) azimuthale Profile zweier NaCl-Filme, die beide bei 450 K, aber mit unterschiedlichen Aufdampfgeschwindigkeiten aufgewachsen wurden.

Die nach außen gebogenen Reflexe kommen vermutlich durch Mehrfachstreuung von Elektronen, die sowohl am Ag(100)-Substrat als auch am NaCl-Film gestreut worden sind, zustande. Weder für den 0.5 ML dicken, getemperten NaCl-Film noch für NaCl-Filme, die bei 450 K auf Ag(100) gewachsen wurden, konnten diese Mehrfachstreuereflexe beobachtet werden. Das Verschwinden der Mehrfachstreuereflexe beim Tempern ist vermutlich auf einen Phasenübergang der NaCl-Filme von einlagigen zu doppellagigen Inseln zurückzuführen. Dies wird im Abschnitt 5.1.7 im Detail diskutiert.

Abbildung 5.7 (b) zeigt die azimuthalen Profile von NaCl<1,0>-Reflexen eines 0.5 ML dicken, bei 200 K gewachsenen und bei 450 K getemperten NaCl-Films (rote Punkte) sowie eines 0.5 ML dicken, bei 450 K gewachsenen NaCl-Films (blaue Punkte). Abbildung 5.7 (a) und (b) zeigen klar, dass Tempern (bei 450 K) eines bei 200 K gewachsenen NaCl-Films zwar die Rotationsmosaizität verändert, aber nicht in der gleichen Domänenverteilung resultiert, die durch direktes Wachstum bei 450 K erreicht wird. Dies wird besonders deutlich in Abbildung 5.7 (b). Die hier gezeigten azimuthalen Profile können klar voneinander unterschieden werden. Im Falle des getemperten Films werden die azimuthalen Profile durch zwei bevorzugte Orientie-
rungen bei ± 6° dominiert. Im Gegensatz dazu weist die Verteilung des bei 450 K gewachsenen Films ein Maximum bei 0° auf. Dadurch ist das azimuthale Profil des getemperten Film insgesamt deutlich breiter: die volle Halbwertsbreite ist um einen Faktor 6 größer als für den bei 450 K gewachsenen Film.

Die bislang geschilderten Veränderungen des azimuthalen Profils gelten nur für dünne NaCl-Filme. Ein 10 ML dicker NaCl-Film, der bei 200 K gewachsen wurde, zeigte nach Temperr bei 450 K keinerlei Veränderungen im azimuthalen Profil. Zusätzlich zu den bis hierhin geschilderten Experimenten wurde auch der Einfluss der Filmdicke (von 0.5 bis 5 ML) bei gegebener Wachstumstemperatur (400 K) auf das azimuthale Profil untersucht. Für steigende Filmdicke nimmt die azimuthale Verbreiterung um etwa 40 % zu, aber die bevorzugten Domänenorientierungen bleiben unverändert.

5.1.5. Einfluss der Aufdampfgeschwindigkeit

Abbildung 5.7 (c) zeigt die azimuthalen Profile von NaCl(1,0)-Reflexen von zwei 0.5 ML dicken NaCl-Filmen, die bei der gleichen Substrattemperatur (450 K), aber bei unterschiedlichen Aufdampfgeschwindigkeiten präpariert wurden. Während einer der Filme bei 0.1 MLmin⁻¹ aufgedampft wurde (blaue Punkte), wurde der andere mit 0.65 MLmin⁻¹ (graue Punkte) präpariert.


Für die dünnsten NaCl-Filme gilt, dass die azimuthalen Profile, die für Wachstumstemperaturen von 450 K und 500 K erhalten wurden, sich sehr ähnlich sind. Beide Profile bestehen hauptsächlich aus einem zentralen Reflex bei 0° und zwei Paaren von Satellitenreflexen, bei ±3.0° und ±5.7°. Die integralen Intensitäten dieser fünf Reflexe haben für beide Profile innerhalb von 10% das gleiche relative Gewicht. Etwa 30% der Intensität entfällt auf den 0° Reflex, 60% auf die Satelliten bei ± 3.0° und 10% auf die Satelliten bei ± 5.7°. Die Ähnlichkeit dieser Profile kann als Indiz dafür gewertet werden, dass die Rotationsmosaizität bei 450 K, der Gleichgewichtsverteilung, die bei dieser Dicke (0.5 ML) und Depositionsrate (0.1 MLmin⁻¹) erreicht werden kann, sehr nahe kommt.
Durch thermische Desorptionsspektroskopie konnte gezeigt werden, dass eine messbare Desorption von NaCl auf Ag(100) bei etwa 580 K startet. Dies lässt erwarten, dass bei den hohen Wachstumstemperaturen (450 K bzw. 500 K) die Diffusionsraten von NaCl-Molekülen auf der Ag(100)-Oberfläche bereits groß sind. Dies wiederum legt den Schluss nahe, dass die Diffusion von NaCl-Molekülen auf der Oberfläche eine entscheidende Rolle für die Verschmälerung der azimuthalen Profile spielt, welche bei hohen Wachstumstemperaturen beobachtet wird.

5.1.6. Thermische Ausdehnung von NaCl und Ag(100)

Abbildung 5.8 zeigt radiale Reflexprofile eines 1 ML dicken NaCl-Films, der bei 300 K auf Ag(100) aufgewachsen wurde. Anschließend wurde der Film schrittweise auf verschiedene Temperaturen zwischen 350 K und 550 K geheizt. Der Film wurde mit einer Rate von 0.3 Ks⁻¹ geheizt und während der Messungen auf einer konstanten Temperatur gehalten.

Abbildung 5.8: (a) Radiale LEED-Scans eines 1 ML dicken NaCl-Films für verschiedene Temperaturen (E = 95 eV). (b-d) Ausschnittsvergrößerung von Abbildung 5.8 (a). Im Einzelnen sind ein Ag(1,0)-Reflex (b), ein NaCl(1,0)-Reflex (c) und der spekular Reflex (d) gezeigt. (e) relative Ausdehnung der Ag(100)-Oberfläche (rote Punkte) und der NaCl(100)-Oberfläche (schwarze Vierecke). Als rote und schwarze Linie sind die in der Literatur zu findenden Ausdehnungen eingetragen [145]. (f) Verhältnis der Gitterkonstanten des NaCl-Films und der Ag(100)-Oberfläche (a_{NaCl}/a_{Ag}), berechnet auf Grundlage der Daten in (e). Die horizontalen Linien (1 bis 5) sind theoretische Werte für a_{NaCl}/a_{Ag}, die für folgende, kommensurable Strukturen berechnet wurden: (1) $\sqrt{25} \times \sqrt{25}$ R tan⁻¹(4/3); (2) $\sqrt{117} \times \sqrt{117}$ R tan⁻¹(6/9); (3) $\sqrt{61} \times \sqrt{61}$ R tan⁻¹(5/6); (4) 11×11 und (5) $\sqrt{17} \times \sqrt{17}$ R tan⁻¹(4). Details dieser Strukturen sind in Tabelle 5.2 (S. 60) gegeben.
Alle Reflexprofile in Abbildung 5.8 wurden entlang ein und derselben Geraden durch die Ag(1,0) und Ag(10,0)-Reflexe gemessen. In Teil (a) der Abbildung, sind die Ag und NaCl(±1,0) Reflexe am Rand sowie der spekulare Reflex im Zentrum zu erkennen. Die Profile sind im Detail in Abbildung 5.8 (b) bis (d) gezeigt.

Das Heizen des Films wurde vor der LEED-Apparatur durchgeführt, so dass die LEED-Messungen nach jedem Heizschritt durchgeführt werden konnten, ohne dass die Probenposition sich verändert hat. Außerdem waren die Elektronenenergie und die übrigen Messeinstellungen für alle Messungen identisch.

Die Beugungsreflexe von Ag und NaCl verschieben mit steigender Temperatur in Richtung des spekularen Reflexes, wie man in Abbildung 5.8 (b) und (c) deutlich erkennen kann. Dies bedeutet, dass sich sowohl das Ag-Gitter als auch das NaCl-Gitter mit steigender Temperatur ausdehnen.

In Abbildung 5.8 (e) ist die relative Veränderung der Gitterkonstanten von Ag (rote Punkte) und NaCl (schwarze Punkte) in Abhängigkeit von der Temperatur aufgetragen. Als Referenzwert sind in beiden Fällen die Werte bei 300 K verwendet worden. Diese experimentellen Ergebnisse werden im Folgenden mit Literaturdaten für die thermische Expansion von Silber und NaCl-Volumenkristallen verglichen. Im Temperaturbereich von 300 K bis 500 K beträgt der in der vorliegenden Arbeit bestimmte lineare thermische Expansionskoeffizient von Silber (2.08 ± 0.04)·10⁻⁵ K⁻¹. Dieser Wert ist in guter Übereinstimmung mit experimentellen Daten aus der Literatur [147] (rote Linie in Abbildung 5.8 (e)).

Die Messergebnisse für die thermische Ausdehnung des 1 ML dicken NaCl-Films weichen hingegen sowohl von experimentellen [147] (schwarze Linie in Abbildung 5.8 (e)) als auch von theoretischen Literaturdaten [148] von NaCl-Volumenkristallen ab. Oberhalb von 400 K wurde für den 1 ML dicken NaCl-Film ein linearer thermischer Ausdehnungskoeffizient von (9.1 ± 0.3)·10⁻⁵ K⁻¹ ermittelt. Dieser Wert ist nahezu doppelt so groß wie der Wert für NaCl-Volumenkristalle [148]. Es ist allerdings bekannt, dass die thermische Ausdehnung von dünnen Filmen stark von der Filmdicke und der Anwesenheit von strukturellen Defekten in den Filmen abhängen kann [149-151].

In Abbildung 5.8 (f) wurde das Verhältnis der Gitterkonstanten von Ag und NaCl als Funktion der Temperatur aufgetragen. Hierbei wurde die Gitterkonstante von Ag bei 300 K aus der Literatur übernommen [145]; als Wert für die NaCl-Gitterkonstante wurde hingegen der experimentell bestimmte Wert verwendet (0.9 ± 0.2% komprimiert). Da sich der NaCl-Film thermisch stärker ausdehnt als das Ag(100)-Substrat, steigt das Verhältnis mit steigender Temperatur an. Es erhöht sich von 300 K bis 550 K um 1.2 ± 0.5%. Ein möglicher Einfluss dieser unterschiedlichen thermischen Ausdehnung auf die azimuthale Verteilung der Rotationsdomänen wird in Abschnitt 5.1.8 diskutiert.
5.1.7. Wachstum der ersten Einzel/Doppellage NaCl

Für einen 0.5 ML dicken NaCl-Film, der bei einer Substrattemperatur von 200 K aufgewachsen wurde, wurden zusätzliche Beugungsreflexe aufgrund von Mehrfachstreuung unter Beteiligung des NaCl-Films und des Ag(100)-Substrats beobachtet (siehe Abbildung 5.6 (a)). Diese Mehrfachstreureflexe wurden weder für dickere, bei 200 K gewachsene NaCl-Filme noch für 0.5 ML dicke, bei höherer Temperatur (>300 K) gewachsene Filme beobachtet.

Damit diese Art der Mehrfachstreuung beobachtet werden kann, muss die Eindringtiefe der Elektronen größer sein als die Dicke des NaCl-Films. Aufgrund der geringen Eindringtiefe von langsamen Elektronen in Materie ist die Beobachtung daher nur für ultradünnen Filme mit einer Dicke im atomaren Bereich zu erwarten.


Von Ploigt et al. [74] konnte durch STM Messungen gezeigt werden, dass das Wachstum von NaCl auf Ag(100) im Temperaturbereich von Raumtemperatur bis 473 K mit doppellagigen Inseln beginnt. Weiterhin konnte gezeigt werden, dass die Wachstumstemperatur die Form und Größe der NaCl Inseln stark beeinflusst. Bei tiefen Wachstumstemperaturen (77 K) wurde für LiF auf Ag(111) hingegen einlagiges Wachstum gefunden [83,84]. Daher ist zu vermuten, dass NaCl bei tiefer Wachstumstemperatur bevorzugt in einlagigen, metastabilen Inseln wächst. Durch Heizen der Lagen kann dann ein Phasenübergang zu doppellagigen Inseln induziert werden. Dieses Szenario würde die experimentelle Beobachtung, dass die 0.5 ML dicke NaCl-Schicht die Mehrfachstreureflexe in den LEED-Bildern beim Tempern verschwinden, erklären. Des Weiteren erklärt es die Abwesenheit von Mehrfachstreureflexen bei dickeren, bei 200 K gewachsenen Filmen und bei dünnen Filmen, die bei 450 K gewachsen wurden.

5.1.8. Ursprung der azimuthalen Mosaizität

In Übereinstimmung mit Pivetta et al. [73], zeigen die experimentellen Ergebnisse der vorliegenden Arbeit, dass NaCl auf Ag(100) bei Raumtemperatur mit Rotationsmosaizität aufwächst und dass hauptsächlich zwei azimuthale Orientierungen vorliegen. In der einen ist die NaCl-Einheitszelle ausgerichtet mit der Oberflächeneinheitszelle von Ag(100), in der anderen sind beide gegeneinander um 45° verdreht. Da das Wachstum von NaCl auf Ag(100) aber inkommensurabel ist, ist der Ursprung dieser zwei Vorzugsorientierungen zunächst unklar.
Die große Gitterfehlanpassung (38%) zwischen NaCl(100) und Ag(100) lässt ein kommensurables Wachstum von ausgerichteten NaCl-Lagen zunächst ungünstig erscheinen. Im Gegensatz dazu erscheinen 45° rotierte NaCl Domänen a priori als energetisch günstig, da hier eine Ausdehnung von nur 2.2% des NaCl-Gitters ausreichen würde, um eine kommensurable c(2×2) Überstruktur zu erhalten. Tatsächlich wurde von Pivetta et al. [73] aber durch die Analyse eines Moiré-Musters gezeigt, dass eine solche Ausdehnung nicht stattfindet, sondern sogar eine Kontraktion um 0.8% bezogen auf den Festkörperwert stattfindet.

Einfache Kommensurabilität kann somit für das Wachstum von NaCl auf Ag(100) ausgeschlossen werden. Kommensurabilität höherer Ordnung, bei der eine NaCl-Überstruktur mit einer Superzelle, die deutlich größer ist als die primitive Einheitszelle, kommensurabel zum Ag(100)-Substrat ist, kann hingegen nicht ausgeschlossen werden. Eine solche Kommensurabilität höherer Ordnung ist nicht nur für eine 0° und 45°-Orientierung der NaCl-Domänen denkbar, sondern a priori für jede beliebige azimuthale Orientierung.

Abbildung 5.9: Modelle für Kommensurabilität höherer Ordnung von NaCl auf Ag(100): (a) $\sqrt{25} \times \sqrt{25} R \tan^{-1}(4/3)$ und (b) $\sqrt{61} \times \sqrt{61} R \tan^{-1}(5/6)$. Die Überstrukturen benötigen azimuthale Rotationen der primitiven NaCl-Einheitszelle bezüglich der Einheitszelle von Ag(100) um 3.2° bzw. 5.2° und ein Verhältnis $a_{NaCl}/a_{Ag}$ von 1.387 bzw. 1.381. Die Punkte und Kreise symbolisieren die Position von Silberatomen (schwarz), Natriumionen (grün) und Chloridionen (rot). Die primitiven Einheitszellen sind durch durchgezogene Linien und die Superzelle durch gepunktete Linien markiert.

Um die Azimuthalwinkel, bei denen Kommensurabilität höherer Ordnung auftreten könnte, zu finden, wurde ein einfaches geometrisches Modell verwendet (Abbildung 5.9). Ein Modell einer Ag(100)-Oberfläche (schwarze Punkte) wurde mit einem Modell eines NaCl-Gitters (rote und grüne Kreise) überlagert. Die beiden Gitter
wurden anschließend schrittweise gegeneinander verdreht. Wenn eine Möglichkeit für Kommensurabilität höherer Ordnung gefunden wurde, wurde anschließend die Gitterkonstante von NaCl optimiert. Abbildung 5.9 verdeutlicht diese Methode für zwei Fälle in denen das NaCl-Gitter gegenüber dem Ag(100)-Gitter um 3.2° bzw. 5.2° verdreht ist.

In Tabelle 5.2 sind mögliche Überstrukturen zusammengefasst, die auf diese Weise ermittelt werden konnten. Im Einzelnen sind die Überstrukturmatrizen, die Größen der Überstrukturzellen und die Verhältnisse der Gitterkonstanten a_{NaCl}/a_{Ag}, die für die jeweilige Überstruktur benötigt werden, angegeben. Diese Verhältnisse der Gitterkonstanten aus Tabelle 5.2 sind in Abbildung 5.8 (f) den experimentell bestimmten Werten durch fünf horizontale Linien gegenübergestellt. Jede dieser Linien gehört zu einem Verhältnis a_{NaCl}/a_{Ag}, das durch das einfache geometrische Modell aus Abbildung 5.9 für eine Struktur höherer Kommensurabilität erhalten wurde.

**Tabelle 5.2: Strukturelle Parameter von möglichen NaCl-Überstrukturen höherer Kommensurabilität.**

<table>
<thead>
<tr>
<th>Azimuthalwinkel</th>
<th>Überstrukturmatrix</th>
<th>Größe der Superzelle</th>
<th>Überstruktur nach Wood</th>
<th>a_{NaCl}/a_{Ag}</th>
<th>Experimentelle Beobachtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>\begin{pmatrix} 4 &amp; 0 \ 0 &amp; 4 \end{pmatrix}</td>
<td>11.6 ×11.6</td>
<td>(4 × 4)</td>
<td>1.333</td>
<td>0° bei allen Temperaturen beobachtet</td>
</tr>
<tr>
<td>45°</td>
<td>\begin{pmatrix} 1 &amp; 1 \ -1 &amp; 1 \end{pmatrix}</td>
<td>4.09 × 4.09</td>
<td>c(2 × 2) oder (\sqrt{2} × \sqrt{2})R45°</td>
<td>1.414</td>
<td>45° 200 K-450 K</td>
</tr>
<tr>
<td>3.2°</td>
<td>\begin{pmatrix} 3 &amp; 4 \ -4 &amp; 3 \end{pmatrix}</td>
<td>14.4 × 14.4</td>
<td>(\sqrt{25} × \sqrt{25})R \tan^{-1}(4 / 3)</td>
<td>1.387</td>
<td>3.0° 400 K-500 K</td>
</tr>
<tr>
<td>5.2°</td>
<td>\begin{pmatrix} 6 &amp; 5 \ -5 &amp; 6 \end{pmatrix}</td>
<td>22.6 × 22.6</td>
<td>(\sqrt{61} × \sqrt{61})R \tan^{-1}(5 / 6)</td>
<td>1.381</td>
<td>5.7° 400 K-500 K</td>
</tr>
<tr>
<td>6.1°</td>
<td>\begin{pmatrix} 9 &amp; 6 \ -6 &amp; 9 \end{pmatrix}</td>
<td>31.3 × 31.3</td>
<td>(\sqrt{117} × \sqrt{117})R \tan^{-1}(6 / 9)</td>
<td>1.385</td>
<td>5.7° 400 K-500 K</td>
</tr>
<tr>
<td>8.2°</td>
<td>\begin{pmatrix} 3 &amp; 1 \ -1 &amp; 3 \end{pmatrix}</td>
<td>9.14 × 9.14</td>
<td>(\sqrt{10} × \sqrt{10})R \tan^{-1}(1 / 3)</td>
<td>1.414</td>
<td>nicht beobachtet</td>
</tr>
<tr>
<td>14.0°</td>
<td>\begin{pmatrix} 4 &amp; -1 \ 1 &amp; 4 \end{pmatrix}</td>
<td>11.9 × 11.9</td>
<td>(\sqrt{17} × \sqrt{17})R \tan^{-1}(4)</td>
<td>1.374</td>
<td>13.5° 323 K-450 K</td>
</tr>
</tbody>
</table>
Weil das Gitter des NaCl-Films sich thermisch stärker ausdehnt als das Gitter der Ag(100)-Oberfläche, kann erwartet werden, dass sich die epitaktische Beziehung zwischen dem Adsorbat NaCl und dem Substrat Ag(100) als Funktion der Temperatur ändert. Weiterhin kann man erwarten, dass einige der Überstrukturen in Tabelle 5.2 innerhalb bestimmter Temperaturintervalle begünstigt sind. Dies würde die Veränderung der azimuthalen Profile (vgl. Abbildung 5.6 (b)) mit der Temperatur erklären.

Für einen Winkel von 0° zwischen den Einheitszellen von NaCl und Ag(100), konnten drei mögliche Überstrukturen gefunden werden. Sie können als (4×4), (7×7) und (11×11) Überstrukturen beschrieben werden. Für das Auftreten dieser Strukturen werden aber Verhältnisse \( a_{\text{NaCl}}/a_{\text{Ag}} \) benötigt (vgl. Tabelle 5.2), die stark vom experimentell bei Raumtemperatur beobachteten Wert von \( a_{\text{NaCl}}/a_{\text{Ag}}=1.368 \pm 0.003 \) abweichen. Daher ist bei Raumtemperatur das Auftreten keiner dieser drei Strukturen zu erwarten. Da mit zunehmender Temperatur \( a_{\text{NaCl}}/a_{\text{Ag}} \) ansteigt, kann das Auftreten der (11×11) Überstruktur aber bei höheren Temperaturen erwartet werden.


Einige dieser theoretisch vorhergesagten Orientierungen kommen experimentell bei erhöhter Temperatur beobachteten Orientierungen sehr nah. Insbesondere kann vermutet werden, dass die 3.2° Orientierung aus Tabelle 5.2 mit der experimentell bei 500 K beobachteten 3.0° Orientierung übereinstimmt und dass die 5.2° und die 6.1° Orientierung überlagern und so zur Ausbildung der experimentell beobachteten 5.7° Orientierung führen. Weiterhin mag ein Zusammenhang zwischen der vorhergesagten 14° Orientierung und der experimentell beobachteten 13.5° Orientierung bestehen.

Unter der Vorraussetzung, dass Kommensurabilität höherer Ordnung an der Grenzfläche NaCl/Ag tatsächlich energetisch bevorzugt ist, sollte ein Vergleich der berechneten \( a_{\text{NaCl}}/a_{\text{Ag}} \)-Verhältnisse von Tabelle 5.2 und der gemessenen Verhältnisse aus Abbildung 5.8 (f) eine Vorhersage ermöglichen, in welchen Temperaturintervallen welche NaCl-Strukturen auftreten. Zum Beispiel sollten 14° orientierte Domänen zwischen 350 K und 450 K beobachtet werden. Oberhalb von 450 K, sollten hingegen 3.2° und 5.2°/6.1° orientierte Domänen verstärkt und 14° orientierte Domänen vermindert wachsen. 8.2° und 45° orientierte Domänen sollten hingegen gar nicht beobachtet werden. Diese Beschreibung stimmt bemerkenswerterweise ziemlich gut mit den experimentellen Beobachtungen überein. Weiterhin kann das Auftreten eines scharfen und intensiven Peaks im azimuthalen Profil bei 0° mit der Bildung einer


Der vorgeschlagene Mechanismus ist vereinbar mit den experimentellen Beobachtungen (vgl. Abbildung 5.4 (b) und Abbildung 5.7 (c)). Weiterhin würde er die Beobachtung von metastabilen, 45° rotierten Domänen, für die keine Gitterübereinstimmung gefunden werden konnte, bei einer Wachstumstemperatur von 200 K erklären, sowie das Verschwinden dieser Domänen nach Tempern bei 450 K. Außerdem würde er die azimuthale Verteilung während des Wachstumsprozesses bei der Nukleation von NaCl-Domänen beeinflussen, aber nicht nach dem Abschluss des Wachstums. Daher ist zu erwarten, dass Wachstum bei hoher Substrattemperatur und Tempern nach dem Wachstum nicht in derselben azimuthalen Verteilung enden, was den experimentellen Beobachtungen entspricht (vgl. Abbildung 5.4 (b)).

Auf Grundlage dieser Beobachtungen kann man schlussfolgern, dass die höchste Selektivität einer bestimmten azimuthalen Domänenorientierung erhalten wird, wenn NaCl-Filme mit einer Depositionsrate <0.1 MLmin⁻¹ und einer Substrattemperatur zwischen 450 K und 500 K gewachsen werden.
Zum Abschluss dieser Diskussion soll jedoch darauf hingewiesen werden, dass die oben gegebene Beschreibung nur eine Vorhersage für die Domänenorientierungen erlaubt, für welche Kommensurabilität höherer Ordnung identifiziert werden kann. Diese Orientierungen gehören zu stabilen Gleichgewichtszuständen bei einem bestimmten Gitterverhältnis $a_{\text{NaCl}}/a_{\text{Ag}}$. Für die 45° orientierten Domänen konnte jedoch keine Kommensurabilität höherer Ordnung, die über ein passendes Verhältnis $a_{\text{NaCl}}/a_{\text{Ag}}$ verfügt, identifiziert werden. Dennoch wurden diese (auf der Basis des obigen, geometrischen Modells) weniger stabilen Inseln bei einer Wachstumstemperatur von 200 K und sogar bei einer Wachstumstemperatur von 450 K beobachtet. Folglich scheinen diese 45° rotierten Inseln auch die Grenzflächenenergie zu minimieren, obwohl keine Kommensurabilität höherer Ordnung vorliegt.

Abschließend lässt sich daher festhalten, dass eine vollständige Beschreibung der azimuthalen Mosaizität wohl nur auf der Grundlage der Berechnung der Grenzflächenenergie stattfinden kann und über die einfachen geometrischen Betrachtungen dieses Abschnitts hinausgehen muss.

5.1.9. Fazit zum Wachstum von NaCl auf Ag(100)

Das inkommensurable Wachstum von NaCl auf Ag(100) zeigt Rotationsmosaizität in der (100)-Ebene. In den meisten NaCl-Domänen ist deren Einheitszelle ausgerichtet mit der Einheitszelle der Ag(100)-Oberfläche, mit einer Mosaizitätsverkippung von weniger als 14° bei Raumtemperatur.

Die Einheitszelle von NaCl ist lateral um ca. 0.9% kontrahiert bezogen auf den Festkörperwert. Bei höheren Substrattemperaturen während des Wachstums, wird die Mosaizitätsverkippung kleiner und individuelle Orientierungen können aufgelöst werden. Tempern der NaCl-Filme nach Abschluss des Wachstums kann deutliche Veränderungen der Mosaizität verursachen, aber die Auswirkungen sind nicht vergleichbar mit den Auswirkungen hoher Substrattemperatur während des Wachstums. Für mehrlagige NaCl-Filme ist die azimuthale Verteilung fest und kann nicht mehr durch Tempern beeinflusst werden.

Für die temperaturabhängige Entwicklung der azimuthalen Mosaizitätsverteilung bei hohen Substrattemperaturen konnte ein Modell entwickelt werden, dass auf der unterschiedlichen thermischen Ausdehnung des NaCl-Films und des Ag-Substrats und der Möglichkeit von Kommensurabilität höherer Ordnung beruht. Weiterhin hat es den Anschein, dass molekulare Diffusion zwischen NaCl-Domänen eine wichtige Rolle in der Auswahl der stabilsten Domänenorientierung spielt. Die azimuthale Mosaizitätsverteilung hängt somit sowohl von thermodynamischen Faktoren (die bevorzugten Domänenorientierungen minimieren die Grenzflächenenergie) als auch von kinetischen Faktoren (die Auswahl der bevorzugten Orientierungen erfolgt durch Diffusionprozesse) ab. Diese Erkenntnisse bieten neue Aspekte, um das Wachstum von NaCl auf Ag(100) verstehen zu können. Eventuell lassen sich diese auf andere heterogene Grenzflächen übertragen, um die Qualität von dünnen Isolatorfilmen auf leitenden Substraten zu verbessern.
5.2 Wachstum von KCl auf Ag(100)

5.2.1. LEED-Untersuchungen an KCl auf Ag(100)

Abbildung 5.10 (a) zeigt ein LEED-Bild eines auf einer Ag(100)-Oberfläche aufgewachsenen KCl-Films von etwa 2 ML Dicke. Die vier inneren Reflexe sind <10>-Reflexen des KCl-Film zuzuordnen, wohingegen die vier äußeren Reflexe durch Beugung an der Ag(100)-Substratoberfläche zustande kommen. Dem LEED-Bild kann direkt entnommen werden, dass KCl auf Ag(100) bezüglich der azimuthalen Orientierung ausgerichtetes Wachstum (0°-Wachstum) zeigt. Das bedeutet, dass die Basisvektoren der Oberflächenelementarzellen des KCl-Films und der Ag(100)-Oberfläche parallel zueinander ausgerichtet sind. Die bei NaCl auf Ag(100) auftretende Rotationsmosaizität, wie sie in Abschnitt 5.1 und in der Literatur [73,78,154] bereits diskutiert wurde, ist nicht festzustellen\(^1\). Aus eindimensionalen LEED-Profilen wurden die durchschnittliche Domänengrösse und die Gitterkonstante für KCl-Filme, die bei einer Substrattemperatur von 500 K gewachsen wurden, bestimmt.

\[ L = \frac{2\pi}{\text{FWHM}} \]

\(^1\) Für einige Präparationen wurden sehr schwache Bögen durch die KCl-Reflexe beobachtet. Die Umstände unter welchen diesen auftraten, blieben jedoch unklar.
5 Wachstum von Alkalihalogeniden auf Ag(100)


Der ermittelte Wert von 250 Å war im Bereich von 1 bis 10 ML unabhängig von der KCl-Filmdicke. Für die reine Ag(100)-Substratoberfläche wurde auf der Grundlage der <1,0>-Reflexe ein Wert für die mittlere Domänengröße von 400 Å ermittelt. Die Tatsache, dass letzterer Wert deutlich größer ist als der für die KCl-Filme erhaltene, zeigt, dass die Domänengröße der untersuchten KCl-Filme nicht durch die strukturelle Qualität des Ag(100)-Substrats limitiert war.

Neben der Domänengröße konnte aus eindimensionalen SPA-LEED-Scans auch die Gitterkonstante des KCl-Films ermittelt werden. Dafür wurde zunächst die Oktopolverzerrung des Scans durch eine kubische Korrekturfunktion eliminiert. Anschließend wurde unter Verwendung des Gitterparameters der Ag(100)-Oberfläche (a = 2.89 Å) die Gitterkonstante von KCl c = 4.44 ± 0.02 Å bestimmt. Ebenso wie bei der Domänengröße, so konnte auch für die Gitterkonstante der KCl-Filme im Bereich von 1 ML bis 10 ML keine Abhängigkeit von der Filmdicke festgestellt werden. Der ermittelte Wert für die Gitterkonstante stimmt innerhalb der Fehlerbreite mit der Oberflächeneinheitszelle der (100)-Fläche von KCl Volumenkristallen überein (4.45 Å bei 298 K [145]).

Die Epitaxiebeziehung zwischen den Vektoren der Elementarzelle der Ag(100) Oberfläche (a₁, a₂) und der des KCl-Films (c₁, c₂) ist in Abbildung 5.10 (b) dargestellt und kann durch die nachfolgende Formel beschrieben werden:

\[
\begin{pmatrix}
  c_1 \\
  c_2
\end{pmatrix} =
\begin{pmatrix}
  1.54 \pm 0.01 & 0 \\
  0 & 1.54 \pm 0.01
\end{pmatrix}
\begin{pmatrix}
  a_1 \\
  a_2
\end{pmatrix}.
\]

Das Wachstum von KCl auf Ag(100) ist somit inkommensurabel. Eine laterale Kompression des KCl-Films um 2.6% auf einen Wert von 4.33 Å würde zu einer kommensurablen Uberstruktur zweiter Ordnung führen, kann im Rahmen des Fehlers aber ausgeschlossen werden. Ebenso wurde beim Wachstum von KCl auf Ag(100) keine Rotationsmosaizität, die z. B. für das Wachstum von NaCl auf Ag(100) beobachtet wurde, beobachtet.

5.2.2. STM-Untersuchungen an KCl auf Ag(100)

Die in diesem Abschnitt präsentierten STM-Aufnahmen wurden in Zusammenarbeit mit Dr. J. Ikonomov an einem separaten experimentellen Aufbau der Arbeitsgruppe gemessen. Eine ausführliche Beschreibung dieses Experiments findet sich in den Referenzen [109,155].

Abbildung 5.11 (a) zeigt ein STM-Bild einer Ag(100)-Oberfläche, die beinahe komplett mit KCl bedeckt ist. In der oberen rechten Ecke kann ein kleiner, etwas verrauschter wirkender Bereich unbedeckter Ag(100)-Oberfläche erkannt werden. Die
Gesamtbedeckung der Oberfläche mit KCl war in diesem Experiment weniger als 0.1 ML. Auf einer makroskopischeren Skala war der KCl-Film aber nicht einheitlich. Damit ist gemeint, dass nach dem Aufdampfen von KCl weiterhin große Bereiche unbedeckter Ag(100)-Oberfläche vorhanden waren, während gleichzeitig an anderen Stellen KCl-Domänen einer typischen Größe von 500 × 500 nm² beobachtet werden konnten. Innerhalb dieser Domänen war der KCl-Film geschlossen („wetting layer“). Auch an Stufenkanten des Substrats ist keine Diskontinuität des KCl-Films festzustellen, wie in Abbildung 5.11 (a) zu erkennen ist. Dieses kontinuierliche Wachstum der ersten KCl-Lage über Substratstufen hinweg, deutet auf eine starke Diffusion auch über Stufenkanten hinweg und somit auf eine sehr kleine Ehrlich-Schwoebel-Barriere für die KCl-Moleküle hin. Die Beobachtung großer Bereiche unbedeckten Substrats deutet auf eine hohe Diffusionsrate von KCl-Molekülen auf Ag(100) und eine niedrige Nukleationswahrscheinlichkeit für KCl-Inseln hin.

Das Wachstum der zweiten Lage KCl beginnt mit statistisch verteilten Inseln von quadratischer Form. In Messungen bei tiefer Temperatur (T<40 K) wiesen die Inseln scharfe Ecken auf, wohingegen die Ecken bei Raumtemperaturmessungen abgerundet waren. Genauso wie die darunter liegende erste Lage, wachsen die Inseln der zweiten Lage über Stufenkanten hinweg. Interessanterweise sind sie häufig auf Stufenkanten zentriert, was darauf hindeutet, dass das Wachstum von Inseln der zweiten Lage bevorzugt an Stufenkanten der ersten Lage beginnt.

Abbildung 5.11: a) STM-Aufnahme der komplett mit mindestens einer KCl-Lage bedeckten Ag(100)-Oberfläche. Die quadratischen Bereiche sind KCl-Inseln der zweiten Lage. In der oberen, rechten Ecke, direkt oberhalb einer KCl-Insel ist ein kleiner Bereich des freien Ag(100)-Substrats zu erkennen. (163 x 163 nm², U₆=0.84 V, I₆=12.2 pA, T=40 K) b) Atomar aufgelöste STM-Aufnahme einer KCl-Insel in zweiter Lage. (9.7 x 9.7 nm², U₆=-1.57 V, I₆=14.2 pA, T=298 K)
Für die erste Lage KCl auf Ag(100) wurde eine Ag-zu-KCl-Stufenhöhe von etwa 250 pm ermittelt und für die Inselhöhe der zweiten Lage eine KCl-zu-KCl-Stufenhöhe von etwa 120 pm. Um diese gemessenen Stufenhöhe verstehen zu können, muss bedacht werden, dass der Tunnelstrom oberhalb des isolierenden KCl-Films durch Zustände in der Bandlücke zustande kommt, die von der metallischen Ag(100)-Oberfläche induziert werden [93]. Diese Zustände klingen mit dem Abstand vom Ag(100)-Substrat exponentiell ab. Daher wird bei Constant-Current-Messungen über KCl-Stufen die STM-Spitze weniger weit zurückgezogen als dies bei Metallstufen mit gleicher Höhe der Fall ist. In Folge dessen werden die Kanten von KCl-Inseln auf Ag(100) mit einer geringeren scheinbaren Höhe abgebildet als ihrer geometrischen Höhe entspräche.

Basierend auf der Elementarzelle von KCl-Volumenkristallen [145], erwartet man eine Stufenhöhe von 318 pm für eine einlagige Stufe und eine Höhe von 636 pm für eine zweilagige Stufe von KCl. Im Falle des Aufwachsens von KCl in Form einer Doppellage, wie dies z. B. für NaCl auf Ge(100) beobachtet wurde [153], müsste wegen dem obigen exponentiellen Abfall der metallinduzierten Zustände die Höhe der nächsten Lage (Inseln) deutlich kleiner als die Hälfte der ersten Lage erscheinen, wenn man annimmt, dass diese nächste Lage einlagig aufwächst. Da dies nicht beobachtet wurde, kann man im Umkehrschluss folgern, dass die erste Lage nur aus einer einatomaren Lage KCl besteht.

Neben der reinen Höhe wurde auch die Steigung der KCl-Stufen untersucht. Dabei wurde gefunden, dass diese genauso steil verlaufen, wie die Stufen des unbedeckten Metallsubstrats. Für KCl auf Ag(100) kann somit ausgeschlossen werden, dass sich der KCl-Film wie ein Teppich über Stufen legt („carpetmode-growth“), wie dies z. B. für das Wachstum von NaCl auf Ge(100) [153] und Cu(111) [72] beobachtet wurde.


5.2.3. Diskussion des Wachstums von KCl auf Ag(100)

Im Rahmen der vorliegenden Arbeit wurden KCl-Filme epitaktisch auf Ag(100) aufgewachsen. Diese Filme weisen mit sehr hoher Präferenz das so genannte ausgerichtete Wachstum auf, bei dem die Basisvektoren der Elementarzellen des KCl-Films und des Ag-Substrats einen Winkel von 0° einschließen. In dieser Situation sind aufgrund der unterschiedlichen Basis der Einheitszellen die dicht gepackten Reihen von Silberatomen des Substrats und von Alkalihalidionen des KCl-Films um 45° gegeneinander verdreht. Die Einheitszelle des Alkalihalidfilms ist inkommensurable in Bezug auf das Ag(100)-Substrat. Die Gitterfehlanpassung zwischen KCl (Abstand nächster Nachbarn (NND) = 3.15 Å) und Ag (NND = 2.89 Å) ist mit 9.0% ziem-
lich groß. Bemerkenswerterweise wurde für KCl auf Ag(100) keine Rotationsmosaizität beobachtet, wie sie im Fall von NaCl auf Ag(100) beobachtet wurde (vgl. Abschnitt 5.1 und [73,78]).

Drei verschiedene Situationen wurden für die azimuthale Orientierung zwischen Alkalihalidfilmen und (100)-Metalloberflächen bislang beobachtet. Hierbei handelt es sich um das bereits erwähnte ausgerichtete Wachstum (0°-Wachstum) [79], Wachstum mit signifikanter Rotationsmosaizität [73,78,154] und ein rotiertes Wachstum (45°-Wachstum) [77,156]. Es stellt sich somit die Frage, welcher Mechanismus das 0°-Wachstum von KCl auf Ag(100) begünstigt. Da das Wachstum von KCl auf Ag(100) inkommensurabel ist, ist der Energiegewinn, der dadurch erfolgt, dass nur bestimmte Adsorptionsplätze des Substrats von den Ionen des KCl-Films besetzt werden, offensichtlich nicht entscheidend. Von Kiguchi et al. wurde kürzlich vorgeschlagen [79], dass das ausgerichtete Wachstum auf Keimbildung der Alkalihalidinseln an <110>-orientierten Stufenkanten des Metallsubstrats zurückzuführen ist.


Die Stufenkanten auf (100)-Oberflächen sind präferentiell in <110>-Richtung orientiert. Dies ist die Richtung dichtgepackter atomarer Reihen des Metallsubstrats und zugleich die Richtung der Basisvektoren der (100)-Oberfläche des Substrats. Resultierend daraus ergibt sich ein ausgerichtetes Wachstum der Alkalihalidinseln [79].

Eine Bedingung dafür, dass ausgerichtetes Wachstum gemäß dieses Stufenkanten-nukleationsmodells erfolgen kann, ist, dass die Diffusionsraten der Alkalihalidmoleküle auf den Terrassen hinreichend groß sind. Nur dann können die Alkalihalidmoleküle Stufenkanten erreichen, bevor Nukleation auf den Terrassen eintritt. Kiguchi et al. haben argumentiert, dass große Diffusionskonstanten für den Fall geringer Wechselwirkung zwischen Alkalihalidmolekülen und Metalloberfläche erwartet werden können [79]. Genau diese Situation scheint für KCl auf Ag(100) zuzutreffen. Den STM-Messungen kann man in der Tat entnehmen, dass die Stufenkanten auf Ag(100) vorzugsweise in <110>-Richtung orientiert sind. Weiterhin kann durch die Beobachtung von großen, unbedeckten Bereichen des Metallsubstrats bei Submonolagenbedeckung auf eine hohe Diffusionsrate von KCl-Molekülen geschlossen werden. Diese hohe Diffusionsrate ist konsistent mit NEXAFS-Messungen aus denen auf eine schwache Bindung zwischen KCl und Ag(100) geschlossen wurde [93].

Das Auftreten von 45° Wachstum wurde von Kiguchi et al. für eine Situation vorgesehen, in der (1) kleine Diffusionsraten aufgrund einer starken Bindung zwischen Alkalihalidmolekülen und dem Metallsubstrat vorliegen und (2) die Gitterfehlanpassung der entsprechenden Abstände nächster Nachbarn klein ist. Sind diese Bedingungen erfüllt, so erfolgt eine Nukleation auf Terrassen im 45°-Wachstumsmodus. In diesem Fall scheint der Energiegewinn, der durch Adsorption aller Kationen und Anionen auf identischen und optimalen Adsorptionsplätzen zustande kommt, eine entscheidende Größe zu sein. Möglicherweise erfolgt in dieser Situation auch eine geringe Verzerrung des Alkalihalidgitters, die dann zu kommensurabilem Wachstum führt. Das 45° Wachstum wurde zum Beispiel für LiCl auf Ni(100) oder Cu(100) gefunden. In beiden Fällen ist die Gitterfehlanpassung klein (2.9% bzw. 0.4%) [156].

5.2.4. Vergleich zum Wachstum von NaCl auf Ag(100)

Zum Schluss soll an dieser Stelle kurz das Wachstum von KCl auf Ag(100) mit dem von NaCl auf Ag(100) (vgl. Abschnitt 5.1 und [73,78,154]) verglichen werden. Der Großteil eines NaCl-Films wächst mit einer signifikanten Rotationsmosaizität auf Ag(100) auf. Das Zentrum der Verteilung der Rotationsmosaizität liegt dabei bei 0°. Anhand der in Abschnitt 5.1.3 vorgestellten azimuthalen Reflexprofile kann man jedoch abschätzen, dass selbst unter optimierten Präparationsbedingungen (Substrattemperatur 450 K, Aufdampfrate 0.1 ML/min) nur etwa 30% eines NaCl-Films exakt ausgerichtet (0°) zum Ag(100)-Substrat wächst. Der 45°-Wachstumstyp wird ebenfalls beobachtet, aber nur als Minoritätsspezies mit einem Anteil von maximal etwa 1%.

Die Ursache für dieses unterschiedliche Wachstumsverhalten von NaCl und KCl auf Ag(100) kann in einer kleineren Diffusionrate von NaCl auf Ag(100) verglichen mit
KCl vermutet werden. Dadurch würde die Nukleation an Stufenkanten weniger dominant. Von Pivetta et al. konnte in der Tat gezeigt werden, dass NaCl-Inseln auf Ag(100) nicht nur an Stufenkanten, sondern auch auf Terrassen nukleieren und dass diese Inseln Rotationsmosaizität aufweisen [73]. Zusätzlich zeigen im Fall von NaCl auf Ag(100) aber auch Inseln, die an Stufenkanten gewachsen sind, Mosaizität. Dies deutet darauf hin, dass die vorliegende Situation eventuell noch komplexer sein könnte.

Durch die höhere Nukleationswahrscheinlichkeit auf Terrassen erscheint der Mechanismus des Ausrichtens durch Stufen für NaCl weniger wichtig zu sein. Die Details der Rotationsmosaizität sind bislang noch nicht vollständig verstanden. Dennoch können einige der Details durch Kommensurabilität höherer Ordnung auf rein geometrischer Basis erklärt werden (vgl. Abschnitt 5.1.8 und [154]).

Schließlich ist die Gitterfehlanpassung zwischen NaCl und Ag(100) (-2.5%) kleiner als die zwischen KCl und Ag(100) (9%). Daher hätte man für NaCl auf Ag(100) auch das Auftreten von 45°-Wachstum vermuten können. Möglicherweise ist dies nicht begünstigt, da die Grenzflächenenergie zwischen NaCl und Ag(100) zu klein ist [79], um eine für Kommensurabilität benötigte Verzerrung des Gitters zu kompensieren. Dies unterscheidet NaCl/Ag(100) vermutlich von Systemen in denen 45° Wachstum beobachtet wird. Ein Beispiel hierfür ist das Wachstum von LiCl auf einer Cu(100)-Oberfläche. Für dieses Stoffsystem und für NaCl/Ag(100) wurde von Kiguchi et al. mit Dichtefunktionaltheorie die Bindungsenergie zwischen einer adsorbierten Alkalihalidinsel und der Metalloberfläche berechnet [79,156]. Tatsächlich ergab sich für die Adsorption von LiCl auf Cu(100) mit 0.8 eV pro Formeleinheit ein deutlich größerer Wert als für die Adsorption von NaCl auf Ag(100) (0.6 eV pro Formeleinheit). Diese größere Bindungsenergie reicht dann für LiCl/Cu(100) vermutlich aus um die für Kommensurabilität benötigte geringe Verzerrung (Gitterfehlanpassung: 0.4%) zu kompensieren.
6. Wachstum von PTCDA auf dünnen Isolatorfilmen


6.1. PTCDA auf KCl(100) – die BW-Phase

Das Wachstum von PTCDA auf der (100)-Fläche von KCl-Volumenkristallen wurde bereits von Dienel et al. mit Hilfe eines Rasterkraftmikroskops untersucht [16]. Für die Monolage wurde beobachtet, dass sich eine langreichweitige Struktur ausbildet, in der die Moleküle zueinander versetzt wie in einem Mauerwerk angeordnet sind.


Die Epitaxiebeziehung zwischen PTCDA und KCl(100) wurde von Dienel et al. als kommensurabel beschrieben [16]. Sie kann durch die nachfolgende Gleichung beschrieben werden:

\[
\begin{pmatrix}
d_1 \\
d_2 \\
\end{pmatrix} = \begin{pmatrix}
2 & 2 \\
-2 & 2 \\
\end{pmatrix} \begin{pmatrix}
c_1 \\
c_2 \\
\end{pmatrix}
\]  
6.1

in welcher \(d_1\) und \(d_2\) die Basisvektoren der PTCDA-Monolage und \(c_1\) und \(c_2\) die Basisvektoren des KCl-Substrats darstellen. Hieraus ergibt sich eine Größe der Elementarzelle von \(12.6 \times 12.6 \text{ Å}^2\) und eine molekulare Flächendichte von \(6.30 \times 10^{13} \text{ cm}^{-2}\). Diese Dichte ist um 24% kleiner als die Flächendichte in der (102)-Ebene von PTCDA-Volumenkristallen der \(\beta\)-Phase \((8.32 \times 10^{13} \text{ cm}^{-2})\) [157]. Diese verringerte Dichte deutet auf eine starke Wechselwirkung zwischen Adsorbat und Substrat hin.

Abbildung 6.2: (a) LEED-Bild von 1 ML PTCDA auf 10 ML KCl gemessen bei einer Elektronenenergie von 95 eV. (b) geometrische Simulation des LEED-Bilds für die BW-Struktur, die in [16] vorgeschlagen wurde. Die Reflexe der PTCDA-Monolage sind als rote Vierecke, die Reflexe vom KCl-Substrat als grüne Kreise dargestellt.

Aufgrund der unterschiedlichen Symmetrie der BW-Phase (zweizählig) und des KCl-Films (vierzähliger) ist das Auftreten zweier Rotationsdomänen zu erwarten, in der die PTCDA-Moleküle einen Winkel von ±45° mit den Basisvektoren des KCl-Substrats einschließen. Aufgrund der quadratischen Form der Einheitszelle und ihrer Ausrichtung im 45°-Winkel zur Einheitszelle des Substrats sind die beiden Domänen aber für eine Simulation des LEED-Bildes symmetrieäquivalent und müssen nicht getrennt berücksichtigt werden müssen.


Die identischen Adsorbatstrukturen der PTCDA-Monolagen auf den dünnen KCl-Filmen und auf der (100)-Fläche von KCl-Volumenkristallen deuten darauf hin, dass
die beiden Oberflächen bezüglich dieses Adsorbatsystems identisch sind und ist daher ein Beleg für die hohe strukturelle Qualität der KCl-Filme.

6.2. PTCDA auf NaCl(100)

6.2.1. Die thermodynamisch stabile Q-Phase

Abbildung 6.3 (a) zeigt ein typisches LEED-Bild eines 0.7 ML dicken PTCDA-Films, der bei 223 K gewachsen wurde. 1 ML ist hierbei und im Rest dieses Abschnitts auf der Grundlage der Flächendichte der HB-Phase (vgl. Abschnitt 6.4) definiert. Als Konsequenz daraus ist die erste Monolage bereits bei 0.85 ML geschlossen. Die gelängte Form der LEED-Reflexe wird durch die Rotationsmosaikheit des NaCl-Films hervorgerufen (vgl. Abschnitt 5.1). NaCl und PTCDA-Reflexe weisen dieselbe azimuthale Verbreiterung auf, was darauf hindeutet, dass PTCDA auf dem NaCl-Substrat in einer strengen, epitaktischen Beziehung ohne zusätzliche Rotationsverbreiterung aufwächst. In der radialen Richtung sind die PTCDA-Reflexe deutlich schärfer. Aus der radialen Breite wurde für die PTCDA-Domänen eine mittlere Größe von etwa 100 Å ermittelt.

Abbildung 6.3: (a) LEED-Bild eines 0.7 ML dicken PTCDA-Films, der auf einem 10 ML dicken NaCl-Film bei 223 K aufgewachsen wurde. E=34 eV, T=273 K. (b) Geometrische Simulation eines LEED-Bildes gemäß dem Strukturmodell in Abbildung 6.4. Rote Vierecke symbolisieren Reflexe von der PTCDA-Überstruktur, grüne Kreise Reflexe vom NaCl-Substrat.

Bemerkenswerterweise ist das LEED-Bild in Abbildung 6.3 sehr ähnlich zu dem LEED-Bild, das für PTCDA auf einem reinen Ag(100)-Substrat beobachtet wird [124]. In beiden Fällen wird vierzählige Symmetrie und dieselbe systematische Reflexauslöschung von (n,0) und (0,k)-Reflexen (für n und k gerade) beobachtet. Dies deute auf die Anwesenheit von zwei Gleitspiegelebenen hin (Symmetriegruppe p4gm).
Auf Ag(100) wächst die PTCDA-Monolage mit einer kommensurablen $(4\sqrt{2}\times4\sqrt{2})R45^\circ$ Überstruktur auf. Auf dünnen NaCl-Filmen wächst die PTCDA-Monolage ebenfalls kommensurabel auf, die Überstruktur kann hier mit $(3\sqrt{2}\times3\sqrt{2})R45^\circ$ bezeichnet werden. In der Matrix-Notation lässt sich die Struktur durch folgende Gleichung beschreiben:

\[
\begin{pmatrix}
e_1 \\
e_2 \\
\end{pmatrix} = \begin{pmatrix}
3 & 3 \\
-3 & 3 \\
\end{pmatrix}
\begin{pmatrix}
b_1 \\
b_2 \\
\end{pmatrix}
\]

in der $b_1$ und $b_2$ die Basisvektoren der primitiven Elementarzelle der NaCl(100)-Oberfläche und $e_1$ und $e_2$ die Basisvektoren der Überstruktur sind.

Abbildung 6.3 (b) zeigt eine geometrische Simulation eines LEED-Bildes auf Grundlage der obigen Überstruktur und Symmetriegruppe. Für diese Überstruktur wurde eine quadratische Einheitszelle mit einer Gitterkonstanten von 16.92 Å berechnet, welche in guter Übereinstimmung mit dem Wert von 17.0 ± 0.1 Å ist, der direkt aus den SPA-LEED-Daten berechnet wurde.

Die im Rahmen der vorliegenden Arbeit beobachtete $(3\sqrt{2}\times3\sqrt{2})R45^\circ$ Überstruktur ist identisch mit der p(3×3) Überstruktur, die von Burke et al. [95] für PTCDA-Submonolagen auf der (100)-Fläche von NaCl-Volumenkristallen mittels AFM beobachtet wurde. Die unterschiedliche Bezeichnung ist auf die verschiedene Wahl von Elementarzellen der NaCl(100) Oberfläche zurückzuführen. Die im Rahmen der vorliegenden Arbeit verwendete Notation bezieht sich auf die primitive Elementarzelle von NaCl(100), wohingegen die Notation von Burke et al. sich auf die größere, zentrierte Elementarzelle bezieht. Die beiden Elementarzellen sind um 45° gegen einander verdreht (vgl. Abbildung 6.4).

Unter Berücksichtigung der für PTCDA auf NaCl beobachteten Auslöschungsbedingungen, konnte in Analogie zu PTCDA/Ag(100) ein Realraummodell von PTCDA auf NaCl/Ag(100) erstellt werden, das in Abbildung 6.4 gezeigt ist. Innerhalb dieses Modells liegen PTCDA-Moleküle in einer solchen Art und Weise flach auf dem NaCl-Film, dass ihre langen molekularen Achsen entlang der <011>-Richtungen ausgerichtet sind. Die primitive Elementarzelle dieser Überstruktur enthält zwei Moleküle, die zueinander senkrecht ausgerichtet sind und dadurch ein „T“-formen. Durch diese Anordnung werden die durch die Auslöschungsbedingungen geforderten Gleitspiegellebenen realisiert.

Die in Abbildung 6.4 gezeigten Adsorptionsplätze ergeben sich nicht aus der LEED-Simulation, sondern wurden auf Grundlage von Überlegungen zur Energieminimierung gewählt. Die carboxyrischen Sauerstoffatome von PTCDA weisen negative Partialladungen auf und wechselwirken daher bevorzugt elektrostatisch mit Natriumkationen der Substratoberfläche. Burke et al. haben mit MolekulareMechanik und Dichtefunktionaltheorie gezeigt, dass diese attraktiven Kräfte für die planare Anordnung der Moleküle und die Orientierung der ersten PTCDA-Monolage auf NaCl(100) verantwortlich sind [95]. Die in Abbildung 6.4 gezeigte Überstruktur gewährleistet für
alle acht carboxylics Sauerstoffatome in der Einheitszelle äquivalente Adsorptionsplätze über Natriumkationen.

Abbildung 6.4: Realraummodell des kommensurablen Wachstum der ersten Monolage von PTCDA auf NaCl(100) (Q-Phase). Natriumkationen sind grün, Chloridanionen rot dargestellt. Die Hauptsymmetrierichtungen der (100)-Oberfläche sind im Bezug auf die konventionelle Elementarzelle von NaCl-Volumenkristallen angegeben. Der Adsorbatplatz ist experimentell nicht nachgewiesen, sondern wurde auf der Grundlage von elektrostatischen Überlegungen gewählt.

Die hier vorgestellte, quadratische kommensurable Überstruktur, wird im Folgenden als Q-Phase bezeichnet. Die Struktur weicht deutlich von der dichteren Fischgrätanordnung von PTCDA ab, die in der (102)-Ebene von PTCDA-Volumenkristallen vorliegt und die typisch für PTCDA ist, das auf unreaktiven Oberflächen, wie z. B. Au(111) adsorbiert ist [122]. Die molekulare Dichte in der Q-Phase (6.99·10\(^{13}\) cm\(^{-2}\)) ist etwa 16% geringer als die molekulare Dichte in der (102)-Ebene der β-Phase von PTCDA-Volumenkristallen (8.32·10\(^{13}\) cm\(^{-2}\)). Die Kommensurabilität in Verbindung mit der geringeren Dichte der Q-Phase deutet darauf hin, dass ebenso wie auf KCl(100)
starke Wechselwirkungen zwischen PTCDA-Molekülen und dem Alkalihalidfilm vorliegen.

6.2.2. Die metastabile HB*-Phase

Zusätzlich zur stabilen Q-Phase konnte für PTCDA auf dünnen NaCl-Filmen die Ausbildung einer weiteren Monolagenstruktur erreicht werden, die im Gegensatz zur Q-Phase nur metastabil ist. Die hierfür notwendigen Präparationsbedingungen bestehen aus Aufdampfen bei niedriger Substrattemperatur von 100 K oder weniger und anschließendem schrittweisem Tempern bei Temperaturen oberhalb von 200 K.

LEED-Profile eines solchen Experiments sind in Abbildung 6.5 gezeigt. Für dieses Experiment wurden 0.7 ML PTCDA bei 100 K aufgedampft. Abbildung 6.5 zeigt radiale Reflexprofile entlang der [10] und der [11]-Richtung des Substrats, die direkt nach dem Aufdampfen (a,f) und nach zusätzlichen Temperschritten gemessen wurden ((b) – (e) und (g) – (k)). Die experimentellen Details der Temperschritte sind in der Abbildungsbeschriftung gegeben.

Abbildung 6.5: Radiale LEED-Profile eines 0.7 ML dicken PTCDA-Films. Die Profile (a) bis (e) wurden entlang der [10]- und die Profile (f) bis (k) entlang der [11]-Richtung des Substrats gemessen. Die Profile (a) und (e) wurden direkt nach dem Aufdampfen bei einer Substrattemperatur von 100 K gemessen. Die übrigen Profile zeigen die Entwicklung bei anschließenden Temperschritten. Im Detail: (b) und (g) nach Temperm für 10 min bei 200 K, (c) und (h) nach zusätzlichen Tempern bei 270 K für 15 min, (d) und (i) nach zusätzlichen Tempern bei 270 K für 10 min und bei 285 K für 10 min und (e) und (k) nach zusätzlichen Tempem bei 285 K für 30 min und bei 300 K für 20 min. Die Profile wurden vertikal gegeneinander verschoben. Die grauen Kurven zeigen individuelle Peaks, die an die Daten angepasst wurden. Die vertikalen Linien markieren Reflexpositionen, die der Q-Phase (gestrichelt) und der HB*-Phase (gepunktet) zugeordnet wurden.
Direkt nach dem Aufdampfen, können nur schwache und sehr breite Beugungsreflexe beobachtet werden. Dies zeigt, dass bei 100 K die Mobilität von PTCDA auf der NaCl(100)-Oberfläche zu gering ist, um langreichweite Ordnung zu erzielen. Wie die Beugungsreflexe in den Profilen (b) und (g) zeigen, führt Tempern bei 200 K zum Ordnen der PTCDA-Moleküle und der Ausbildung von geordneten PTCDA-Domänen. Die starke Asymmetrie der Beugungsreflexe in Profil (g) zeigt, dass sich sowohl Domänen der Q-Phase als auch Domänen einer weiteren Phase ausgebildet haben. Der Beitrag dieser weiteren Phase, die im Folgenden als HB*-Phase bezeichnet wird, überwiegt dabei.

Tempern der Probe bei Temperaturen zwischen 270 K und 300 K verbessert die strukturelle Ordnung und die Reflexe der Q-Phase und der HB*-Phase können eindeutig identifiziert werden (vgl. Profile (c) und (h)). Bei weiterem Tempern wächst der Anteil der Q-Phase auf Kosten der HB*-Phase an. Nach einer Reihe von weiteren Temperschritten ist der relative Anteil der HB*-Phase dadurch stark reduziert, wie man in den Profilen (e) und (k) erkennen kann.

Das bedeutet, dass die HB*-Phase nur eine metastabile Phase ist, die sich ausbildet, wenn die Moleküle sich in der ersten Monolage ordnen. Die HB*-Phase koexistiert mit der Q-Phase, welche die stablste Monolagenphase ist. Wenn beide Phasen vorliegen, ist die Domänengröße beider Phasen relativ klein. Aus der vollen Halbwertsbreite der LEED-Profile kann man eine Domänengröße von etwa 50 bis 100 Å abschätzen.

Über die LEED-Profile konnte das Verhältnis, in dem die beiden Phasen vorliegen, im Rahmen der vorliegenden Arbeit nicht bestimmt werden, da dies eine exakte Kenntnis der Basen der beiden Phasen sowie eine Behandlung innerhalb der dynamischen Theorie der Elektronenbeugung voraussetzen würde [31]. Fluoreszenzdaten (vgl. Abschnitt 7.3.1) deuten auf einen maximalen Anteil der HB*-Phase von etwa 75% hin.

In Verlauf des Tempers werden die Reflexe der Q-Phase intensiver und schärfer. In Abbildung 6.5 kann eine Verringerung der FWHM der (2,0) und (2,2)-Reflexe der Q-Phase um etwa einen Faktor 2 zwischen den Profilen b/g und e/k festgestellt werden. Für den (1,1)-Reflex der Q-Phase ist ebenso eine Verschmälerung zu beobachten, aber aufgrund der Überlagerung mit den (1,1)-Reflexen der HB*-Phase ist eine zuverlässige Quantifizierung hier nicht möglich.

Zusammenfassend lässt sich feststellen, dass ausgehend von einer ungeordneten Phase sich zunächst die HB*-Phase gleichzeitig mit der Q-Phase bildet, wobei der Anteil der HB*-Phase überwiegt. Die HB*-Phase verschwindet schrittweise, sobald stärkere molekulare Diffusion ermöglicht wird. Diese führt dann zur Ausbildung der stabileren Q-Phase. Die HB*-Phase existiert also nur als eine Übergangsphase unter Bedingungen, bei denen die Ordnung in der Q-Phase kinetisch limitiert ist. Dies ist konsistent mit der Tatsache, dass die strukturelle Ordnung in der HB*-Phase gering
ist, was aus den breiten LEED-Profilen und der Beobachtung von nur wenigen Reflexen (bis zu 5) niedriger Ordnung geschlossen werden kann.

Für sehr kleine Bedeckungen wie 0.15 ML wurde die Bildung der HB*-Phase nicht beobachtet. Stattdessen bildet sich ausgehend von einer ungeordneten Phase direkt die Q-Phase. Dies deutet darauf hin, dass eine hohe Oberflächenbedeckung, die eine große Anzahl von intermolekularer Kontakten mit sich bringt, essentiell für die Bildung der HB*-Phase ist.

Aus einer detaillierten Analyse der Reflexpositionen konnten die Gitterkonstanten der HB*-Phase bestimmt werden. Die Epitaxie zur NaCl-Oberfläche wird in der Matrixnotation durch folgende Gleichung beschrieben:

\[
\begin{pmatrix}
    f_1 \\
    f_2
\end{pmatrix} = \begin{pmatrix}
    3.58 \pm 0.04 & 3.58 \pm 0.04 \\
    -2.39 \pm 0.02 & 2.39 \pm 0.02
\end{pmatrix} \begin{pmatrix}
    b_1 \\
    b_2
\end{pmatrix}.
\]

Hierbei bezeichnen \(f_1\) und \(f_2\) die Basisvektoren der Überstruktur und \(b_1\) und \(b_2\) die Basisvektoren des NaCl-Substrats. Wie aus der Matrix direkt entnommen werden kann, ist die HB*-Phase im Gegensatz zur Q-Phase inkommensurabel. Die Elementarzelle der Überstruktur ist rechtwinklig und \(20.2 \times 13.5 \, \text{Å}^2\) groß. Die Abmessungen sind damit ähnlich zu den Abmessungen der Elementarzelle der (102)-Ebene beider Phasen von PTCDA-Volumenkristallen (vgl. Tabelle 6.1, S. 81).

Die (1,0) und (0,1)-Reflexe der HB*-Phase sind systematisch ausgelöscht, wie man in Abbildung 6.5 erkennen kann. Dies deutet auf Gleitspiegelebenen und die Symmetriegruppe p2gg hin, die der Symmetriegruppe der (102)-Ebene von PTCDA-Volumenkristallen entspricht.

Daraus kann geschlossen werden, dass eine Anordnung der Moleküle ähnlich wie in der (102)-Ebene von PTCDA-Volumenkristallen, vorliegt. In dieser Ebene sind die Moleküle in einem Fischgrät muster angeordnet. Diese Anordnung wird in der Literatur allgemein als „herringbone“ Anordnung (englisch für „Fischgrätenmuster“) bezeichnet, was die Benennung der Phase als HB*-Phase motivierte.

Ein Realraummodell der HB*-Phase ist in Abbildung 6.6 gezeigt. Der in dieser Abbildung gewählte Winkel zwischen den langen molekularen Achsen nicht translationsäquivalenter Moleküle beträgt 76°. Dies ist der Winkel, der auch in der β-Phase von PTCDA-Volumenkristallen vorliegt. Dieser Winkel wurde gewählt, da das Verhältnis der Basisvektoren der HB*-Phase (1.50) dem entsprechenden Wert der β-Phase (1.55) deutlicher näher kommt als dem Wert der α-Phase (1.67).

6.3. Diskussion zu PTCDA-Monolagen auf AH-Filmen

In der vorliegenden Arbeit wurde die Strukturbildung von PTCDA auf dünnen NaCl und KCl-Filmen in der Monolage untersucht. Auf NaCl(100) wurde eine kommensurable, quadratische Struktur mit zwei Molekülen in der Elementarzelle (Q-Phase), sowie eine inkommensurable Fischgrätenordnung (HB*-Phase) beobachtet. Auf KCl(100) wurde hingegen das Auftreten einer kommensurablen „Backstein“-Anordnung (BW-Phase) beobachtet. Interessanterweise konnte für PTCDA auf KBr(100) in der Literatur aufgrund von Entnetzung bislang keine Strukturbildung in der Monolage beobachtet werden [101].

In Tabelle 6.1 sind die strukturellen Parameter, der in der vorliegenden Arbeit beobachteten Monolagenphasen zusammengefasst. Zusätzlich sind auch die Parameter der (102)-Ebene der α- und der β-Phase von PTCDA-Volumenkristallen angegeben.
Da sich die oben angeführten Alkalihalogenide hinsichtlich ihrer Reaktivität stark ähneln, muss der Unterschied in der Strukturbildung von PTCDA auf den (100)-Oberflächen dieser Materialien durch Unterschiede in den Gitterkonstanten begründet sein ($a_{NaCl} = 3.99 \text{ Å}$, $a_{KCl} = 4.45 \text{ Å}$, $a_{KBr} = 4.67 \text{ Å}$ [147]).

<table>
<thead>
<tr>
<th>Tabelle 6.1: Strukturelle Parameter verschiedener PTCDA-Phasen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge der Basisvektoren (Å)</td>
</tr>
<tr>
<td>BW-Phase (kommens.)</td>
</tr>
<tr>
<td>Q-Phase (kommens.)</td>
</tr>
<tr>
<td>HB*-Phase (inkommens.)</td>
</tr>
<tr>
<td>(102)-Ebene der α-Phase [157,158]</td>
</tr>
<tr>
<td>(102)-Ebene der β-Phase [157,158]</td>
</tr>
<tr>
<td>$d_1=12.6$</td>
</tr>
<tr>
<td>$d_2=12.6$</td>
</tr>
<tr>
<td>$e_1=16.92$</td>
</tr>
<tr>
<td>$e_2=16.92$</td>
</tr>
<tr>
<td>$f_1=20.2 \pm 0.2$</td>
</tr>
<tr>
<td>$f_2=13.5 \pm 0.1$</td>
</tr>
<tr>
<td>19.91</td>
</tr>
<tr>
<td>11.96</td>
</tr>
<tr>
<td>19.30</td>
</tr>
<tr>
<td>12.45</td>
</tr>
<tr>
<td>158.76</td>
</tr>
<tr>
<td>286.29</td>
</tr>
<tr>
<td>272.70</td>
</tr>
<tr>
<td>238.12</td>
</tr>
<tr>
<td>240.29</td>
</tr>
<tr>
<td>90°</td>
</tr>
<tr>
<td>Fläche der Elementarzelle (Å$^2$)</td>
</tr>
<tr>
<td>158.76</td>
</tr>
<tr>
<td>143.14</td>
</tr>
<tr>
<td>136.35</td>
</tr>
<tr>
<td>119.06</td>
</tr>
<tr>
<td>120.14</td>
</tr>
<tr>
<td>158.76</td>
</tr>
<tr>
<td>238.12</td>
</tr>
<tr>
<td>240.29</td>
</tr>
<tr>
<td>119.06</td>
</tr>
<tr>
<td>120.14</td>
</tr>
<tr>
<td>Fläche pro Molekül (Å$^2$)</td>
</tr>
<tr>
<td>Moleküle in EZ</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>158.76</td>
</tr>
<tr>
<td>143.14</td>
</tr>
<tr>
<td>136.35</td>
</tr>
<tr>
<td>119.06</td>
</tr>
<tr>
<td>120.14</td>
</tr>
</tbody>
</table>

Für die Monolagenstrukturen von PTCDA auf NaCl/Ag(100) und KCl/Ag(100) können interessanterweise analoge Strukturmotive auch auf freien Silberoberflächen gefunden werden. Wie auf NaCl(100) so wächst die PTCDA-Monolage auch auf Ag(100) in einer kommensurablen, quadratischen Struktur auf, in der die Moleküle eine T-förmige Anordnung einnehmen. Die Elementarzelle der Struktur auf Ag(100) ist etwa 7% kleiner ($16.34 \times 16.34 \text{ Å}^2$).

Die „Backstein“ Anordnung, die auf KCl/Ag(100) beobachtet wurde, ist auch für die Monolage von PTCDA auf Ag(110) beobachtet worden [117]. Die zweizählige Symmetrie der „Backstein“ Struktur ist dabei allerdings im Fall von Ag(110) -im Gegensatz zu KCl(100)- bereits durch die Substratoberfläche vorgegeben. Durch die Übereinstimmung der Symmetrie gibt es daher in diesem System keine Rotationsdomänen. Ein weiterer Unterschied ist, dass die Elementarzelle auf Ag(110) nicht quadratisch ist und kürzere Gittervektoren aufweist ($γ=86.7°$, $11.92 \times 11.92 \text{ Å}^2$).

Neben diesen Gemeinsamkeiten in der strukturellen Anordnung der Moleküle gibt es jedoch einen entscheidenden Unterschied. Während die Monolagen auf beiden metallischen Silbersubstraten auch noch bei erhöhten Temperaturen stabil sind [117,124], findet auf NaCl(100) und KCl(100) bereits bei Raumtemperatur Entnetzung statt. Daraus kann gefolgert werden, dass die Adsorptionsenergie von PTCDA auf den metallischen Silbersubstraten deutlich größer ist, als auf den Alkalihalidoberflächen und dass die intermolekulare Bindungsenergie von PTCDA-Volumenkristallen größer ist als die Adsorptionsenergie der PTCDA-Monolagen auf den Alkalihalidoberflächen.

Für PTCDA auf KBr(100) ermöglicht die Gitterkonstante vermutlich keine Adsorptionsgeometrie mit günstigen elektrostatischen Wechselwirkungen, was zu einer geringen Adsorptionsenergie und folglich zu schneller Entnetzung und zur Bildung von Kristalliten führt [101].

Für die NaCl(100)-Oberfläche wurde neben der kommensurablen Q-Phase auch noch das Auftreten einer weiteren Monolagenstruktur (HB*-Phase) beobachtet, welches durch ein Zusammenspiel von Kinetik und Energetik verstanden werden kann. Auf Grund der günstigen, elektrostatischen Wechselwirkungen zwischen Substrat und Adsorbat ist in der Monolage die Q-Phase energetisch gegenüber der HB*-Phase bevorzugt. Diese Wechselwirkungen überwiegen die intermolekularen Wechselwirkungen, die die Fischgrätanordnung begünstigen würden. Die Fischgrätanordnung maximiert die intermolekulare Wechselwirkung insbesondere durch Bindungen, die ähnlich zu Wasserstoffbrückenbindungen sind, und zwischen den Anhydridgruppen und den Wasserstoffatomen des Perylengerüsts bestehen [123].

Wenn die HB*-Phase auftritt, überwiegen folglich die intermolekularen Wechselwirkungen, die diese Struktur begünstigen, die Adsorbat-Substrat-Wechselwirkungen, die die stabiler Q-Phase begünstigen. Dies zeigt, dass die Balance zwischen diesen beiden Wechselwirkungen in der Monolage sehr empfindlich ist.

Aufgrund der beobachteten Temperaturabhängigkeit kann spekuliert werden, dass die Bildung von langreichweitig geordneten Domänen der Q-Phase mehr kollektive Prozesse und möglicherweise auch die Überwindung einer höheren Aktivierungsenergie voraussetzt als dies für die Bildung der HB*-Phase der Fall ist. Daher erhält man ausgehend von einer ungeordneten Phase zunächst vorwiegend die HB*-Phase, allerdings nur als Übergangsphase. Dieses Szenario wird unterstützt durch die Tatsache, dass sich nur relativ kleine Domänen der HB*-Phase bilden. Die Präparation einer reinen HB*-Phase ist bislang nicht gelungen; man erhält immer einen Anteil an Q-Phase.

Im Folgenden werden die Ergebnisse der vorliegenden Arbeit zu PTCDA auf NaCl/Ag(100) kurz in Bezug auf die Ergebnisse von Burke et al., die PTCDA auf NaCl Volumenkristallen untersucht haben [95], diskutiert. Im Allgemeinen sind die
Ergebnisse miteinander vereinbar, aber die Ergebnisse der vorliegenden Arbeit gehen in einigen Punkten über die Ergebnisse von Burke et al. hinaus.

Zunächst wurde gefunden, dass die spontane Entnetzung der Monolagenphase bei Raumtemperatur ein temperaturabhängiger Prozess ist, der bei tiefen Temperaturen nicht auftritt. Im Gegensatz zu diesem temperaturinduzierten Entnetzen berichten Burke et al. von einer bedeckungsinduzierten Entnetzung [95].

In einer anderen Veröffentlichung berichten Burke et al. von der Bildung einer p(2×4) Überstruktur (11.28 Å × 22.56 Å) in monoatomaren Vertiefungen [112]. Die Vertiefungen wurden in die NaCl(100)-Oberfläche durch Ladungsbeschuss eingebracht und hatten eine rechteckige Form mit einer typischen Kantenlänge von 7 bis 15 nm. Die Elementarzelle dieser p(2×4) Struktur ist groß genug um den Raumanspruch flach liegender PTCDA-Moleküle zu erfüllen. Sie konnte allerdings im Rahmen der vorliegenden Arbeit nicht gefunden werden, möglicherweise weil sie nur in Vertiefungen existiert.


6.4. Wachstum von PTCDA-Multilagen auf NaCl

6.4.1. Struktur von PTCDA-Multilagen auf NaCl

Abbildung 6.7 zeigt zwei LEED-Bilder eines 2.7 ML dicken, bei 223 K gewachsenen PTCDA-Films. Das LEED-Bild in Abbildung 6.7 (a) wurde direkt nach dem Aufdampfen und anschließendem Kühlen auf ca. 140 K gemessen, während das LEED-Bild in Abbildung 6.7 (b) nach zusätzlichen Tempern (300 K, 72 Stunden) bei Raumtemperatur gemessen wurde. Zusätzlich zu den Reflexen der Q-Phase sind in Abbildung 6.7 (a) Reflexe einer inkommensurablen Überstruktur zu erkennen. Das Beugungsmuster dieser zusätzlichen Reflexe weist eine rechtwinklige Elementarzelle auf, deren Basisvektoren $g_1$ und $g_2$ parallel zu denen der Q-Phase ($e_1$ und $e_2$) sind. Aufgrund der rechtwinkligen Elementarzelle werden zwei Rotationsdomänen beobachtet, die zueinander um 90° gedreht sind.

Aus diesen zusätzlichen Reflexen kann man schlussfolgern, dass PTCDA ab der zweiten Lage in einer anderen lateralen Packungsanordnung über der ersten Lage aufwächst. Für die Tatsache, dass in Abbildung 6.7 (a) trotz der hohen Filmdicke weiterhin Reflexe der Q-Phase zu beobachten sind, können zwei mögliche Erklärungen angeführt werden. Aufgrund von Stranski-Krastanov-Wachstum können noch Teile der ersten Monolage unbedeckt sein. Zusätzlich ist auch denkbar, dass die Struktur der ersten Lage beim Aufwachsen von weiteren Lagen erhalten bleibt und
Elektronen, die durch die oberen Lagen dringen an der ersten Monolage gestreut werden.

\[ \text{Abbildung 6.7: LEED-Bilder eines Multilagenfilms PTCDA mit einer Dicke von etwa 2.7 ML gemessen mit } E=34 \text{ eV. Der Film wurde auf einem 10 ML dicken NaCl-Film bei 223 K aufgewachsen. (a) LEED-Bild direkt nach dem Aufwachsen gemessen bei } T=140 \text{ K. (b) nach Tempern bei 300 K für 72 h, gemessen bei } T=300 \text{ K. In den überlagerten Simulationen der LEED-Bilder werden Reflexe der Q-Phase durch rote Punkte und Reflexe der Multilagen Phase durch blaue Kreise dargestellt.} \]

Unter der Annahme perfekter Kommensurabilität der Q-Phase können die Beugungsreflexe dieser Phase als interne Referenz für eine hochgenaue Bestimmung der Gitterparameter der Multilagenphase benutzt werden. Abbildung 6.8 zeigt radiale LEED-Profile entlang der \([1\bar{1}]\)-Richtung vor (schwarz) und nach dem Tempern (blau). Die Profile wurden an denselben Proben und unter denselben experimentellen Bedingungen gemessen wie die LEED-Bilder der Abbildung 6.7. Entlang dieser Richtung werden sowohl Reflexe der Q-Phase als auch Multilagenreflexe beobachtet. Ihre Positionen wurden durch Anpassung von Lorentzkurven bestimmt. Die dadurch bestimmte rechtwinklige Elementarzelle weist die folgenden Parameter auf: \( g_1 = 19.69 \pm 0.04 \text{ Å, } g_2 = 12.23 \pm 0.03 \text{ Å. } \) Die Gitterkonstanten der Multilagenphase unterscheiden sich damit leicht von denen der HB*-Monolagenphase. Die Elementarzelle der HB*-Phase ist etwa 12% größer als die Elementarzelle der Multilagenphase. Dieser Unterschied könnte durch die Wechselwirkung mit dem NaCl-Substrat oder die fehlende Wechselwirkung mit weiteren PTCDA-Lagen zustande kommen.
Abbildung 6.8: Radiale LEED-Profile entlang der \([1\bar{1}]\)-Richtung des Films von Abbildung 6.7 (a) (schwarz) und (b) (blau) gemessen bei \(E=34\) eV. Entlang dieser Richtung können Beugungsreflexe der kommensurablen Q-Phase und der inkommensurablen Multilagenphase detektiert werden. Die genauen Positionen der Reflexe wurden durch Anpassung von Lorentzfunktionen bestimmt (grün, Summe: rot).

In der Matrixnotation wird die Beziehung der Elementarzelle der Multilagenphase zur Substrateinheitszelle durch folgende Formel beschrieben:

\[
\begin{pmatrix}
g_1 \\ g_2
\end{pmatrix} = \begin{pmatrix}
3.491 \pm 0.007 & 3.491 \pm 0.007 \\
2.168 \pm 0.005 & 2.168 \pm 0.005
\end{pmatrix} \begin{pmatrix}
b_1 \\ b_2
\end{pmatrix}
\]

mit

\[
g_1 = 3.491 \pm 0.007 \quad \text{und} \quad g_2 = 2.168 \pm 0.005
\]

in der \(g_1\) und \(g_2\) die Basisvektoren der Multilagenphase und \(b_1\) und \(b_2\) die Basisvektoren der NaCl-Substratoberfläche sind.

Die Länge und Breite der Elementarzelle der Multilagenphase ist sehr ähnlich, aber nicht identisch zu der Elementarzelle der (102)-Ebene der \(\beta\)-Phase (19.30 Å \(\times\) 12.45 Å) und der \(\alpha\)-Phase (19.91 Å \(\times\) 11.96 Å) von PTCDA-Volumenkristallen [157]. Die Fläche der Elementarzelle von 241 \pm 1 Å stimmt hingegen innerhalb des Fehlers mit der Fläche der Elementarzelle der (102)-Ebene von PTCDA-Volumenkristallen der \(\beta\)-Phase (240.3 Å) überein. Die zu diesen Elementarzellen gehörige molekulare Dichte ist \(8.3 \cdot 10^{13}\) cm\(^{-2}\). Daher erscheint es plausibel, dass die Moleküle in einer Fischgrätenordnung angeordnet sind, die sehr ähnlich zu der in der
(102)-Ebene von PTCDA-Volumenkristallen ist. Im Folgenden wird daher die Multilagenstruktur als HB-Phase bezeichnet. Ein Realraummodell einer Schicht der HB-Phase ist in Abbildung 6.9 gezeigt. Die HB-Phase unterscheidet sich von der p(2×3) Struktur die von Burke et al. vorgeschlagen wurde [95] und die eine kleinere Einheitszelle aufweist.


In der (102)-Ebene von PTCDA-Volumenkristallen und im Realraummodell der Abbildung 6.9 weist die Fischgrätanordnung zwei Gleitspiegelebenen auf (Symmetriegruppe p2gg). Daher wird systematische Auslöschung von (n,0) und (0,k)-Reflexen (n und k sind gerade) erwartet. Diese Reflexe sind mit Kreuzen in Abbildung 6.7 (a) markiert. Im Widerspruch zu dieser Erwartung können im LEED-Bild der Abbildung 6.7 (a) aber (0,1) und (1,0)-Reflexe der HB-Phase beobachtet werden. Dies kann entweder durch Mehrfachstreuereffekte unter Beteiligung der darunterliegenden PTCDA-Lagen und/oder durch eine Abweichung von der p2gg Symmetrie zustande kommen. Die gleichen Reflexe der HB*-Monolagenphase sind im Gegensatz dazu systematisch ausgelöscht. Dass HB und HB* zwei unterschiedliche Phasen sind, kann auch direkt im Profil (k) der Abbildung 6.5 erkannt werden. In diesem Profil können schwach die (1,0) und (0,1)-Reflexe der HB-Phase beobachtet werden, wohingegen der (2,0)-Reflex der HB*-Phase nicht mehr sichtbar ist. Zudem wird in Abschnitt 7.3 gezeigt werden, dass das Fluoreszenzspektrum der HB*-Phase typisch für eine Monolagenphase von PTCDA ist und sich stark vom FL-Spektrum
der HB-Phase, das bereits in Abschnitt 3.3 gezeigt wurde, unterscheidet. Die optische Spektroskopie liefert damit einen unabhängigen Hinweis darauf, dass die HB*-Phase eine Monolagenphase ist.

6.4.2. Thermische Stabilität von PTCDA-Multilagen auf NaCl

Wie bereits Abbildung 6.7 und Abbildung 6.8 entnommen werden konnte, führt ein Tempen der PTCDA-Filme zu einem Verblenden der Beugungsbilder. Aus einem Vergleich der LEED-Bilder vor und nach dem Tempen kann auf einen strukturellen Phasenübergang geschlossen werden. Dieser Phasenübergang wird im Folgenden mit der Entnetzung bei Raumtemperatur verglichen, die von Burke et al. geschildert wurde [95].

Direkt nach dem Wachstum von PTCDA bei 223 K wird das LEED-Bild durch die intensiven <2,0> und <1,1>-Reflexe der Q und der HB-Phase dominiert (vgl. Abbildung 6.7 (a)). Die <2,0>-Reflexe beider Strukturen weisen dabei etwa dieselbe Intensität auf. Nach Tempen bei 300 K für 72 Stunden sind nur noch Reflexe der HB-Phase detektierbar. Zusätzlich kann festgestellt werden, dass die Intensität des (1,0)-Reflexes des NaCl-Films, die vor dem Tempen nahezu komplett gedämpft war, nach dem Tempen um einige Größenordnungen zugenommen hat (vgl. Abbildung 6.7 (b)). Diese Ergebnisse können nur als ein Entnetzen des Substrats während des Tempens interpretiert werden, da Desorption von PTCDA bei der verwendeten Temperatur ausgeschlossen werden kann.

Vor dem Tempen liegen Lagen mit Fischgrätanordnung auf der geschlossenen ersten Monolage vor. Nach dem Tempen haben sich hingegen Multilageninseln (Kristallite) mit Fischgrätanordnung gebildet, zwischen denen freie NaCl-Oberfläche vorliegt. Wegen ihrer geringen Oberflächenbedeckung führen diese Kristallite nur zu sehr schwachen LEED-Reflexen. Aufgrund der vorliegenden Daten ist es nicht möglich zu unterscheiden, ob die erste Monolage unter den Multilageninseln sich weiterhin in der Anordnung der Q-Phase befindet oder während des Entnetzens einem Phasenübergang in die Fischgrätanordnung unterliegt.

6.4.3. Wachstumsmodus von PTCDA-Multilagen auf NaCl

Abbildung 6.10 zeigt radiale LEED-Profile von PTCDA-Filmen einer nominellen Schichtdicke zwischen 0.14 ML und 1.85 ML. Alle Filme wurden bei 223 K gewachsen und alle Profile wurden entlang der [10]-Richtung (vgl. Abbildung 6.7) nach Kühlen auf 130 K gemessen.

Unter Berücksichtigung der molekularen Flächendichte der Q und der HB-Phase würde ein ideales Frank-van-der-Merwe-Wachstum (Lage-für-Lage-Wachstum) bei 0.85 ML zu einer geschlossenen ersten Monolage der Q-Phase und bei 1.85 ML zu zwei geschlossenen Lagen (Q-Phase und HB-Phase) führen. (Hierbei ist 1 ML auf Grundlage der Dichte in der HB-Phase definiert). In Abbildung 6.10 können folgende Beobachtungen gemacht werden:


(2) Es gibt keine Anzeichen für ein Entnetzen nach Vervollständigung der ersten Monolage bei 0.85 ML. Für diesen Fall würde nämlich ein starker Anstieg der Intensität der NaCl<1,0>-Reflexe erwartet werden.

(3) Die Intensität der Reflexe der Q-Phase nimmt bis zu einer Bedeckung von 0.85 ML zu. Bei größeren Bedeckungen nimmt die Intensität wieder ab. Dies ist vereinbar mit einem Wachstumsmodus, bei dem die HB-Phase über einer ersten Monolage, die in der Q-Phase vorliegt, aufwächst und dadurch die Intensität der Elektronen, die von der ersten Monolage gestreut werden, abschwächt. Im Gegensatz dazu ist jedoch auch ein struktureller Phasenübergang der „bedeckten“ Monolage von der Q-Phase in die HB-Phase auf Grundlage der vorliegenden Daten nicht auszuschließen. In diesem Fall wäre die Intensität der Reflexe der Q-Phase auf unbedeckte Fläche der ersten Monolage zurückzuführen. Eine eindeutige Unterscheidung zwischen diesen beiden Fällen ist schwierig. Man kann jedoch erwarten, dass ein Phasenübergang der Monolage von der Q- in die HB-Phase Unordnung in der zweiten Lage und höheren Lagen induzieren würde. Diese sollte sich als Verbreiterung in den LEED-Reflexen niederschlagen. Da eine solche Verbreiterung nicht beobachtet wurde, erscheint das erste Wachstumsszenario in dem kein Phasenübergang von der Q-Phase in die HB-Phase stattfindet, sondern die Q-Phase in der ersten Monolage erhalten bleibt, als der wahrscheinlichere Fall. Die Bildung von anderen geordneten Strukturen als der Q und der HB-Phase, z. B. der p(2×3) Struktur, die von Burke et al. vorgeschlagen wurde, kann hingegen ausgeschlossen werden. Diese Strukturen würden nämlich zu zusätzlichen Beugungsreflexen, die von der bedeckten ersten Monolage herrühren, führen. Solche Reflexe wurden jedoch nicht beobachtet.
Abbildung 6.10: Radiale LEED-Profile von PTCDA-Filmen unterschiedlicher Dicke entlang der [10]-Richtung. Die Filme wurden bei 223 K auf einen 10 ML dicken NaCl-Film aufgewachsen. Die Profile wurden bei 130 K und E=34 eV gemessen.

(4) Zwischen den <1,1>- und <2,2>-Reflexen der Q-Phase kann ein kleiner zusätzlicher Reflex beobachtet werden. Für Schichtdicken unterhalb von 0.85 ML ist dieser Reflex der (2,0)-Reflex von Domänen der Q-Phase, die auf 45° gedrehten NaCl-Domänen aufgewachsen sind. Dieser Reflex liegt bei $k_\parallel = 0.74 \, \text{Å}^{-1}$ entlang der [10]-
6.5 Diskussion zum Wachstum von PTCDA-Multilagen

Da, wie weiter oben beschrieben, das thermodynamische Minimum von PTCDA auf NaCl(100) durch Entnetzung und Bildung von Kristalliten erreicht wird, ist die Beobachtung von Multilagenwachstum auf NaCl(100) bei tiefer Temperatur auf kinetische Hemmung, die die spontane Entnetzung verhindert, zurückzuführen.

Die Wechselwirkung zwischen den PTCDA-Molekülen in der Monolage und der zweiten Lage ist offensichtlich zu schwach um die quadratische Ordnung der Q-Phase in die zweite Lage zu transferieren. Diese wächst folglich unter Maximierung der intermolekularen Wechselwirkungen in einer Fischgrätanordnung auf. Allerdings sind die Richtungen der Basisvektoren der Einheitszellen der Monolage und der zweiten Lage identisch, was auf eine Minimierung der Grenzflächenenergie zwischen diesen beiden Lagen hindeutet.


Interessanterweise wächst auf dem reinen Ag(100)-Substrat die zweite PTCDA-Lage ebenfalls in einer Fischgrätanordnung auf [124]. Die Elementarzelle der zweiten Lage von PTCDA auf Ag(100) und von PTCDA auf NaCl/Ag(100) weisen nahezu identische Gitterparameter auf (PTCDA/Ag(100): 19.8 × 12.2 Å², PTCDA/NaCl: 19.7 × 12.2 Å²). Für PTCDA auf Ag(100) konnte mit Hilfe von STM-Messungen gezeigt werden, dass die T-förmige Anordnung der Moleküle in der Monolage auch beim Aufwachsen einer zweiten Lage erhalten bleibt [124]. Nimmt man an, dass dieses Szenario auch für PTCDA auf NaCl zutrifft, so ist die Versetzungsebene, in der die laterale Ordnung in die Anordnung aus den Volumenkristallen relaxiert, in beiden Systemen zwischen der Monolage und der zweiten Lage lokalisiert.

Von Burke et al. wurde auf der Grundlage von Molekularmechanikberechnungen vorgeschlagen, dass die Q-Phase nicht intakt von einer zweiten Lage überwachsen werden kann, sondern ein Phasenübergang in eine p(2×3) Struktur (11.28 Å × 16.92 Å) stattfindet, sobald die Monolage von einer zweiten Lage PTCDA bedeckt wird [95]. Auf Grundlage der in der vorliegenden Arbeit gewonnen Daten,
kann dieser Phasenübergang nicht bestätigt werden. Wie oben bereits angeführt, würde er zu zusätzlichen Beugungsreflexen führen, die aber nicht beobachtet wurden. Bemerkenswerterweise ist die p(2\times3) Struktur entlang der langen Achse gegenüber den Volumenphasen von PTCDA deutlich gestaucht (~16% für die α-, 13% für die β-Phase). Dies führt zu einer deutlich kleineren Elementarzelle, deren Fläche nur etwa 80% der Elementarzelle der HB-Phase beträgt. Dies bedingt eine gekippte, nicht-planare Anordnung der PTCDA-Moleküle [95]. Diese Anordnung erscheint ungünstig, da sie zu einer deutlichen Verringerung der Wechselwirkungsenergie zwischen Adsorbat und Substrat führen würde. Der einzige Phasenübergang der „begrabenen“ Monolage, der mit den Daten der vorliegenden Arbeit vereinbar wäre, wäre ein Phasenübergang von der Q-Phase in die HB-Phase. Jede andere Struktur würde zu entsprechenden LEED-Reflexen führen, die aber nicht beobachtet wurden.

Dickere Filme von PTCDA auf NaCl(100) wurden in der Vergangenheit bereits von mehreren Gruppen untersucht [125,158]. Diese zeigen die Anwesenheit von azimutal ausgerichteten Nanokristalliten. Auf Grundlage der in der vorliegenden Arbeit geschilderten HB-Phase lassen sich diese Orientierungen allerdings nicht verstehen. Möglicherweise spielen für die Orientierung dieser Nanokristallite Oberflächendefekte, z. B. Stufen, eine wichtige Rolle.
6.5 Diskussion zum Wachstum von PTCDA-Multilagen
7. Optische Eigenschaften der PTCDA-Phasen

Die verschiedenen strukturellen Phasen von PTCDA auf Isolatorfilmen, die in Kapitel 6 vorgestellt wurden, wurden nicht nur strukturell, sondern auch im Hinblick auf ihre optischen Eigenschaften untersucht. Die Ergebnisse dieser spektroskopischen Untersuchungen werden in diesem Kapitel präsentiert und diskutiert.

Die Darstellung gliedert sich dabei in fünf Teile: In Abschnitt 7.1 werden die Ergebnisse der Spektroskopie räumlich weit voneinander entfernter und damit vereinzelter PTCDA-Moleküle auf Festkörperoberflächen dargestellt. In dieser Situation kann die Wechselwirkung der Moleküle untereinander vernachlässigt werden, so dass sich die Polarisationswechselwirkung \( D \) aus Gleichung 2.23 auf die Wechselwirkung mit dem Substrat, \( D_{\text{sub}} \), reduziert. Die Kenntnis von \( D_{\text{sub}} \) ermöglicht dann später in Abschnitt 7.3 die Polarisationswechselwirkung mit der molekularen Nachbarschaft, \( D_{\text{mol}} \), zu quantifizieren.

Abschnitt 7.2 enthält Ergebnisse polarisationsabhängiger Spektroskopie an vereinzelt Molekülen und an Monolagen von PTCDA auf KCl. Die polarisationsabhängige Spektroskopie erlaubt dabei die Bestimmung der molekularen Orientierung auf der Oberfläche, welche sowohl für die Interpretation der Ergebnisse aus Abschnitt 7.1 als auch aus Abschnitt 7.3 von Bedeutung ist.

Die Spektroskopie von PTCDA-Monolagen wird danach in Abschnitt 7.3 und 7.4 behandelt. Die Zielsetzung von Abschnitt 7.3 ist dabei insbesondere Zusammenhänge zwischen den strukturellen und den optischen Eigenschaften aufzuzeigen und die energetischen Verschiebungen der Spektren der Monolagen zu analysieren. Im Fokus des Abschnitts 7.4 steht hingegen eine detaillierte Analyse der Form der Spektren einer organischen Monolage. Es beschränkt sich dabei auf die Spektren von PTCDA auf KCl.

7.1. Vereinzelte Moleküle – d- und d’-Phase

Zusätzlich zur Spektroskopie an den in Kapitel 6 bereits vorgestellten Monolagenphasen wurden auch Phasen von vereinzelten PTCDA-Molekülen auf dünnen Alkalihalogenidfilmen spektroskopiert. Im Folgenden wird eine solche „verdünnte“ Phase von PTCDA auf NaCl als d-Phase und von PTCDA auf KCl als d’-Phase bezeichnet. Diese Phasen eignen sich in idealer Weise als Referenz für die Monolagenphasen, weshalb nun zunächst die für diese Phasen erhaltenen Ergebnisse dargestellt werden.

Die verdünnten Phasen wurden durch Aufdampfen einer sehr geringen Menge von PTCDA auf die Alkalihalogenidfilme präpariert. Die resultierende Bedeckung betrug weniger als 1% einer Monolage und die Substrattemperatur während des Aufdampfens betrug 20 K. Aus den spektroskopischen Ergebnissen dieses Abschnitts und des Abschnitts 7.3 kann man schlussfolgern, dass diese Substrattemperatur niedrig genug ist, um Diffusion und damit Aggregation der Moleküle zu verhindern. Aus den
Vereinzelte Moleküle – d- und d'-Phase

Präparationsbedingungen resultierte daher, dass die Moleküle in den verdünnten Phasen statistisch über die Oberfläche verteilt sind. Der mittlere Abstand der Moleküle betrug dabei etwa 120 Å. Für diese großen Abstände können Wechselwirkungen zwischen den Molekülen vernachlässigt werden. Die Spektroskopie verdünnter Phasen ist daher die Spektroskopie vereinzelter Moleküle (Monomere), die auf einer Alkalihalidoberfläche adsorbiert sind. In den hier beschriebenen Experimenten wurde die Fluoreszenz auf einer Substratfläche von etwa $10^4 \mu m^2$ detektiert, dies entspricht $10^7$ Molekülen. Die kleinstmögliche Anregungsfläche kann über das Beugungslimit zu etwa $(500 \text{ nm})^2=0.25 \mu m^2$ abgeschätzt werden. Selbst innerhalb dieser Fläche befanden sich noch etwa 250 Moleküle. Daher ist in jedem Fall gewährleistet, dass die spektroskopischen Messungen statistische Mittelwerte von Monomeren auf der jeweiligen Alkalihalogenidoberfläche liefern.

7.1.1. Allgemeine Aspekte der Spektren vereinzelter PTCDA-Moleküle

Abbildung 7.1 zeigt FL- und FLE-Spektren von PTCDA-Monomeren auf NaCl (d-Phase, oben) und auf KCl (d'-Phase, mitte), die bei 20 K gemessen wurden. Alle Spektren werden durch die 0-0-Übergänge dominiert und weisen aufgelöste vibronische Moden auf. Für die d'-Phase befindet sich der 0-0-Übergang bei 20000 cm$^{-1}$ und es war keine Stokes-Verschiebung messbar. Der 0-0-Übergang der d-Phase liegt dazu rotverschoben bei 19680 cm$^{-1}$ und es konnte hier eine Stokes-Verschiebung von 30 cm$^{-1}$ gemessen werden. Mit zunehmender Beleuchtungsdauer verschiebt der 0-0-Übergang der d'-Phase innerhalb von einigen Minuten um bis zu 20 cm$^{-1}$ zu höherer Energie, für den 0-0-Übergang der d-Phase konnte ein solcher Effekt hingegen nicht festgestellt werden. In der vorliegenden Arbeit wurde auf eine detaillierte Analyse dieser sehr kleinen Verschiebung verzichtet [159]; deutliche Auswirkungen auf Form oder Intensität der Spektren können aber ausgeschlossen werden. Experimentell konnte der Effekt durch Verwendung geringstmöglichster Bestrahlungsintensitäten minimiert, aber nicht vollständig verhindert werden. Alle bei der Diskussion der Spektren in diesem Abschnitt getroffenen Aussagen beziehen sich auf „unverschobene“ Spektren.

Die Spektren der PTCDA-Monomere weisen eine Vielzahl sehr scharfer Strukturen auf. Für die Halbwertsbreite des 0-0-Übergangs wurde in den FLE-Spektren beider Phasen Werte von $27\pm1 \text{ cm}^{-1}$ ermittelt. Die Halbwertsbreite des 0-0-Übergangs in den FL-Spektren betrug minimal $20\pm1 \text{ cm}^{-1}$ für die d'-Phase und $80\pm2 \text{ cm}^{-1}$ für die d-Phase. Die Fehler der Halbwertsbreiten wurden dabei auf Grundlage der Vertrauensintervalle bei Anpassung von Gaß-Funktionen abgeschätzt. Abbildung 7.1 zeigt allerdings ein FL-Spektrum der d'-Phase, das bereits durch die Auflösung des Gitters begrenzt ist und daher deutlich breiter erscheint. Für die deutlich größere Halbwertsbreite des 0-0-Übergangs im FL-Spektrum der d-Phase gibt es zwei Ursachen. Erstens wurde im entsprechenden Experiment ein Gitter mit geringer Auflösung als im Fall der d'-Phase verwendet. Zweitens weisen die verschiedenen Peaks im Spekt-
rum von PTCDA auf NaCl eine Aufspaltung auf, die später noch diskutiert wird und die zu einer zusätzlichen Verbreiterung führt.

Wie man in Abbildung 7.1 erkennen kann, sind sich die vibronischen Signaturen der Spektren auf den ersten Blick sehr ähnlich. Daraus kann man schließen, dass die Geometrien der Moleküle auf den beiden Oberflächen sich nicht stark unterscheiden und damit auch eine ähnliche Bindungssituation auf beiden Oberflächen vorliegt und dass die An- und Abregungskanäle in beiden Fällen identisch sind. Aufgrund der hohen chemischen Ähnlichkeit der beiden Oberflächen sind diese vielen Gemeinsamkeiten nicht überraschend.

Abbildung 7.1: FL- (schwarz) und FLE-Spektren (rot) von PTCDA-Monomeren. Oben: PTCDA auf NaCl, gemessen bei 20 K, \( \lambda_{\text{exc}}=457.9 \) nm, \( \lambda_{\text{det}}=543 \) nm. Der spektrale Bereich des FLE-Spektrums ist deutlich kleiner als im entsprechenden Experiment auf KCl, da er durch den in diesem Experiment verwendeten Laserfarbstoff (Coumarin 515) begrenzt war. Mitte: PTCDA auf KCl, gemessen bei 20 K, \( \lambda_{\text{exc}}=465 \) nm, \( \lambda_{\text{det}}=534 \) nm. Unten: PTCDA in Helium-Nanotröpfchen. Diese Daten sind aus [130,131] entnommen.

Vergleicht man nun die Spektren der d- und der d'-Phase mit Spektren von PTCDA-Monomeren, die nicht auf einem Festkörpersubstrat adsorbiert waren, so kann man herausfinden, ob die Molekülgeometrie durch den Einfluss der Substratoberflächen gegenüber einem freien PTCDA-Molekül verändert ist und inwiefern die Substratoberfläche die optischen Eigenschaften des Moleküls verändert. PTCDA-Monomere
liegen bei hinreichender Verdünnung auch in organischen Lösungsmitteln vor. Aufgrund der Lösungsmittelverschiebung und der großen inhomogenen Verbreiterung eignen sich Lösungsmittelspektren aber nicht als Referenz. Optimal wären PTCDA-Gasphasenspektren, die in der Literatur aber nicht verzeichnet sind. Aufgrund der geringen Polarisierbarkeit von Helium sind Spektren von einzelnen Molekülen in Helium-Nanotröpfchen Gasphasenspektren sehr ähnlich. Solche Spektren wurden in der Gruppe von Prof. Dr. F. Stienkemeier bereits gemessen [130,131]; sie sind in Abbildung 7.1 (unten) wiedergegeben. Gegenüber diesen Spektren sind die Spektren der verdünnten Phasen auf den Alkalihalogenidfilmen um 980 cm⁻¹ (d'-Phase) und 1300 cm⁻¹ (d-Phase) zu niedrigerer Energie verschoben. Diese Verschiebungen können analog zu solvatochromen Verschiebungen, die für Moleküle in verschiedenen Lösungsmitteln beobachtet werden, interpretiert werden. Solvatochrome Verschiebungen beruhen auf der unterschiedlichen Stabilisierung des Grund- und des angeregten Zustands eines Moleküls durch die Solvathülle [40,160]. Für eine Vielzahl von Molekülen konnte gezeigt werden, dass die solvatochrome Verschiebung mit steigendem Brechungsindex des Lösungsmittels ansteigt [161,162]. Dieser Trend gilt auch für die verdünnten PTCDA-Phasen, da der Brechungsindex von KCl (1.496 bei 508.6 nm [163]) kleiner ist als der Brechungsindex von NaCl (1.552 bei 500 nm [163]). Für Moleküle in Lösung ist häufig eine quantitative Beschreibung auf Grundlage eines linearen Verschiebungsgesetzes mit einer Steigung proportional zu

\[ \phi(n^2) = \frac{n^2 - 1}{n^2 + 2} \]  


Abbildung 7.2: FL-Spektren von PTCDA-Monomeren in verschiedenen Umgebungen (schwarz) sowie Ausschnitte der entsprechenden gespiegelten FLE-Spektren (rot). Unten: PTCDA in Helium-Tröpfchen. Aus [130, 131]. Mitte: PTCDA auf KCl/Ag(100) (T=20 K, \( \lambda_{\text{exc}} = 457.9 \) nm, \( \lambda_{\text{det}} = 534 \) nm). Oben: PTCDA auf NaCl/Ag(100) (T=20 K, \( \lambda_{\text{exc}} = 476 \) nm). Die grauen vertikalen Linien markieren Verschiebungen von Vibrationsbanden zwischen PTCDA-Molekülen in der d'-Phase und in Helium-Tröpfchen. Die Pfeile oberhalb des Spektrums der d-Phase markieren Paare von Banden, die etwa 30 cm\(^{-1}\) voneinander entfernt sind.
Ein detaillierter Vergleich der vibronischen Struktur von PTCDA in Helium-Tröpfchen und auf den Alkalihalidoberflächen zeigt jedoch auch Unterschiede auf. Im verwendeten experimentellen Aufbau ist die Messgenauigkeit von Schwingungsfrequenzen für die FLE-Spektren geringer als für die FL-Spektren. Der experimentelle Schwachpunkt ist dabei die Kalibration der Anregungswellenlänge ($\lambda_{exc}$) des Farbstofflasers und ihre Reproduktionsgenauigkeit. Aufgrund der höheren Genauigkeit beschränkt sich die folgende Beschreibung daher auf die vibronische Signatur der FL-Spektren.

Abbildung 7.2 zeigt einen Ausschnitt der Fluoreszenzspektren von PTCDA in Helium-Tröpfchen, auf KCl (d'-Phase) und auf NaCl (d-Phase). Auffälligster Unterschied der Spektren von PTCDA auf den Alkalihalogenidfilmen zu denen in Helium-Tröpfchen ist, dass die ersteren Spektren eine zusätzliche vibronische Bande 93 cm$^{-1}$ (d'-Phase) bzw. 103 cm$^{-1}$ (d-Phase) unterhalb des 0-0-Übergangs aufweisen, die scheinbar durch die Anwesenheit einer Festkörperoberfläche induziert wird. Eine nähere Diskussion dieser Bande findet sich in Abschnitt 7.1.2.


7.1.2. Analyse der Vibrationsmoden im FL-Spektrum der d'-Phase

In diesem Abschnitt werden die Bandenpositionen im FL-Spektrum der d'-Phase zunächst mit Literaturwerten verglichen. Anschließend werden durch eine Simulation des Spektrums die Huang-Rhys-Faktoren bestimmt.

Vergleich der Bandenpositionen des FL-Spektrums mit Literaturwerten

Im Fluoreszenzspektrum von PTCDA auf KCl konnten 22 vibronische Banden identifiziert werden. Die energetischen Positionen der Banden relativ zum rein elektronischen Übergang wurden durch manuelles Auslesen des Maximums, über das Minimum der zweiten Ableitung und über die Anpassung von Gauß'schen Profilen unabhängig voneinander bestimmt. Tabelle 7.1 enthält die Mittelwerte dieser drei Bestim-
mungsmethoden. Der Fehler der Positionen wurde über die Standardabweichung definiert. Als kleinstmöglicher Fehler wurde ein Wert von 1 cm\(^{-1}\) angenommen.

Tabelle 7.1 enthält die so ermittelten Bandenpositionen und zusätzlich (i) Schwingungsfrequenzen von Normalmoden aus Referenz [164] (ii) Schwingungsfrequenzen, die durch Anpassung von Gauß’schen Profilen an das Fluoreszenzspektrum von PTCDA in Helium-Tröpfchen (Datum aus [131], Abbildung 7.2 unten) erhalten wurden und (iii) die Zuordnung von einigen Banden zu Normalmoden oder Kombinationsmoden. Die Modenzuordnung erfolgte dabei unter Zuhilfenahme der Simulation des FL-Spektrums, die später in diesem Abschnitt vorgestellt wird.


<table>
<thead>
<tr>
<th>PTCDA/KCl</th>
<th>Ref. [164]: Theorie</th>
<th>Ref. [131]: He-Tröpfchen</th>
<th>Differenz von Ref. [131] und PTCDA/KCl</th>
<th>Zuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>93±3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>v₆</td>
</tr>
<tr>
<td>231±1</td>
<td>232</td>
<td>233</td>
<td>2</td>
<td>v₁</td>
</tr>
<tr>
<td>323±4</td>
<td>—</td>
<td>330</td>
<td>7</td>
<td>v₁ + v₅</td>
</tr>
<tr>
<td>394±2</td>
<td>383</td>
<td>—</td>
<td>—</td>
<td>v₂</td>
</tr>
<tr>
<td>465±1</td>
<td>474</td>
<td>458</td>
<td>-7</td>
<td>2 × v₁ // v₃</td>
</tr>
<tr>
<td>537±2</td>
<td>550</td>
<td>544</td>
<td>7</td>
<td>v₄</td>
</tr>
<tr>
<td>622±1</td>
<td>639</td>
<td>618</td>
<td>-4</td>
<td>v₅</td>
</tr>
<tr>
<td>702±2</td>
<td>728</td>
<td>—</td>
<td>—</td>
<td>v₆</td>
</tr>
<tr>
<td>771±1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>v₄ + v₁</td>
</tr>
<tr>
<td>850±4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>v₅ + v₁</td>
</tr>
<tr>
<td>946±1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>v₆ + v₁</td>
</tr>
<tr>
<td>1051±1</td>
<td>1070</td>
<td>1053</td>
<td>2</td>
<td>v₆</td>
</tr>
<tr>
<td>1157±5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>v₆ + v₅ + v₈</td>
</tr>
<tr>
<td>1296±1</td>
<td>1285</td>
<td>1302</td>
<td>6</td>
<td>v₁₀, δ_{C-H} [130,164]</td>
</tr>
<tr>
<td>1375±1</td>
<td>1347</td>
<td>1389</td>
<td>14</td>
<td>v₁₂, δ_{C-H} [164], δ_{C-C} [130]</td>
</tr>
<tr>
<td>1454±1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>v₁₂ + v₆</td>
</tr>
<tr>
<td>1529±3</td>
<td>—</td>
<td>1532</td>
<td>3</td>
<td>v₁₀ + v₁</td>
</tr>
<tr>
<td>1577±2</td>
<td>1616</td>
<td>1594</td>
<td>17</td>
<td>v₁₅, v_{C-C}, δ_{C-H} [130]</td>
</tr>
<tr>
<td>1683±4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>v₁₅ + v₆</td>
</tr>
<tr>
<td>1760±3</td>
<td>—</td>
<td>1754</td>
<td>-6</td>
<td>v₁₀ + 2 × v₁</td>
</tr>
<tr>
<td>1808±2</td>
<td>—</td>
<td>1824</td>
<td>16</td>
<td>v₁₅ + v₁</td>
</tr>
<tr>
<td>1916±1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>v₁₀ + v₅</td>
</tr>
</tbody>
</table>
Die Schwingungsfrequenzen des FL-Spektrums von PTCDA in Heliumtröpfchen werden nun mit den Werten für PTCDA auf KCl verglichen. Aufgrund des schlechteren Signal/Rausch-Verhältnisses des FL-Spektrums von PTCDA in Heliumtröpfchen konnte jedoch die energetische Lage einiger intensitätsschwacher Peaks, deren Positionen für PTCDA auf KCl bestimmt werden konnten, in diesem Spektrum nicht bestimmt werden. Insgesamt ergaben sich daher nur zehn Signalpositionen, die sich direkt vergleichen lassen. Die maximale Abweichung zwischen diesen Positionen betrug +17 cm⁻¹, die mittlere Abweichung +5 cm⁻¹. Besonders große Abweichungen von etwa 15 cm⁻¹ ergaben sich für die Vibrationsbanden 1375 (v₁₂), 1577 (v₁₅) und 1808 cm⁻¹ (v₁₅+v₁) unterhalb des 0-0-Übergangs.

Für die Banden bei 1375 cm⁻¹ (v₁₂) und bei 1577 cm⁻¹ (v₁₅) sind in Referenz [164] die Auslenkungsmuster angegeben; sie sind in Abbildung 7.3 wiedergegeben. Beide Moden lassen sich als C-H-Biegeschwingungen charakterisieren, bei denen sich vor allem die Wasserstoffatome bewegen [164]. Gemeinsam ist beiden Moden, dass die inneren vier Wasserstoffatome am Perylenrumpf zur Mitte hin ausgelenkt werden. Dies deutet auf eine starke Wechselwirkung der inneren Wasserstoffatome mit dem KCl-Substrat hin. Aufgrund des angenommenen Adsorptionsmodells (vgl. Abbildung 6.1) handelt es sich vermutlich um eine elektrostatische Wechselwirkung zwischen den partiell positiv geladenen Wasserstoffatomen und den negativ geladenen Chloridionen des Substrats. Bei der Bande bei 1808 cm⁻¹ handelt es sich um eine gemeinsame Anregung der Moden mit 1577 cm⁻¹ und mit 232 cm⁻¹, ihre Verschiebung beruht folglich auf der gleichen Ursache.

**Abbildung 7.3:** Auslenkungsmuster der Vibrationsmoden v₁₂ (links) und v₁₅ (rechts) von PTCDA auf KCl. Die Auslenkung der Atome aus ihren Ruhelagen ist um einen Faktor 40 vergrößert dargestellt. Entnommen aus [164].

Interessanterweise konnte für die Bande bei 1296 cm⁻¹ bei der es sich ebenfalls um eine C-H-Biegeschwingung handelt, keine ungewöhnlich große Verschiebung festgestellt werden. Bei dieser Mode werden die inneren vier Wasserstoffatome nach außen ausgelenkt [164].
Bei der Bande bei 232 cm\(^{-1}\) handelt es sich um eine Atmungsmode entlang der langen Molekülachse [130,164]. Dabei erfahren auch die Sauerstoffatome des Moleküls starke Auslenkungen. Aufgrund der vermuteten starken Wechselwirkung dieser Atome mit den Kaliumionen des Substrats (vgl. Abschnitt 6.1), wäre daher eine starke Veränderung der Frequenz dieser Mode zu vermuten gewesen, die aber nicht beobachtet wurde. Die Ursache für diesen Befund ist bislang unklar.

**Bestimmung der Huang-Rhys Faktoren durch Simulation des FL-Spektrums**

Im Folgenden wird das hochauflöste FL-Spektrum der d'-Phase aus Abbildung 7.2 noch genauer analysiert. Das Ziel dieser Analyse ist die Huang-Rhys-Faktoren \( S \) der Normalmoden, die der Vibrationsstruktur zugrunde liegen, zu bestimmen. Die Kenntnis der Huang-Rhys-Faktoren ermöglicht eine Berechnung des Franck-Condon-Faktors des rein elektronischen Übergangs. Dieser wird in den Abschnitten 7.3.2 und 7.3.3 von Bedeutung sein. Weiterhin werden die Huang-Rhys-Faktoren in Abschnitt 7.4.3 benutzt werden, um die Veränderung des FLE-Spektrums, die durch die Aggregation der Moleküle in einer Monolage hervorgerufen wird, zu diskutieren.

PTCDA verfügt über 111 Schwingungsmoden, von denen aber nur 19 totalsymmetrische \( A_\gamma \)-Moden an elektronische Übergänge ankoppeln können [164]. Da einige der Huang-Rhys-Faktoren dieser Moden aber sehr klein sind und die Banden zusätzlich stark überlappen, wird die folgende Analyse nur *effektive* vibronische Moden\(^1\) liefern, die aber eine genaue Beschreibung des Spektrums erlauben werden.

Die Analyse erfolgte in mehreren Schritten, die in Abbildung 7.4 dargestellt sind. Zunächst wurden auf Grundlage von Gleichung 2.10 aus den Huang-Rhys-Faktoren \( S \) die Franck-Condon-Faktoren von allen Übergängen mit maximal drei vibronischen Anregungen berechnet. Das so erhaltene Stab-Spektrum wurde anschließend um die kubische Frequenzabhängigkeit der spontanen Emission korrigiert\(^2\), die durch den Einstein-Koeffizienten \( A_{21} \) gegeben ist [165,166]:

\[
A_{21} = \frac{8 \pi \cdot h \nu^3}{c^3} B_{21}.
\]

Hierbei bezeichnet \( B_{21} \) den Einstein-Koeffizienten der induzierten Emission. Das derart korrigierte Stab-Spektrum wurde danach durch Faltung mit einer Gauf-Funktion experimentell verbreitert und mit dem gemessenen Spektrum der d'-Phase aus Abbildung 7.2 verglichen. Auf dieser Grundlage wurden dann die Huang-Rhys-Faktoren und die Schwingungsfrequenzen *manuell* variiert, bis eine möglichst gute Übereinstimmung festgestellt werden konnte. Der Autor dieser Arbeit möchte hervor-

---

\(^1\) Als effektive Mode werden hier Moden bezeichnet, die eine Beschreibung der Schwingungsstruktur des Spektrums erlauben, aber nicht zwangsläufig Normalmoden des Moleküls entsprechen.

\(^2\) Die Korrektur, die bei der Umrechnung von einer \( \lambda \)-Achse auf eine \( \tilde{\nu} \)-Achse benötigt wird, wurde hingegen als klein vernachlässigt. Details zu dieser Korrektur finden sich in Abschnitt 4.1.1 und Anhang B.

Als Ausgangspunkt für die iterative Anpassung wurden die von Scholz et al. mit Hilfe von Dichtefunktional-Theorie berechneten Huang-Rhys-Faktoren verwendet [164]. Abbildung 7.4 zeigt unten ein mit diesen Huang-Rhys-Faktoren berechnetes Spektrum und das zugehörige Stab-Spektrum. Die vibronische Signatur dieses Spektrums ist ähnlich zu der des gemessenen Spektrums, aber insbesondere im Bereich der Moden zwischen 18300 und 18800 cm\(^{-1}\) weist das berechnete Spektrum eine deutlich höhere Intensität auf.


Tabelle 7.2 fasst die in der Berechnung des Spektrums verwendeten Schwingungsfrequenzen und Huang-Rhys-Faktoren zusammen. Geringe Abweichungen von den Frequenzen aus Tabelle 7.1 können sich durch Überlagerung von mehreren 
Moden zu einer Bande ergeben. Die Frequenzen der Moden $v_{12}$ und $v_{15}$ stimmen innerhalb des Fehlers mit den Banden bei 1375 cm$^{-1}$ und bei 1577 cm$^{-1}$ überein, so dass die obigen Überlegungen zur energetischen Verschiebung dies er Banden ihre Gültigkeit behalten. In Tabelle 7.2 sind zusätzlich zum Vergleich die als Startwerte verwendeten Parameter von Scholz et al. [164] aufgeführt.

Die Berechnung des Franck-Condon-Faktors des rein elektronischen Übergangs ist nun leicht nach Gleichung 2.11 möglich und ergibt $f_{00}=0.21 \pm 0.03$. Im Fehler sind die unterschiedlichen integralen Intensitäten im Bereich der vibronischen Banden von simuliertem und experimentellem Spektrum und die Vernachlässigung der Intensitätsskorrekturen, die durch die Sensitivität des Spektrometers und die Umrechnung auf eine $\tilde{v}$-Achse zustande kommen (vgl. hierzu auch Anhang B), berücksichtigt. Der so bestimmte Wert des Franck-Condon-Faktors stimmt damit innerhalb des Fehlers mit dem Wert von $f_{00}^{\text{DFT}}=0.20$ überein, der sich bei Verwendung der Huang-Rhys-Faktoren von Scholz et al. ergibt. Die geringere vibronische Intensität der hochenergetischen Moden wird offensichtlich gerade durch die zusätzliche Mode ($v_s$) bei 93 cm$^{-1}$ kompensiert.
Tabelle 7.2: Für die Berechnung des FL-Spektrum verwendete Schwingungsfrequenzen und Huang-Rhys-Faktoren und Werte aus DFT-Rechnungen [164]. Spiegelstriche bedeuten, dass die jeweilige Normalmode bei der Simulation des Spektrums aufgrund von schwacher Ankopplung vernachlässigt wurde (eigene Daten) bzw. dass die Mode im berechneten Spektrum nicht vorhanden war (vs bei den Referenzdaten).

<table>
<thead>
<tr>
<th>Normalmode</th>
<th>eigene Daten</th>
<th>Scholz et al., Ref. [164]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\bar{v}$ [cm$^{-1}$]</td>
<td>$S_i$</td>
</tr>
<tr>
<td>$v_6$</td>
<td>51</td>
<td>0.14</td>
</tr>
<tr>
<td>$v_1$</td>
<td>80</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>0.165</td>
</tr>
<tr>
<td>$v_2$</td>
<td>232</td>
<td>0.36</td>
</tr>
<tr>
<td>$v_3$</td>
<td>383</td>
<td>0.015</td>
</tr>
<tr>
<td>$v_4$</td>
<td>465</td>
<td>0.01</td>
</tr>
<tr>
<td>$v_5$</td>
<td>535</td>
<td>0.07</td>
</tr>
<tr>
<td>$v_6$</td>
<td>620</td>
<td>0.05</td>
</tr>
<tr>
<td>$v_7$</td>
<td>710</td>
<td>0.01</td>
</tr>
<tr>
<td>$v_8$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$v_9$</td>
<td>1050</td>
<td>0.025</td>
</tr>
<tr>
<td>$v_{10}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$v_{11}$</td>
<td>1296</td>
<td>0.24</td>
</tr>
<tr>
<td>$v_{12}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$v_{13}$</td>
<td>1375</td>
<td>0.16</td>
</tr>
<tr>
<td>$v_{14}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$v_{15}$</td>
<td>1542</td>
<td>0.045</td>
</tr>
<tr>
<td>$v_{16}$</td>
<td>1575</td>
<td>0.15</td>
</tr>
<tr>
<td>$v_{17}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$v_{18}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$v_{19}$</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Der Ursprung dieser zusätzlichen Mode bei 93 cm$^{-1}$ ist bislang nicht völlig verstanden. Das Fehlen der Mode in berechneten [167] und experimentellen FL-Spektren [131] von PTCDA, die für ein ungebundenes Molekül erhalten wurden, belegt aber, dass die Mode durch die Anwesenheit des Substrats induziert wird. In diesen Spektren wurden nämlich keine Banden unterhalb von 200 cm$^{-1}$ beobachtet. Durch die Adsorption des Moleküls auf einer Oberfläche ergeben sich aber Änderungen in der Symmetrie des Systems und zusätzliche Bindungen. Im Folgenden wird die Beobachtung der niederenergetischen Bande $v_s$ im Hinblick auf diese veränderte Situation diskutiert.

Durch die Anbindung des Moleküls an die Oberfläche kann dieses nicht mehr frei translatieren oder rotieren. Für die resultierenden *frustrierten* Rotationen und Translationen erwartet man Schwingungsfrequenzen unterhalb von etwa 150 cm$^{-1}$ [168]. Die Ankopplung dieser frustrierten Translationen und Rotationen an den elektronischen Übergang des Moleküls könnte daher eine Ursache für die beobachtete niederenergetische Bande $v_s$ sein.
Zusätzlich verändert sich durch die Anbindung des Moleküls an die Oberfläche die Symmetrie des Systems. Im Fall des freien Moleküls liegt $D_{2h}$-Symmetrie vor und es koppeln nur 19 totalsymmetrische $A_g$-Moden an den elektronischen Übergang an [164]. Diese Moden sind Raman-aktiv, aber IR-inaktiv [38]. Durch die Adsorption des Moleküls auf der KCl-Oberfläche verringert sich die Symmetrie aber auf $C_{2v}$ (bei Annahme des Adsorptionsmodells aus Abschnitt 6.1) [168]. Dadurch verändert sich die Gruppe der totalsymmetrischen Schwingungsmoden, die an elektronische Übergänge ankoppeln kann. Zu ihr gehören nun auch IR-aktive Moden, die ein variierendes Dipolmoment senkrecht zur Molekülebene aufweisen [38].

Tautz et al. konnten durch Messungen mit hochaufgelöster Elektronenergieverlustspektroskopie¹ (HREELS) an einem 4.5 ML dicken PTCDA-Film niedenergetische Schwingungsbanden bei 44, 76 und 196 cm⁻¹ nachweisen [168]. DFT-Rechnungen der Autoren ergaben Normalmoden, die ähnliche Schwingungsfrequenzen (36, 111 und 174 cm⁻¹) und die benötigte Symmetrie (variierendes Dipolmoment senkrecht zur Molekülebene) haben [168]. Es handelt sich bei diesen Schwingungen um „Faltungen“ des Moleküls entlang der langen oder der kurzen molekularen Achse [168]. Die Auslenkungen der Atome erfolgen bei diesen Schwingungen also senkrecht zur Oberfläche. Es ist daher zu erwarten, dass die Schwingungsfrequenzen empfindlich von der Bindungssituation der Moleküle an der Oberfläche abhängen. Daher kann eine quantitative Übereinstimmung mit der in dieser Arbeit beobachteten Bandenlage nicht erwartet werden. Nichtsdestotrotz erscheint es plausibel, dass die Ankopplung solcher Schwingungen an den elektronischen Übergang auch für die in der vorliegenden Arbeit beobachtete Bande $v_a$ verantwortlich ist.

Ein detailliertes Verständnis der niedenergetischen Schwingungsmoden kann vermutlich nur auf Basis quantenchemischer Berechnungen mit Berücksichtigung des Substrats erreicht werden. Zum gegenwärtigen Zeitpunkt ist in der Literatur für das untersuchte System von PTCDA auf KCl aber keine Berechnung auf diesem Niveau verzeichnet.

7.1.3. Analyse der Vibrationsmoden im FLE-Spektrum der $d'$-Phase

Im FLE-Spektrum der $d'$-Phase wurden durch Auslesen lokaler Maxima die Positionen von 27 Banden bestimmt, die in Tabelle 7.3 zusammengefasst sind. Aufgrund der Punktichte der Messung beträgt der Fehler in den so bestimmten Bandenpositionen $5$ cm⁻¹. Von den 27 Banden lassen sich 7 Banden Normalmoden des freien PTCDA-Moleküls zuordnen und eine niedenergetische Bande wird durch das Substrat induziert. Die restlichen Banden ergeben sich als Kombinationsmoden (vgl. Tabelle 7.3).

¹ Unter den dort verwendeten Bedingungen (Dipolstreuung in Reflektionsgeometrie) ist diese Methode bezüglich der Auswahlregeln äquivalent zu IR-Spektroskopie.

<table>
<thead>
<tr>
<th>Banden PTCDA/KCl [cm⁻¹]</th>
<th>Zuordnung</th>
<th>Normalmoden eigene Daten</th>
<th>Normalmoden Gisslen et al., [169]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>v [cm⁻¹]</td>
<td>Sᵢ</td>
</tr>
<tr>
<td>87</td>
<td>v₅</td>
<td>57</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>130</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160</td>
<td>0.035</td>
</tr>
<tr>
<td>225</td>
<td>v₁</td>
<td>235</td>
<td>0.32</td>
</tr>
<tr>
<td>321</td>
<td>v₁ + v₅</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>v₂</td>
<td>380</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>v₃</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>462</td>
<td>2 × v₁</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>530</td>
<td>v₄</td>
<td>537</td>
<td>0.081</td>
</tr>
<tr>
<td>617</td>
<td>v₅</td>
<td>623</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>v₆</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>v₇</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>847</td>
<td>v₁ + v₅</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>v₈</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1051</td>
<td>2 × v₁ + v₅</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1148</td>
<td>v₉</td>
<td>1154</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>v₁₀</td>
<td>1232</td>
<td>0.022</td>
</tr>
<tr>
<td>1286</td>
<td>v₁₁</td>
<td>1293</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>v₁₂</td>
<td>1325</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>v₁₃</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1337</td>
<td>v₁₁ + v₅</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1401</td>
<td>v₁₃</td>
<td>1410</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>v₁₄</td>
<td>1423</td>
<td>0.032</td>
</tr>
<tr>
<td>1515</td>
<td>v₁ + v₁₁</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1598</td>
<td>v₁₆</td>
<td>1605</td>
<td>0.22</td>
</tr>
<tr>
<td>1640</td>
<td>v₁ + v₁₁</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>v₁₇</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1693</td>
<td>v₄ + v₁₆</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1832</td>
<td>v₄ + v₁₆</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2137</td>
<td>v₄ + v₁₆</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2214</td>
<td>v₅ + v₁₆</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2359</td>
<td>v₁ + v₄ + v₁₆</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2448</td>
<td>v₉ + v₁₁ + v₁ + v₅ + v₁₆</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2572</td>
<td>2 × v₁₁</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2685</td>
<td>v₁₁ + v₁₃</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2878</td>
<td>v₁₁ + v₁₆</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2992</td>
<td>v₁₃ + v₁₆</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>v₁₈</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>v₁₉</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3186</td>
<td>2 × v₁₆</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Analog zum FL-Spektrum lassen sich auch aus dem FLE-Spektrum durch Vergleich mit einem simulierten Spektrum die Huang-Rhys-Faktoren bestimmen. Die Vorgehensweise war dabei vollkommen analog zu der für das FL-Spektrum beschrieben, so dass sich die folgenden Darstellung auf eine kurze Beschreibung der Ergebnisse beschränkt. Als Startwerte wurden diesmal aber die Huang-Rhys-Parameter von Giessen et al. verwendet [169]. Im Gegensatz zu den Huang-Rhys-Parametern von Scholz et al. wurden von Giessen et al. die Huang-Rhys-Parameter auf Grundlage der vibronischen Zustände des elektronisch angeregten Zustands berechnet, so dass sie für die Beschreibung von Absorptionsexperimenten geeignet sind1.


Der aus den ermittelten Huang-Rhys-Parametern bestimmte Franck-Condon-Faktor beträgt \( f_{00} = 0.21 \pm 0.03 \)² und ist damit identisch mit dem Wert, der im vorherigen Abschnitt aus dem FL-Spektrum bestimmt wurde. Auf der Grundlage der Huang-Rhys-Faktoren von Giessen et al. erhält man den nur etwas größeren Wert von \( f_{00}^{\text{DFT}} = 0.24 \). Diese beide Werte sind deutlich kleiner als der Wert von \( f_{00}^{\text{eff}} = 0.42 \), der sich ergibt, wenn nur eine effektive Vibrationsmode mit einem Huang-Rhys-Faktor von 0.88 [169] verwendet wird. Dieses Vorgehen ist für Lösungsmittelspektren üblich bei denen auf Grund der großen inhomogenen Linienverbreiterung keine Vibrationsmoden aufgelöst werden können. Die Überbestimmung des Franck-Condon-Faktors in Lösung ist daher darauf zurückzuführen, dass niedenergetische Vibrationsmoden auf Grund der mangelnden Auflösung nicht abgetrennt werden können und so scheinbar zur Intensität des rein elektronischen Übergangs beitragen.

1 Die Huang-Rhys-Parameter und Schwingungsfrequenzen von Scholz et al. [164] und Giessen et al. [169] resultieren in ähnlichen Vibrationsprogressionen, so dass auch eine Anpassung auf Grundlage der Werte von Scholz et al. möglich gewesen wäre.

2 Der Fehler wurde analog zum Fehler des Franck-Condon-Faktors in Abschnitt 7.1.2 ermittelt, mit der Ausnahme, dass die Sensitivität des Spektrometers nicht berücksichtigt werden musste, da \( \lambda_{\text{det}} = \text{const} \).
7.1.4. Zusammenfassung


7.2. Polarisationsabhängige Spektroskopie

In diesem Abschnitt wird gezeigt werden, dass polarisationsabhängige Spektroskopie eingesetzt werden kann, um die azimuthale Orientierung von Molekülen auf Oberflächen zu bestimmen. Zunächst werden einige Details der experimentellen Vorgehensweise beschrieben (Abschnitt 7.2.1), dann ein kurzer Einblick in den theoretischen Hintergrund der Methode gegeben (Abschnitt 7.2.2) und schließlich die erhaltenen Messdaten präsentiert und diskutiert (Abschnitte 7.2.3 und 7.2.4). Die hier beschriebenen Experimente wurden sowohl für Monolagen von PTCDA auf KCl durchgeführt (BW-Phase) als auch für vereinzelte PTCDA-Moleküle auf KCl (d'-Phase). Eine Diskussion der zugehörigen Spektren findet sich in den entsprechenden Abschnitten (Abschnitt 7.1 und 7.3) und ist nicht Gegenstand dieses Abschnitts. Die Beschreibung der polarisationsabhängigen Spektroskopie in diesem Abschnitt beschränkt sich ferner auf die wesentlichen Aspekte. Für eine ausführlichere Behandlung sei auf Referenz [170] verwiesen.

7.2.1. Details zu den Messungen und zur Auswertung der Daten

Für die polarisationsabhängigen Messungen wurde der experimentelle Aufbau aus Abbildung 4.1 leicht modifiziert, wie dies in Abbildung 7.6 gezeigt ist. Zwischen der Probe und der ersten Sammellinse wurde ein Spiegel eingebaut, um senkrechten Einfall des Anregunglichts auf die Probe zu erreichen. Vor diesem Spiegel wurde im Strahlengang eine achromatische $\lambda/2$-Platte (Newport, 10RP52-1) eingebaut. Diese ermöglichte es die Polarisierung des Anregunglichts um einen beliebigen Winkel zu drehen [171]. Im Detektionsstrahlengang wurde vor dem Eingangsspalt des Spektrometers ein Polarisationsfilter aufgestellt.

Abbildung 7.6: Veränderter Versuchsaufbau für die polarisationsabhängigen Messungen. links: Aufsicht rechts: Blick entlang der Detektionsachse, die durch einen Pfeil angedeutet ist. Die Polarisationsrichtung des Anregunglichts ist in rot dargestellt, die Orientierung des Übergangsdi pols in Blau und die Transmissionsachse des Polfilters in schwarz.

$$I_{det}(\gamma + 180°) = I_{det}(\gamma)$$

berechnet wurden.

### 7.2.2. Idee und Theorie der Polarisationsabhängigen Spektroskopie


Die Fluoreszenz eines elektronisch angeregten Moleküls ist entlang der Richtung des Übergangsdipolmoments des Moleküls polarisiert. Durch einen Polarisationsfilter wird nur die Komponente des Fluoreszenzlichts transmittiert, die entlang der Transmissionsrichtung des Polarisationsfilters orientiert ist. Im Folgenden wird die Orientierung des Moleküls im Raum als $\beta$, die Orientierung der Transmissionsrichtung des Polarisationsfilters als $\gamma$ und die Differenz dieser Werte als $\varphi$ bezeichnet. Für die detektierte Fluoreszenzintensität $I_{det}$ gilt dann folgende Proportionalität:

$$I_{det} \propto \cos^2 (\beta - \gamma) = \cos^2 (\varphi).$$

In einem Fluoreszenzexperiment erfolgt die Anregung der Moleküle durch kurzwelliges Licht. Abhängig von ihrer Orientierung haben die einzelnen Moleküle unterschiedliche Anregungswahrscheinlichkeiten. Betrachtet man den Spezialfall von
linear polarisiertem Anregungslicht, so gilt für die Anregungswahrscheinlichkeit \( P \) folgende Proportionalität:

\[
P \propto E^2 \cdot M^2 \cdot \cos^2(\theta) = E^2 \cdot M^2 \cdot \cos^2(\alpha - \beta)
\]

mit dem elektrischen Feld \( E \), dem Übergangsdipolmoment \( M \), dem Winkel \( \alpha \) der Orientierung der Polarisationsrichtung des Anregungslichts und dem Differenzwinkel \( \theta \) dieser Orientierung zur molekularen Orientierung \( \beta \).

Für ein Ensemble von \( N \) angeregten Molekülen, deren Übergangsdipole alle in derselben Ebene liegen, ergibt sich die detektierte Intensität als Summe über die Einzelintensitäten als:

\[
I_{\text{det}} \propto \sum_{i} \cos^2(\beta_i - \gamma) = \sum_{i} \cos^2(\phi_i).
\]

Bei Berücksichtigung der Anisotropie der Anregung gemäß Gleichung 7.5 ergibt sich, wenn der Transfer von Anregungsenergie zwischen Molekülen unterschiedlicher Orientierung ausgeschlossen wird:

\[
I_{\text{det}} \propto \sum_{i} \cos^2(\phi_i) \cdot \cos^2(\theta_i) = \sum_{i} \cos^2(\beta_i - \gamma) \cdot \cos^2(\alpha - \beta_i).
\]


Im Falle einer isotropen Orientierung der Übergangsdipolmomente ergibt sich die detektierte Intensität \( I_{\text{det}} \) in Abhängigkeit von den Winkeln \( \alpha \) und \( \gamma \) durch Integration von Gleichung 7.7 über alle Orientierungen der Übergangsdipole \( \beta \) zu:

\[
I_{\text{det}} \propto \int_{0}^{2\pi} \cos^2(\beta - \gamma) \cdot \cos^2(\alpha - \beta) \, d\beta = \left( \frac{\pi}{2} + \frac{\pi}{4} \cos(2\alpha - 2\gamma) \right).
\]

Diese Gleichung wird im weiteren Verlauf dieses Abschnitts noch diskutiert. Zunächst wird aber \( I_{\text{det}} \) für den Fall berechnet, dass nur zwei Orientierungen der Übergangsdipole vorliegen, die zueinander senkrecht stehen. Dieser Fall ist für die BW-Phase von PTCDA auf KCl relevant, da das Strukturmodell aus Abschnitt 6.1 genau eine solche Situation vorhersagt. Die Orientierungen der Übergangsdipole werden dabei willkürlich als 0° und 90° festgelegt. Ferner wird angenommen, dass beide Orientierungen mit gleicher Häufigkeit eingenommen werden. Dann ergibt sich aus Gleichung 7.7:
\[ I_{\text{det}} \propto c \cdot \left( \cos^2(\gamma) \cos^2(\alpha) + \sin^2(\gamma) \sin^2(\alpha) \right). \] 7.9

Abbildung 7.7 zeigt nach Gleichung 7.8 und 7.9 berechnete Intensitätsverläufe der Fluoreszenz in Form von Polardiagrammen. Im linken Teil der Abbildung sind die Intensitätsverläufe für eine isotrope Verteilung der Übergangsdipole für verschiedene Polarisationsrichtungen des Anregungslichts gezeigt. Man kann feststellen, dass (1) sich der Verlauf der Fluoreszenzintensität in Abhängigkeit von \( \alpha \) nicht prinzipiell verändert, aber die Kurven für verschiedene \( \alpha \) gegeneinander verdreht sind (2) ein Maximum der Fluoreszenzintensität gerade dann beobachtet wird wenn \( \alpha = \gamma \) gilt (3) die Fluoreszenzintensität im Minimum auf 1/3 des Maximalwerts abfällt.

Im rechten Teil der Abbildung sind die Intensitätsverläufe für eine gleichmäßige Verteilung der Übergangsdipolmomente entlang von zwei zueinander senkrechten Achsen gezeigt. Hier verändert sich der Verlauf der Fluoreszenzintensität drastisch in Abhängigkeit von der Polarisationsrichtung des Anregungslichts \( \alpha \). Stimmt \( \alpha \) mit einer der beiden Orientierungen der Übergangsdipole überein, so ist die Fluoreszenzintensität bei \( \alpha \) maximal und bei \( \alpha + 90^\circ \) wird keine Fluoreszenz beobachtet. In diesem Fall wird nur Fluoreszenz von der Hälfte der Moleküle detektiert, da die Übergangsdipole der anderen Hälfte gerade senkrecht auf der Polarisationsrichtung des Anregungslichts stehen. Verändert man nun \( \alpha \), so werden auch Moleküle der anderen Orientierung angeregt. Bei 45° werden Moleküle beider Orientierungen gerade mit gleicher Wahrscheinlichkeit angeregt. In diesem Fall ergibt sich eine gleichbleibende Fluoreszenzintensität für alle Detektionswinkel \( \gamma \).

Abbildung 7.7: Polardiagramme der nach Gleichung 7.5 berechneten Fluoreszenzintensität als Funktion des Winkels \( \gamma \) des Polarisationsfilters. Die unterschiedlichen Farben stellen die Kurven für verschiedene Winkel \( \alpha \) des Anregungslichts dar. links: isotrope Verteilung der Übergangsdipole. rechts: Übergangsdipole ausgerichtet entlang zweier zueinander senkrechter Achsen bei 0 und 90°. Für beide Diagramme wurden die Intensitäten jeweils auf die maximale Intensität aller Kurven normiert.
Zusammenfassend lässt sich sagen, dass eine Messung der Fluoreszenzintensität unter Variation von Anregungswinkel $\alpha$ und Detektionswinkel $\gamma$ eine Bestimmung der molekularen Orientierung bzw. der Orientierung des Übergangsdipolmoments erlaubt. Insbesondere kann leicht unterschieden werden, ob eine isotrope Verteilung der Übergangsdipolmomente oder eine Orientierung entlang von Vorzugsachsen vorliegt. Eine zu der hier vorgestellten Methode verwandte Methode zur Bestimmung der molekularen Orientierung ist die Reflektionsanisotropiespektroskopie [15,19,173]. Die Anwendung dieser Methode ist jedoch auf anisotrope Substratoberflächen beschränkt und daher für die in dieser Arbeit verwendeten Substratoberflächen ungeeignet.

7.2.3. Polarisationsabhängige Spektroskopie der BW-Phase

Abbildung 7.8 zeigt die Abhängigkeit der detektierten Fluoreszenzintensität der BW-Phase als Funktion des Anregungswinkels $\alpha$ und des Winkels des Polarisationsfilters $\gamma$. Die experimentell beobachtete Veränderung der Fluoreszenzintensität der BW-Phase in Abhängigkeit von $\alpha$ und $\gamma$ stimmt gut mit dem berechneten Verlauf überein, wenn man annimmt, dass nur zwei zueinander senkrechte Orientierungen der Übergangsdipole vorliegen (vgl. rechter Teil der Abbildung 7.7).

Aus dem Verlauf der Intensität als Funktion von $\gamma$ (für festes $\alpha$) kann nach Gleichung 7.7 direkt auf die Ausrichtung der Übergangsdipole relativ zur Oberfläche geschlossen werden. Da der Übergangsdipol in PTCDA entlang der langen Achse orientiert ist, entspricht diese Ausrichtung direkt der des Moleküls. Abbildung 7.7 kann man daher entnehmen, dass die PTCDA-Moleküle in der BW-Phase entlang der [011]-Richtung des KCl-Films ausgerichtet sind. Eine detaillierte Auswertung zeigt eine Abweichung von weniger als 0.5° [170]. Diese Ausrichtung der Moleküle bestätigt damit das Strukturmodell aus Abschnitt 6.1 und die AFM-Ergebnisse von Dienel et al. [16]

Die beiden unterschiedlichen molekularen Orientierungen sind innerhalb dieses Strukturmodells auf Rotationsdomänen zurückzuführen, deren Vorliegen aufgrund der unterschiedlichen Symmetrie von Oberfläche und Molekül zu erwarten war. Die Ergebnisse aus Abbildung 7.8 zeigen weiterhin, dass Domänen mit unterschiedlicher molekularer Orientierung nicht miteinander koppeln, d. h. dass die optische Anregung innerhalb der Domäne verbleibt, in der sie erzeugt wurde. Diese Tatsache wird insbesondere in Abschnitt 7.4.1 von Bedeutung sein, in dem die Linienform der FLE-Spektren analysiert wird.

7.2.4. Polarisationsabhängige Spektroskopie der d'-Phase

Die d'-Phase wird durch Aufdampfen von PTCDA auf KCl bei tiefer Temperatur präpariert. Aus der spektralen Position der Fluoreszenz kann man schlussfolgern, dass unter diesen Bedingungen keine Aggregation der Moleküle stattfindet. Dies bedeutet, dass offensichtlich die Diffusionsraten der Moleküle sehr gering sind. Es stellt sich somit die Frage, ob die Moleküle beim Aufdampfen auf die kalte Oberfläche genügend Energie besitzen, um einen energetisch günstigen Adsorptionsplatz einzunehmen oder ob die Moleküle in den Adsorptionsgeometrien verbleiben, die sie direkt nach dem Auftreffen auf die Oberfläche aufweisen und sich dadurch eine statistische Verteilung von Adsorptionsgeometrien ergibt. Im ersten Fall würde sich natürlich zusätzlich die Frage stellen, welcher Adsorptionsplatz eingenommen wird.
Zwar ermöglicht die polarisationsabhängige Spektroskopie keine direkte Bestimmung des Adsorptionsplatzes, aber es kann zwischen einer isotropen und einer anisotropen azimuthalen Verteilung der Moleküle unterschieden werden.


Abbildung 7.9 zeigt die Winkelabhängigkeit der detektierten Fluoreszenzintensität der d'-Phase für verschiedene Anregungswinkel $\alpha$. Wie im Falle der BW-Phase so beobachtet man auch für die d'-Phase eine Veränderung in Abhängigkeit vom Anregungswinkel $\alpha$. Ebenso übereinstimmend mit dem Fall der BW-Phase stimmt der Intensitätsverlauf gut mit dem berechneten Intensitätsverlauf überein, bei dem zwei zueinander senkrechte molekulare Orientierungen entlang der $<011>$-Richtungen des KCl-Films angenommen wurden.

Die PTCDA-Moleküle besitzen also auch unter den Präparationsbedingungen der d'-Phase noch genügend Energie um bestimmte azimuthale Orientierungen einzunehmen. Möglicherweise wird die dafür benötigte Energie durch die kinetische Ener-

7.3. Zweidimensionale Kopplung – Q-, HB*- und BW-Phase

Gegenstand dieses Abschnitts sind die optischen Spektren von zweidimensionalen PTCDA-Monolagen und die Wechselwirkungen der Moleküle in diesen Filmen. Durch die Betrachtungen aus Abschnitt 7.1 ist der Einfluss der Substrate auf die optischen Übergangsentnergien von PTCDA-Molekülen bekannt und kann damit separiert werden. Die zusätzlichen Wechselwirkungen der Moleküle innerhalb einer Monolage können durch $D_{\text{mol}}$ und die Transfermatrixelemente $M$ beschrieben werden. Experimentell lassen sich diese beiden Beiträge nicht voneinander unterscheiden. Daher wurden Bandstrukturenrechnungen im Rahmen der in Abschnitt 2.3.3 vorgestellten Theorie durchgeführt, um die beiden Beiträge zu separieren. Diese Berechnungen der Bandstrukturen der Q-, der HB*- und der BW-Phase werden im Detail in Abschnitt 7.3.2 dargestellt. Auf ihrer Grundlage werden dann in Abschnitt 7.3.3 die Bandenverschiebungen, die durch die Aggregation in einer Monolage verursacht werden, diskutiert.

7.3.1. Monolagenspektren von PTCDA auf dünnen NaCl und KCl-Filmen

Nachdem in Abschnitt 7.1 bereits die optischen Spektren von Monomeren auf dünnen Isolatorfilmen diskutiert wurden, stehen die optischen Spektren von zweidimensionalen PTCDA-Monolagen im Fokus dieses Abschnitts.

Abbildung 7.10 zeigt ein Fluoreszenz- und ein Fluoreszenzanregungsspektrum der Q-Phase von PTCDA auf NaCl, die beide bei 20 K gemessen wurden. Beide Spektren werden vom 0-0-Übergang dominiert, der bei 19380 cm$^{-1}$ liegt. Die genaue energetische Position varierte allerdings von Präparation zu Präparation um etwa $\pm 20 \text{ cm}^{-1}$, vermutlich aufgrund von Unterschieden in der strukturellen Qualität der Filme. Die Spektren weisen nur eine sehr geringe Stokes-Verschiebung von etwa 30 cm$^{-1}$ und eine Halbwertsbreite (des 0-0-Übergangs) von 90 cm$^{-1}$ (FL) bzw. 75 cm$^{-1}$ (FLE) auf. Sie sind in guter Näherung zueinander spiegelbildlich. Genauso wie in den Spektren der d-Phase von PTCDA auf NaCl, können auch in diesen Spektren einzelne vibronische Moden aufgelöst werden, wenn auch mit einer schlechteren Auflösung. In Abschnitt 7.4.1 wird gezeigt werden, dass finite-size Effekte eine der Hauptursachen hierfür sind. Zusätzlich können in Monolagen intermolekulare Schwingungsmoden auftreten und ebenfalls zu einer Verbreiterung der Banden führen.

Der auffälligste Unterschied der hier gezeigten Spektren der Q-Phase im Vergleich mit den Spektren der d-Phase ist, dass die Spektren um 300 cm$^{-1}$ zu niedrigerer Energie verschoben sind. Weiterhin kann man für das Fluoreszenzspektrum aus Abbildung 7.10 feststellen, dass die Intensität der vibronischen Banden bezogen auf den 0-0-Übergang im Vergleich mit der d-Phase um etwa einen Faktor 1.7 gedämpft ist. Dies ist ein Ergebnis der intermolekularen Kopplung, welche die Fluoreszenz auf der 0-0-Bande aufgrund von superradianter Emission erhöht [58]. Der Effekt ist für die BW-Phase noch deutlich stärker ausgeprägt und wird in Abschnitt 7.4.4 im Detail diskutiert werden.
7.3 Zweidimensionale Kopplung – Q-, HB*- und BW-Phase

Abbildung 7.10: FL- (schwarz) und FLE-Spektrum (rot) der Q-Phase von PTCDA auf NaCl/Ag(100) (T=20 K, λ_{exc}=498 nm, λ_{det}=556 nm). Die gestrichelte Linie markiert die energetische Position des 0-0-Übergangs der d-Phase von PTCDA auf NaCl.

Optische Spektren der BW-Phase von PTCDA auf KCl gemessen bei 20 K sind in Abbildung 7.11 gezeigt. Solche Spektren wurden für Filme erhalten, die bei einer Wachstumstemperatur von 260 K gewachsen wurden und anschließend 15 – 30 min bei derselben Temperatur getempert wurden. Die Spektren werden sehr stark vom 0-0-Übergang bei 19600 cm^{-1} dominiert und es ist keinerlei messbare Stokes-Verschiebung vorhanden. Die Halbwertsbreiten der 0-0-Übergänge der Spektren betragen 25 cm^{-1} (FL) bzw. 40 cm^{-1} (FLE). Die Dämpfung der vibronischen Banden bezogen auf den 0-0-Übergang ist in diesen Spektren deutlich stärker ausgeprägt als für die Q-Phase auf NaCl und wird in Abschnitt 7.4.4 im Detail diskutiert werden. Unter entsprechender Vergrößerung sind dennoch einzelne Vibrationsmoden zu erkennen. Die Auflösung dieser Moden ist besser als für PTCDA auf NaCl, was vermutlich auf eine höhere strukturelle Ordnung der Filme zurückzuführen ist. Die vibronischen Signaturen der Fluoreszenzspektren der Q- und der BW-Phase sind sehr ähnlich. Auf einen detaillierten Vergleich wie er für die d- und die d’-Phase in Abschnitt 7.1 durchgeführt wurde, wurde verzichtet, da dies aufgrund der mangelnden Auflösung in der Q-Phase nicht sinnvoll erschien.

Anhand des gespiegelten FL-Spektrums in Abbildung 7.11 ist klar zu erkennen, dass das FL-Spektrum und das FLE-Spektrum der BW-Phase nicht spiegelbildlich zueinander sind. Der Abstand der vibronischen Banden vom 0-0-Übergang ist dabei im
FLE-Spektrum größer als im FL-Spektrum. Diese Asymmetrie wurde bereits früher bei Raumtemperatur für PTCDA-Monolagen auf KCl-Volumenkristallen beobachtet [16]. Dass diese Asymmetrie für eine PTCDA-Monolage auf KCl beobachtet wird, aber nicht für vereinzelte Moleküle auf derselben Oberfläche (vgl. Abbildung 7.2), belegt, dass die Asymmetrie durch die Aggregation der Moleküle (d. h. durch die intermolekularen Wechselwirkungen) verursacht wird und nicht durch die Wechselwirkung mit der Oberfläche, wie früher vermutet wurde [16]. In Abschnitt 7.4.3 wird diskutiert, wie genau die Aggregation der Moleküle und die damit verbundene Ausbildung von Exzitonenbändern die Asymmetrie der Spektren bewirkt.

Abbildung 7.11: FL- (schwarz), FLE- (rot) und gespiegeltes FL-Spektrum (grau) der BW-Phase von PTCDA auf KCl/Ag(100) (T=20 K, $\lambda_{\text{exc}}=471$ nm, $\lambda_{\text{det}}=555$ nm). Ein Teil der Spektren ist vergrößert dargestellt, damit die vibronische Struktur besser erkannt werden kann. Die gestrichelte Linie markiert die energetische Position des 0-0-Übergangs der d'-Phase von PTCDA auf KCl. Die Halbwertsbreite des 0-0-Übergangs des hier gezeigten FL-Spektrums ist bereits durch das verwendete Gitter (300g/mm) begrenzt. Die im Text angegebene Halbwertsbreite wurde hingegen unter Verwendung eines höher auflösenden Gitters (1200g/mm) ermittelt.

Auch für PTCDA auf KCl führt die Aggregation der Moleküle in zweidimensionalen Lagen zu einer Rotverschiebung des 0-0-Übergangs bezüglich des 0-0-Übergangs der Monomere (d'-Phase). Die Rotverschiebung ist mit 400 cm$^{-1}$ größer als die für die Q-Phase beobachtete.

Wie in Abschnitt 6.2.2 bereits dargelegt wurde, kann auf dünnen NaCl-Filmen neben der Q-Phase mit der HB*-Phase eine weitere Monolagenphase präpariert werden.
Die HB*-Phase ist metastabil und kann nicht als reine Phase präpariert werden, was eine spektroskopische Charakterisierung dieser Phase erschwert. Es war aber mög- 
lich den Phasenübergang von der HB*-Phase in die Q-Phase schrittweise zu induzie-
ren und den PTCDA-Film sowohl mit Fluoreszenzspektroskopie als auch mit Elektro-
enbeugung zu charakterisieren. Die Ergebnisse eines solchen Experiments zeigt 
Abbildung 7.12.

Das Experiment bestand aus der Präparation des PTCDA-Films bei tiefer Tempera-
tur und anschließendem schrittweisem Tempern. Nach jedem Temperschritt wurde 
die Probe wieder auf 20 K gekühlt, ein Fluoreszenzspektrum aufgenommen und ein 
Elektronenbeugungsprofil gemessen. Abbildung 7.12 zeigt eine Serie von FL-
Spektren, die für einen PTCDA-Film auf NaCl nach schrittweisem Tempern aufge-
nommen wurden. Im Einsatz sind die entsprechenden LEED-Profile, die entlang der 
[11]-Richtung des Substrats gemessen wurden, gezeigt. Der strukturelle Phasen-
übergang, der anhand der LEED-Profile eindeutig festgestellt werden kann, schlägt 
sich auch in den Fluoreszenzspektren nieder. Diese weisen zunächst nur einen 
0-0-Übergang bei 19120 cm⁻¹ auf. Nach einigen Temperschritten ist zusätzlich der 
0-0-Übergang der Q-Phase bei 19380 cm⁻¹ zu erkennen. Es ist klar zu erkennen, wie 
der Peak des 0-0-Übergang der HB*-Phase kontinuierlich durch den der Q-Phase 
ersetzt wird, bis der Phasenübergang abgeschlossen ist.

Die Fluoreszenzspektren der Q-Phase und der HB*-Phase sind gegeneinander 
verschoben, weisen aber näherungsweise dieselbe Form auf, die durch die vibroni-
sche Signatur des Moleküls gegeben ist. Daraus kann man direkt schlussfolgern, 
dass es sich auch bei der HB*-Phase um eine Monolagenphase handelt. 
FL-Spektren von PTCDA-Multilagenphasen haben nämlich eine vollkommen andere 
Struktur (vgl. Abschnitt 3.3.). Diese von strukturellen Methoden unabhängige Identifi-
zierung der HB*-Phase als Monolagenphase ist wichtig, da diese Phase ähnliche 
Gitterkonstanten aufweist, wie die HB-Phase, die aber eine Multilagenphase ist.

Die Auflösung der vibronischen Struktur ist in der HB*-Phase etwas schlechter als in 
der Q-Phase, was vermutlich auf eine schlechtere strukturelle Ordnung in der 
HB*-Phase zurückzuführen ist. Die Rotverschiebung des 0-0-Übergangs der 
HB*-Phase gegenüber der energetischen Position von PTCDA-Monomeren auf NaCl 
beträgt 560 cm⁻¹ und ist damit die größte aller untersuchten Monolagenphasen.
Abbildung 7.12: FL-Spektren (rechts, gemessen bei 20 K, $\lambda_{\text{exc}}$=476 nm) und SPA-LEED-Profile (Einsatz links), die während des Phasenübergangs von der metastabilen HB*-Phase in die Q-Phase erhalten wurden. Von unten nach oben nimmt der Anteil der Q-Phase auf Kosten der HB*-Phase zu. Dies kann in den LEED-Scans erkannt werden, in denen die Beiträge der HB*-Phase und der Q-Phase markiert sind. Für weitere Details zu den LEED-Scans wird auf Abschnitt 6.2.2 verwiesen.


Typische Zerfallskanäle in PTCDA-Volumenkristallen schließen die Besetzung von Fallen und die Bildung von Exzimeren und Charge-Transfer-Exzitonen ein [138]. Diese Zerfallskanäle sind für Monolagen von PTCDA nicht vorhanden. Dies wird bestätigt durch die vibronischen Signaturen, die mit denen der Monomere übereinstimmen und durch äußerst geringe Stokes-Verschiebungen, die vergleichbar groß sind wie die Stokes-Verschiebungen der Monomere auf denselben Oberflächen.

In den nachfolgenden Abschnitten werden besondere Aspekte der Monolagenphasen im Detail diskutiert. In Abschnitt 7.3.2 wird zunächst eine Einführung in die Berechnung der Exzitonenbandstrukturen der Monolagen gegeben. Diese werden dann in Abschnitt 7.3.3 benutzt, um die beobachteten Rotverschiebungen zu diskutieren. In Abschnitt 7.4 werden die Linienform des 0-0-Übergangs, die Lage der vibronischen Banden im FLE-Spektrum und die Dämpfung der Intensität der vibronischen Banden im FL-Spektrum diskutiert werden.

7.3.2 Zweidimensionale Kopplung und Exzitonenbandstrukturen

Um die im vorherigen Abschnitt präsentierten Spektren der PTCDA-Monolagen zu verstehen, wurden die Exzitonenbandstrukturen der drei beobachteten Monolagen berechnet. In diesem Abschnitt wird ihre Berechnung erläutert und die Bandstrukturen diskutiert. Die Berechnung der Bandstrukturen wurde auf Grundlage der in Abschnitt 2.3.3 vorgestellten Theorie durchgeführt. Für die Berechnung wurden die Monolagen als zweidimensionale Kristalle unendlicher Ausdehnung genähert, d. h.
finite-size Effekte und ein möglicher Einfluss von Defekten wurde vernachlässigt. Wie in Abschnitt 2.3.3 beschrieben, vereinfacht sich Berechnung für diesen Fall im Wesentlichen auf die Berechnung und Summation der Transfermatrixelemente. Die Transfermatrixelemente wurden in der Punktdipolnäherung nach Gleichung 2.20 und 2.21 berechnet. Für die PTCDA-Monolagen ist diese Näherung vernünftig, da die räumliche Ausdehnung der Übergangsdichteverteilung klein ist verglichen mit den intermolekularen Abständen [126,174].

Für die Berechnung der Exzitonenbandstruktur muss nach Gleichung 2.23 bzw. 2.25 die Summation über unendlich viele Transfermatrixelemente ausgeführt werden. Im Rahmen der vorliegenden Arbeit wurde für die Berechnung das Molekül am Ursprung durch ein Gitter von 400 × 400 Elementarzellen umgeben. Dass diese Größe ausreichend ist, um ein unendlich ausgedehntes Molekülgitter zu beschreiben, wird am Ende dieses Abschnitts gezeigt werden. Das Substrat blieb bei den Rechnungen unberücksichtigt, es wurden also freistehende Monolagen betrachtet. Für die Berechnung aller Bandstrukturen wurde ein Wert von $\mu=7.4$ D angenommen, der von Hoffmann et al. ermittelt wurde [175], und für den Franck-Condon-Faktor des rein elektronischen Übergangs, der Wert von $f_{00}=0.21$, der in Abschnitt 7.1 bestimmt wurde.

Die derart erhaltenen Exzitonenbandstrukturen der BW-Phase, der Q-Phase und der HB*-Phase sind in Abbildung 7.13 gezeigt. Die Einsätze in den Graphen zeigen jeweils die Brillouin-Zonen und die Richtungen inäquivalenter Symmetrie. Im Folgenden werden zunächst die Bandstrukturen in der Reihenfolge zunehmender Komplexität diskutiert.

Abbildung 7.13: Exzitonen-Bandstrukturen der Monolagenphasen von PTCDA. Berechnet für das Exzitonenband des vibronischen Grundzustands im elektronisch angeregten Zustand (f=0.21, \( \mu \)=7.4 D). Die Einsätze erläutern die Richtungen in der Brillouin-Zone.
Die Bandstruktur der **Q-Phase** weist eine starke Ähnlichkeit mit der Bandstruktur der BW-Phase auf. Dies lässt sich anschaulich verstehen, da sich die molekulare Anordnung der Q-Phase durch die Überlagerung zweier Gitter mit Backsteinanordnung, die um 90° gegeneinander verdreht sind, beschreiben lässt. Im Gegensatz zur Bandstruktur der BW-Phase besteht die Bandstruktur der Q-Phase allerdings aus zwei Exzitonenbändern, da die Elementarzelle zwei Moleküle enthält. Entlang drei von vier Richtungen der Brillouin-Zone sind die Bänder allerdings entartet. Auch am Γ-Punkt sind die Bänder energiegleich, d. h. es liegt keine Davydov-Aufspaltung vor. Die energetische Absenkung im globalen Minimum (am Γ-Punkt) beträgt für die Q-Phase 54 cm⁻¹. Dieser deutlich kleinere Wert verglichen mit dem Wert der BW-Phase kommt durch die größeren intermolekularen Abstände innerhalb der Backstein-Untergitter zustande und durch die schwache Kopplung zwischen diesen Untergittern zustande. Die Berechnung der Exzitonenableitung der Q-Phase wird später im Verlauf dieses Abschnitts noch detaillierter erläutert.

Genau wie die Elementarzelle der Q-Phase enthält auch die Elementarzelle der **HB*-Phase** zwei Moleküle. Aufgrund der geringeren Symmetrie der Struktur sind diese aber nur noch entlang der $X_\beta$M- und der $X_\delta$M'-Richtungen entartet. Auch am Γ-Punkt sind die beiden Bänder nicht entartet, d. h. es liegt eine Davydov-Aufspaltung vor. Die Absenkung am Γ-Punkt beträgt für das energetisch günstigere Band 113 cm⁻¹, die Davydov-Aufspaltung zum energetisch höher liegenden Band 77 cm⁻¹. Die Davydov-Aufspaltung sollte prinzipiell im FLE-Spektrum der HB*-Phase messbar sein. Dies wäre insbesondere interessant, da aus ihr der Winkel zwischen den Übergangsdiolen der nicht translationsäquivalenten Moleküle berechnet werden könnte. Leider gelang es auf Grund der Metastabilität der HB*-Phase experimentell jedoch nicht die Davydov-Aufspaltung nachzuweisen.

Im Vergleich mit der Q-Phase führt die nicht-senkrechte Anordnung der Moleküle in der Elementarzelle der HB*-Phase zu einer deutlich stärkeren energetischen Absenkung am Γ-Punkt. Außerdem weist die Bandstruktur der HB*-Phase am Γ-Punkt im Gegensatz zu den Bandstrukturen der BW-Phase und der Q-Phase kein globales Minimum auf. Dieses findet sich vielmehr in der ΓM-Richtung. Es liegt jedoch nahe des Γ-Punktes und liegt nur 3.5 cm⁻¹ tiefer. Diese Tiefe entspricht einer Temperatur von 5 K ($k_B T$). Im Folgenden wird daher davon ausgegangen, dass die Emission weiterhin vom Γ-Punkt erfolgt und die Bandstruktur näherungsweise durch ein J-Aggregat beschrieben werden kann.

Nach dieser Diskussion der Bandstrukturen der verschiedenen Monolagenphasen, wird im Folgenden zur Verdeutlichung die Berechnung der Bandstruktur der Q-Phase explizit ausgeführt, wobei auch auf einige Besonderheiten dieser Bandstruktur eingegangen wird.
Die Elementarzelle der Q-Phase enthält zwei Moleküle, die gegeneinander um 90° verdreht sind. Ein Molekül sitzt auf der Ecke der Elementarzelle, das andere ist flächenzentriert in der Elementarzelle. Nach Gleichung 2.25 erhält man daher zwei Exzitonenbänder.

Die folgende Summation der Transfermatrixelemente wird anhand von Abbildung 7.14 erläutert. Die Summation wird schalenweise um das Molekül im Zentrum des Clusters ausgeführt:

- Für Wechselwirkungen mit den nächsten Nachbarn (grau) gilt $M=0$, da sowohl die Übergangsdipole senkrecht aufeinander stehen, als auch jeweils einer der Übergangsdipole senkrecht auf $\bar{r}$ steht. $\bar{r}$ bezeichnet dabei den Vektor, der die Schwerpunkte der Moleküle verbindet.
Die Wechselwirkung mit den übernächsten Nachbarn (hellblau) beträgt in allen vier Fällen $M = -5.97 \text{ cm}^{-1}$.

Gegenüber den dritt nächsten Nachbarn treten sowohl attraktive (hellgrün, $-8.45 \text{ cm}^{-1}$) als auch repulsive (dunkelgrün, $+4.22 \text{ cm}^{-1}$) Wechselwirkungen auf, da sich die relative Anordnung zum Ursprungsmolekül unterscheidet.

Die Wechselwirkung mit den viert nächsten Nachbarn ist die erste Wechselwirkung zwischen senkrecht zueinander orientierten Molekülen, die ungleich null ist, da $\tilde{r}$ weder auf $\tilde{i}_a$ noch auf $\tilde{i}_b$ senkrecht steht. Für $k = 0$ (am $\Gamma$-Punkt) sind alle 8 Wechselwirkungen betragsmäßig gleich. Da jedoch genau die Hälfte attraktiv (hellgelb, $-3.63 \text{ cm}^{-1}$) und die Hälfte repulsiv (dunkelgelb, 3.63 cm$^{-1}$) sind kom pensieren sie sich gerade.


Für die Berechnung der Bandstrukturen muss im Prinzip die Wechselwirkung des Ursprungsmoleküls mit allen anderen Molekülen aufsummiert werden. Wie bereits beschrieben wurde, wurde das Molekül am Ursprung aber nur durch einen Cluster von $400 \times 400$ Elementarzellen umgeben. A priori ist zu prüfen, ob diese Größe des Cluster ausreichend ist. Um diese Fragestellung zu klären wurde die Abhängigkeit der Absenkung der Energie am $\Gamma$-Punkt von der Größe des betrachteten Clusters untersucht.

Abbildung 7.15 zeigt die Absenkung der Energie am $\Gamma$-Punkt für das Beispiel der Q-Phase in Abhängigkeit von der Größe des betrachteten Clusters. Zunächst fällt die Energie sehr steil ab, konvergiert dann aber relativ schnell. Zwischen einer Clustergröße von $400 \times 400$ Elementarzellen und einer Clustergröße von $600 \times 600$ Elementarzellen unterscheidet sich die Energieabsenkung nur noch um 1 %. Hieraus wurde geschlossen, dass eine Clustergröße von $400 \times 400$ Elementarzellen für die Berechnung der Bandstruktur der Q-Phase ausreichend ist. Die Konvergenz wurde auch für die Bandstrukturen der HB*- und der BW-Phase überprüft. Auch für diese Strukturen ist eine Clustergröße von $400 \times 400$ Elementarzellen für die Berechnung der Bandstruktur ausreichend.

7.3.3. Diskussion der Bandenverschiebungen in der Monolage

Die im vorherigen Abschnitt berechneten Bandstrukturen und hierbei insbesondere die Absenkungen der Energie am Γ-Punkt werden in diesem Abschnitt genutzt, um die Rotverschiebungen, die beim Übergang von Monomeren zu kondensierten Monolagen auftreten, zu diskutieren.

Wie in Tabelle 7.4 zusammengefasst ist, wurden auf NaCl Rotverschiebungen um 300 cm⁻¹ (Q-Phase) und um 560 cm⁻¹ (HB*-Phase) gegenüber der energetischen Position der Monomere (d-Phase) beobachtet. Auf KCl wurde eine Rotverschiebung des 0-0-Übergangs der BW-Phase um 400 cm⁻¹ gegenüber der Position der d'-Phase beobachtet. Eine Verschiebung der gleichen Größenordnung (≈240 cm⁻¹) konnte auch für die Aggregation von PTCDA auf Glimmer von Proehl et al. beobachtet
werden [18], konnte aber noch nicht eindeutig mit strukturellen Daten korreliert werden.

Für alle drei untersuchten Monolagenphasen sind damit die experimentell beobachteten Rotverschiebungen deutlich größer als die theoretisch aufgrund der Absenkung der Energie am $\Gamma$-Punkt der Exzitonenbandstruktur erwarteten Zahlenwerte. Auch qualitativ finden sich Differenzen. Gemäß den Bandstrukturrechnungen würde man erwarten, dass die beobachtete Rotverschiebung von der Q-Phase über die HB*-Phase zur BW-Phase zunimmt. Tatsächlich findet man aber, dass die HB*-Phase die größte Rotverschiebung aufweist.

**Tabelle 7.4:** Beiträge zur Rotverschiebung in PTCDA-Monolagen auf Alkalihalogeniden. Für die Fehler von $E(k) - E_0 - D$ wurde nur der Fehler des Franck-Condon-Faktors berücksichtigt. Die Fehler der Verschiebung gegenüber dem Monomer berücksichtigen Schwankungen in der experimentell bestimmten Linienlage und die Messgenauigkeit des Spektrometers. Die Fehler von $D_{mol}$ ergeben sich als geometrischer Mittelwert der beiden vorgenannten Fehler. Die Fehler von $D_{sub}$ ergeben sich aus der Messgenauigkeit des Spektrometers.

<table>
<thead>
<tr>
<th></th>
<th>BW-Phase (on KCl)</th>
<th>Q-Phase (on NaCl)</th>
<th>HB*-Phase (on NaCl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{sub}$ (cm$^{-1}$)</td>
<td>-980 ± 5</td>
<td>-1300 ± 5</td>
<td>-1300 ± 5</td>
</tr>
<tr>
<td>$E(k) - E_0 - D$ (cm$^{-1}$)</td>
<td>-130 ± 20</td>
<td>-54 ± 8</td>
<td>-113 ± 17</td>
</tr>
<tr>
<td>$D_{mol}$ (cm$^{-1}$)</td>
<td>-270 ± 20</td>
<td>-246 ± 20</td>
<td>-447 ± 26</td>
</tr>
<tr>
<td>Verschiebung gegen Monomer (cm$^{-1}$)</td>
<td>-400 ± 5</td>
<td>-300 ± 20</td>
<td>-560 ± 20</td>
</tr>
<tr>
<td>Flächendichte ($10^{13}$ cm$^{-2}$)</td>
<td>6.32</td>
<td>6.99</td>
<td>7.33</td>
</tr>
</tbody>
</table>

Die Differenzen zwischen den theoretischen Vorhersagen der Verschiebungen auf Grundlage der Bandstrukturen und den experimentell beobachteten Rotverschiebungen sind auf Polarisationsbeiträge, die durch den Term $D$ in Gleichung 2.23 berücksichtigt werden, zurückzuführen. Dieser Term wird nämlich bei der Berechnung der exzitonischen Bandstruktur nicht berücksichtigt. Es muss sich dabei um eine Polarisierung der molekularen Nachbarschaft ($D_{mol}$) handeln, da der Beitrag für die Monolagenphasen vorhanden ist, aber für die Monomere nicht.

Durch Differenzbildung erhält man für die Polarisationsbeiträge 270 cm$^{-1}$ (BW-Phase), 246 cm$^{-1}$ (Q-Phase) und 447 cm$^{-1}$ (HB*-Phase). Der Beitrag durch die Polarisierbarkeit der molekularen Nachbarschaft ist also stark von der Struktur der Monolage abhängig. Die relevanten Zahlenwerte sind in Tabelle 7.4 zusammen mit der

---

1 Die Berechnung von $E(k) - E_0 - D$ und die darauf basierende Bestimmung von $D_{mol}$ ist abhängig vom angenommenen Übergangsdipolmoment der Moleküle (vgl. Gleichung 2.25). Daher ergibt sich ein zusätzlicher Fehler aus der Unsicherheit des Zahlennwertes des Übergangsdipolmoments, der aber im Rahmen der vorliegenden Arbeit vernachlässigt wurde.
molekularen Flächendichte der entsprechenden Phasen aufgeführt. Die Zahlenwerte zeigen klar, dass für eine Beschreibung von $D_{\text{mol}}$ eine Betrachtung der Flächendichte nicht ausreichend ist, da $D_{\text{mol}}$ für die BW-Phase größer ist als für die Q-Phase, obwohl die Flächendichte der Q-Phase größer ist. Offensichtlich ist die exakte Anordnung der Moleküle zueinander in der Monolage entscheidend.

Durch zeitabhängige DFT-Rechnungen an PTCDA-Dimeren wurden ähnliche Rotverschiebungen in den Übergangsenenergien durch Polarisationsbeiträge vorhergesagt [177]. Die dabei verwendeten Geometrien entsprechen denen aus der $\alpha$-Phase von PTCDA-Volumenkristallen und kommen damit der Situation in der HB*-Phase sehr nahe. Für die Wechselwirkung mit den vier nächsten Nachbarn kann auf dieser Grundlage ein Wert von $D_{\text{mol}} \approx 500 \text{ cm}^{-1}$ ($4 \times 16 \text{ meV}$) erwartet werden in guter Übereinstimmung mit dem experimentellen Wert von 447 cm$^{-1}$. Diese gute Übereinstimmung deutet darauf hin, dass der Großteil der Polarisierungsenergie von den direkten Nachbarmolekülen hervorgerufen wird. Dies lässt weiterhin schließen, dass der Beitrag durch die Polarisierbarkeit kurzreichweitig ist und somit stark von den intermolekularen Abständen abhängt.
7.4. Detaillierte Analyse der Spektren der BW-Phase

Nachdem im vorangegangenen Abschnitt die Rotverschiebung, die durch die Aggregation der Moleküle in einer Monolage auf einem Substrat hervorgerufen wird, diskutiert wurde, wird in diesem Abschnitt die spektrale Form der Spektren der BW-Phase näher analysiert. Im Einzelnen werden FLE-Spektren der BW-Phase hinsichtlich der Linienform des 0-0-Übergangs (Abschnitt 7.4.1), ihrer Temperaturabhängigkeit (Abschnitt 7.4.2) und der Lage der vibronischen Banden (Abschnitt 7.4.3) diskutiert. Bei der Analyse des FL-Spektrums liegt der Schwerpunkt hingegen auf der Analyse und Diskussion der Intensität der vibronischen Banden in Abhängigkeit von der Temperatur (Abschnitt 7.4.4 und 7.4.5).

7.4.1. Linienform der 0-0-Bande der BW-Phase bei tiefer Temperatur

In Abbildung 7.16 sind FLE-Spektren der d'-Phase und der BW-Phase bei 20 K gezeigt. Man kann erkennen, dass die 0-0-Bande der BW-Phase eine größere Halbwertsbreite aufweist als die 0-0-Bande der d'-Phase und dass dies dadurch zustande kommt, dass die 0-0-Bande der BW-Phase eine starke Asymmetrie mit einer langsamer abfallenden Flanke auf der Hochenergieseite aufweist. Im Gegensatz dazu hat die 0-0-Bande der d'-Phase ein weitgehend symmetrisches Profil.

Abbildung 7.16: FLE-Spektren der BW-Phase (schwarz) und der d'-Phase (rot), beide gemessen bei 20 K. Das Spektrum der d'-Phase wurde um -405 cm⁻¹ verschoben, damit die Profile der 0-0-Übergänge direkt verglichen werden können. Man kann deutlich erkennen, dass der 0-0-Übergang der BW-Phase eine Asymmetrie aufweist, die im Spektrum der d'-Phase nicht vorhanden ist. \( \lambda_{\text{det}} = 625 \text{ nm (BW-Phase)} \) und \( \lambda_{\text{det}} = 534 \text{ nm (d'-Phase)} \). Das Fehlen der vibronischen Bande im Spektrum der BW-Phase (bei 19840 cm⁻¹) ist auf Superradianz zurückzuführen. Dieser Effekt wird in Abschnitt 7.4.4 diskutiert.
Die Asymmetrie der 0-0-Bande der BW-Phase wurde bei allen experimentell untersuchten Temperaturen im Bereich von 20 K bis 260 K beobachtet. FLE-Spektren bei verschiedenen Temperaturen und mit entsprechend großer Spreizung sind in Abbildung 7.22 (Kap. 7.4.2, Seite 141) gezeigt. Dieser Abschnitt beschränkt sich auf eine Analyse der Linienform bei 20 K, während die Temperaturabhängigkeit der Linienform im nächsten Abschnitt diskutiert wird. Insbesondere wird im Folgenden gezeigt werden, dass die Asymmetrie der 0-0-Bande bei tiefen Temperaturen maßgeblich durch die endliche Größe der molekularen Aggregate bestimmt wird.


Im folgenden Modell wird davon ausgegangen, dass diese endlich großen Domänen der BW-Phase nicht miteinander koppeln und folglich separat voneinander betrachtet werden können. Dies ist insbesondere im Fall von Rotationsdomänen gerechtfertigt, da hier die Moleküle und damit auch die Übergangsdipole senkrecht zueinander angeordnet sind. Weiterhin wird im verwendeten Modell vernachlässigt, dass Größe und Form der Domänen auf der Oberfläche nicht einheitlich sind. Die folgende Betrachtung beschränkt sich nämlich auf die Betrachtung einer Domäne mit definierter
(mittlerer) Größe und Form. Für die Form der Domänen von PTCDA auf KCl sind \( a \) \textit{priori} zwei Möglichkeiten denkbar, die in Abbildung 7.18 dargestellt sind.


Im ersten Wachstumsmodus erfolgt das Wachstum der Domänen 45° verdreht zur Elementarzelle der Überstruktur (Abbildung 7.18 a), während im zweiten Wachstumsmodus ein Wachstum entlang der Einheitsvektoren der Überstruktur erfolgt (Abbildung 7.18 b). Im ersten Fall erwartet man ein anisotropes Wachstum der Moleküle und folglich rechteckige Domänen. Diese Art des Wachstums wurde für DiMe-PTCDI auf KBr(100) beobachtet [100,178]. Im zweiten Fall erwartet man hingegen ein isotropes Wachstum und die Ausbildung von quadratischen Domänen. Die nel \textit{et al.} haben AFM-Messungen an Submonolagen von PTCDA auf KCl-Volumenkristallen durchgeführt [16]. Durch die Ausrichtung der Inselkanten relativ zum Substrat und die näherungsweise quadratische Form der Inseln kann geschlossen werden, dass für PTCDA auf KCl der zweite Wachstumsmodus vorliegt. Dieselbe Ausrichtung der Inselkanten wurde auch für das Wachstum von PTCDA auf Ag(110) mittels STM bestimmt [118]. Daher besteht das im Folgenden verwendete Modell für eine Domäne aus \( N \times N \) Molekülen in einer Anordnung, wie sie in Abbildung 7.18 b) gezeigt ist.

Die exzitonische Kopplung zwischen den Molekülen führt in einem solchen Aggregat zur Ausbildung von \( N^2 \) neuen Zuständen. Aufgrund der endlichen Größe des Aggregates sind (im Gegensatz zu periodischen unendlich ausgedehnten Strukturen) Anregungen in alle Zustände erlaubt. Die relativen Intensitäten der Übergänge sind
durch die Oszillatorstärken der jeweiligen Zustände gegeben. Für die oben angegebene Anordnung wurden nun die Energien der N² Zustände des Aggregats und ihre Oszillatorstärken berechnet, was einem Stab-Absorptionsspektrum entspricht. Die Berechnung erfolgte dabei, wie in Abschnitt 2.3.2 beschrieben, innerhalb der Näherung der schwachen Kopplung in einem Einteilchenbild durch numerisches Diagonalisieren des Hamiltonoperators¹. Zunächst wurde geprüft, wie sich die Anzahl der berücksichtigten dipolaren Kopplungen auf das Ergebnis auswirkt.


¹ Die Berechnung erfolgte mit Hilfe von MATLAB-Skripten. Diese wurden auf Grundlage von Octave-Skripten, die von Dr. A. Eisfeld programmiert und zur Verfügung gestellt wurden [55], erstellt.
Abbildung 7.19 zeigt Stab-Spektren eines Aggregates aus 7×7 Molekülen unter Berücksichtigung (1) nur der Kopplungen zwischen nächsten Nachbarn (2) der Kopplungen zwischen nächsten und übernächsten Nachbarn und (3) aller Kopplungen. Man erkennt deutliche Unterschiede sowohl in der spektralen Form als auch in der energetischen Lage der Übergangsentnergien. Bezüglich der energetischen Lage ist festzustellen, dass die unter Berücksichtigung aller Kopplungen berechnete Peakverschiebung trotz der geringen Größe des Clusters bereits 75% des Werts von -130 cm⁻¹, der in Abschnitt 7.3.2 für eine zweidimensional unendlich ausgedehnte Monolage berechnet wurde, entspricht. Dies deutet daraufhin, dass die Diskussion aus Abschnitt 7.3 bei der alle PTCDA-Phasen als zweidimensionale Lagen unendlicher Ausdehnung betrachtet wurden und die endliche Größe der Domänen nicht berücksichtigt wurde, sinnvoll war. Berücksichtigt man hingegen nur die Kopplung zu nächsten oder nur zu nächsten und übernächsten Nachbarn, ergeben sich stark differierende Werte der Verschiebung, die 41% bzw. 54% der Verschiebung der unendlich ausgedehnten Lage entsprechen. Die Näherung nur Kopplungen zu (über)nächsten Nachbarn zu betrachten ist folglich im vorliegenden Fall unbrauchbar. In den nachfolgend beschriebenen Rechnungen wurden daher konsequenterweise immer alle Kopplungen innerhalb der Domäne berücksichtigt.


Die endliche Größe der Domänen der BW-Phase kann natürlich auch bei der Berechnung von Dmol berücksichtigt werden. Man erhält dann, da die durch die resonante Kopplung verursachte energetische Absenkung (E – E₀ – D = 100 cm⁻¹) jetzt kleiner ist als im Falle einer unendlich ausgedehnten Lage (E(k) – E₀ – D = 130 cm⁻¹), einen Wert von Dmol=300 cm⁻¹. Der Wert ist damit nur geringfügig größer (≈10%) als
der in Tabelle 7.4 angegebene Wert. Für die Q-Phase und die HB*-Phase kann man
tendenziell noch geringere relative Abweichungen erwarten, da der Anteil der reso-
nanten Verschiebung an der insgesamt beobachteten Verschiebung in beiden Fällen
die ausgedehnte periodische Struktur, wie sie in
die Nähe der Monolage als unendlich ausgedehnte periodische Struktur, wie sie in
Abschnitt 7.3.3 verwendet wurde, für die Bestimmung von $D_{mol}$ zulässig ist.

\[ E - E_0 - D \ (\text{cm}^{-1}) \]

Abbildung 7.21: Vergleich der experimentell gemessenen 0-0-Bande (schwarz, $T=20$ K, $\lambda_{det}=658$ nm) mit den theoretisch erwarteten Absorptionsprofilen (rot) für verschiedene Domäengrößen.

Bei der in diesem Abschnitt vorgenommenen Berechnung der Linienform der
0-0-Bande blieb ein möglicher Einfluss von Polarisierung der molekularen Nachbars-
schaft auf die Übergangssenergien (Term D in Gleichung 2.23) vollkommen unbe-
rücksichtigt. In Abschnitt 7.3.3 konnte aber für den Beitrag durch die benachbarten
Moleküle ($D_{mol}$) gezeigt werden, dass dieser Beitrag kurzreichweitig ist und stark von
der relativen Anordnung der Moleküle zueinander abhängt. Es erscheint daher
plausibel, dass $D_{mol}$ sich für Moleküle in der Nähe von Domänengrenzen und für
Moleküle im Inneren von Domänen unterscheidet. Auch für $D_{sub}$ können Variationen
vermutet werden. Ein wichtiger Faktor könnte hierbei z. B. die Entfernung des Mole-


Auf Grundlage der in diesem Abschnitt berechneten Stab-Spektren sollten sich im Prinzip auch die Linienprofile der FLE-Spektren bei höheren Temperaturen ableiten lassen. Dies wird im nächsten Abschnitt, der die Temperaturabhängigkeit der Linienform behandelt, diskutiert.

### 7.4.2. Abhängigkeit der spektralen Linienbreite von der Temperatur

Im vorherigen Abschnitt wurde die spektrale Linienform des 0-0-Übergangs im FLE-Spektrum bei der tiefsten experimentell zugänglichen Temperatur von 20 K analysiert. In diesem Abschnitt wird die Linienform desselben Übergangs als Funktion der Temperatur betrachtet.


Im Folgenden wird die Zunahme der Linienbreite mit zunehmender Temperatur näher betrachtet. Aufgrund der Asymmetrie der Linienform bietet sich eine Beschreibung über die Halbe Halbwertsbreite (HWHM) anstatt der üblicherweise verwendeten vollen Halbwertsbreite (FWHM) an. Dabei ist die HWHM einer Kurve als die Differenz zwischen der Abszissenposition des Kurvenmaximums und der Abszissenposition, bei der der Wert der Kurve 50% des Kurvenmaximums beträgt, definiert. Für die Spektren der Abbildung 7.22 wurde die HWHM des 0-0-Übergangs auf der hoch- und auf der niederenergetischen Seite durch einfaches Ausmessen bestimmt.

Die so gewonnen Werte sind in Abbildung 7.23 gegen die Temperatur aufgetragen. Man erkennt zunächst, dass die Halbwertsbreite auf der hochenergetischen Seite des Spektrums stets größer ist als die Halbwertsbreite auf der niederenergetischen Seite, was die bereits beschriebene Asymmetrie bestätigt. Außerdem kann man erkennen, dass sich die Abhängigkeit der halben Halbwertsbreiten von der Temperatur ab etwa 100 K gut durch einen linearen Anstieg mit der Temperatur beschreiben lässt. Auffällig ist jedoch, dass die hochenergetische Halbwertsbreite bei 260 K von diesem Trend deutlich nach oben abweicht. Vermutlich liegt dies daran, dass bei dieser Temperatur aufgrund der großen Halbwertsbreite des 0-0-Übergangs bereits...
niederenergetischen Vibrationsmoden zur Halbwertsbreite beitragen. Unterhalb von 100 K ist eine deutliche Abweichung vom linearen Verlauf der Halbwertsbreiten zu erkennen. Der Verlauf erinnert hier eher an eine asymptotische Annäherung an die Halbwertsbreiten bei 20 K.


Um dies zu überprüfen wurde eine Monte-Carlo-Simulation durchgeführt. Zunächst wurde der Hamilton-Operator des Aggregates durch Addition von $\varepsilon$-Werten modifiziert. Es wurde dabei, wie bei Schreiber et al., vorgegeben, dass diese Werte eine Gauß'sche Normalverteilung mit der Standardabweichung $\Delta \varepsilon$ bilden. Danach wurde der Hamilton-Operator gelöst, wodurch ein Absorptionsspektrum erhalten wurde. Für jede gegebene Verteilungsfunktion (für jedes $\Delta \varepsilon$) wurden diese Schritte 10000-mal durchgeführt. Anschließend wurde über die so erhaltenen Absorptionsspektren gemittelt. Dieses Vorgehen wurde für verschiedene Werte von $\Delta \varepsilon$ durchgeführt und die so erhaltenen Absorptionsbanden wurden mit den gemessenen Absorptionsbanden verglichen. Gemäß den Ergebnissen aus Abschnitt 7.4.1 wurde in den Rechnungen eine Aggregatgröße von $7 \times 7$ Molekülen verwendet.

Abbildung 7.24 zeigt beispielhaft anhand der FLE-Spektren bei 100, 160 und 260 K, dass sich die Form der gemessenen FLE-Spektren durch diese Berechnung gut reproduzieren lässt. Die Berechnung ergab Spektren auf einer x-Achse, auf der $E - E_0 - D$ aufgetragen ist, so dass die berechneten Spektren gegenüber den gemessenen Spektren zum Vergleich um einen Wert $\Delta \tilde{v}$ verschoben werden mussten. Dieser Wert sollte eigentlich für alle Spektren konstant sein, da er der Übergangsentnergie eines Moleküls in der BW-Phase bei Abwesenheit von exzitonscher Kopplung, d. h. $E_0 + D$ entspricht. Tatsächlich wurde aber gefunden, dass um eine optimale Übereinstimmung zu erhalten, bei höheren Temperaturen größere Werte von $\Delta \tilde{v}$
gewählt werden müssen. Das bedeutet, dass die berechneten Spektren eine Rotverschiebung der Absorptionsbande vorhersagen, die aber nicht beobachtet wurde. Diese erwartete Rotverschiebung ist durch die Differenz der Werte von $\Delta \nu$ gegeben. Bei Temperaturen von 100 K und 260 K beträgt sie 25 cm$^{-1}$. Sie ist damit klein gegenüber den Halbwertsbreiten bei diesen Temperaturen ($\approx$ 70 - 290 cm$^{-1}$), was eine mögliche Ursache dafür sein könnte, dass die Verschiebung experimentell nicht beobachtet werden konnte.

![Diagramm](image)

Abbildung 7.25: Abhängigkeit des Unordnungsparameters $\Delta \varepsilon$, der die jeweils beste Übereinstimmung zwischen simulierter und gemessener FLE-Bande lieferte, von der Temperatur.

Es kann weiterhin festgestellt werden, dass die Standardabweichung $\Delta \varepsilon$ der Verteilung des Unordnungsparameters $\varepsilon$, die die beste Übereinstimmung zwischen berechnetem und experimentellem Spektrum liefert, proportional zur Temperatur ist. Dieser Zusammenhang ist in Abbildung 7.25 für die gemessenen Spektren im Temperaturintervall von 60 bis 260 K gezeigt. Diese Beobachtung ist im Widerspruch zu den Simulationen von Schreiber et al., bei denen eine Proportionalität von $(\Delta \varepsilon)^2$ zur Temperatur verwendet wurde [179].
7.4.3. Analyse des FLE-Spektrums der BW-Phase

Nachdem in den beiden vorangegangenen Abschnitten die Form des rein elektronischen Übergangs im FLE-Spektrum analysiert wurde, werden in diesem Abschnitt Veränderungen der vibronischen Struktur des FLE-Spektrums der BW-Phase bezüglich der d'-Phase diskutiert. Diese Veränderungen sorgen dafür, dass FL- und FLE-Spektrum der BW-Phase nicht mehr spiegelflächlich zueinander sind (vgl. Abbildung 7.11). Es wird gezeigt werden, dass die Veränderungen qualitativ im Rahmen eines einfachen Modells verstanden werden können.

Abbildung 7.26: FLE-Spektren der BW-Phase (schwarz) und der d'-Phase (rot). Zur besseren Vergleichbarkeit wurden die Spektren vertikal und horizontal gegeneinander verschoben. Beide Spektren wurden bei einer Temperatur von 20 K gemessen. \( \lambda_{det}=534 \text{ nm} \) (d'-Phase) bzw. \( \lambda_{det}=555 \text{ nm} \) (BW-Phase).

Abbildung 7.26 zeigt ein FLE-Spektrum der BW-Phase im Vergleich zu einem Spektrum der d'-Phase. Folgende Unterschiede zwischen den Spektren können erkannt werden:

- Die vibronische Auflösung im FLE-Spektrum der BW-Phase ist deutlich gerin-
ger als im Spektrum der d'-Phase. Dies ist in erster Linie auf eine Verbreite-
rung der Linien aufgrund von finite-size Effekten zurückzuführen, wie sie in Abschnitt 7.4.1 diskutiert wurde. Im Verlauf dieses Abschnitts wird dieser Ef-
Die Intensität der vibronischen Banden in der BW-Phase ist gegenüber den vibronischen Banden der d'-Phase um etwa einen Faktor 3 - 10 geringer. Dieser Effekt ist im Bereich der schwachen Kopplung nicht zu erwarten und deutet darauf hin, dass die Kopplungssituation eher durch eine mittlere Kopplungsstärke zu charakterisieren ist [48]. Diese Veränderung des FLE-Spektrums wird in diesem Abschnitt nicht behandelt.

Die vibronischen Banden der BW-Phase befinden sich relativ zum rein elektronischen Übergang bei höherer Energie als in der d'-Phase. Dies ist der Punkt mit dem sich die Analyse dieses Abschnitts beschäftigt.

Um die energetischen Veränderung der vibronischen Struktur zu erklären, wird das Modell der schwachen Kopplung verwendet. Abbildung 7.27 greift die Veränderungen im Energieschema auf, die bereits in Abbildung 2.3 skizziert wurden.

Abbildung 7.27: Absorptions- (schwarz) und Emissionsprozesse (rot) in einzelnen Molekülen (links) und in einem schwach gekoppelten Moleküllaggregat (rechts). W bezeichnet die freie Exzitonenbandbreite. \( v_1 \) und \( v_2 \) bezeichnen zwei beliebige vibronische Zustände des elektronisch angeregten Zustands, deren Übergangswahrscheinlichkeiten vom Schwingungsgrundzustand des elektronischen Grundzustands durch die Franck-Condon-Faktoren \( f_{0,v_1} \) und \( f_{0,v_2} \) charakterisiert werden.

Im vorliegenden Fall eines J-Aggregats ist die Oszillatorstärke an der unteren Kante eines jeden Bandes konzentriert, so dass man sich sowohl für die Absorption als auch für die Emission auf den untersten Zustand eines jeden Bandes beschränken kann. Dadurch, dass sich die Franck-Condon-Faktoren der einzelnen vibronischen Zustände unterscheiden, sind die Abstände zwischen den Zuständen an der unteren Bandkante anders als die Abstände zwischen den entsprechenden vibronischen Zuständen des einzelnen Moleküls. Dieser Effekt führt nun zu einer Veränderung des Absorptionsspektrums. Das Fluoreszenzspektrum bleibt hingegen unverändert, da die Emission immer von der untersten Bandkante des untersten Zustands erfolgt und die Schwingungsstruktur durch die (unveränderten) Vibrationsniveaus des elektronischen Grundzustands zustande kommt.

Betrachtet man den elektronisch angeregten Zustand, so ist in einem einzelnen Molekül der Abstand zweier vibronischer Niveaus $\nu_1$ und $\nu_2$ (mit den Schwingungsfrequenzen $\omega_1$ und $\omega_2$) gegeben durch:

$$\Delta E_{\text{vib}} = h(\omega_1 - \omega_2).$$  \hspace{1cm} (7.10)

Da sich im Molekülaggregat die untere Bandkante des Zustands $\nu_i$ um einen Betrag $f_{0\nu_i} \cdot W/2$ unterhalb des zugehörigen Zustands eines einzelnen Moleküls befindet$^1$, verändert sich dieser energetische Abstand zweier vibronischer Niveaus beim Übergang zum Molekülaggregat zu:

$$\Delta E_{\text{vib}}(\nu_1, \nu_2) = h(\omega_1 - \omega_2) + \left(f_{0\nu_1} - f_{0\nu_2}\right) \cdot \frac{W}{2}. \hspace{1cm} (7.11)$$

Dabei bezeichnet $W$ die freie Exzitonenbandbreite, die bereits in Abschnitt 2.3.2 eingeführt wurde. Auf Grundlage von Gleichung 7.11 lässt sich nun die Vibrationsstruktur des Absorptionsspektrums des Aggregats berechnen, wenn die Franck-Condon-Faktoren aller Übergänge bekannt sind. Die Veränderungen in der vibronischen Struktur, die durch diese neuen energetischen Abstände hervorgerufen werden, werden im Folgenden als Umordnung der vibronischen Banden bezeichnet.

$^1$ An dieser Stelle und in Abbildung 7.27 wird vereinfachend angenommen, dass die Bandkanten des Exzitonenbandes symmetrisch um die energetische Position des ungekoppelten Zustands angeordnet sind. Für die spätere Simulation des FLE-Spektrums ist diese Näherung nicht relevant, da nur noch die untere Bandkante betrachtet werden muss.
Im Rahmen der vorliegenden Arbeit wurde die Vibrationsstruktur des Aggregats auf Grundlage der in Abschnitt 7.1.3 bestimmten Huang-Rhys-Faktoren in der Näherung des harmonischen Oszillators berechnet. Ferner wurden genauso wie in Abschnitt 7.1.3 Anregungen mit bis zu drei vibronischen Anregungen berücksichtigt. Für $W$ wurde bei der Berechnung ein Wert von 1240 cm$^{-1}$ verwendet. Aufgrund der Asymmetrie des Exzitonenbandes entspricht dieser Wert nicht der tatsächlichen Bandbreite$^1$. Er liefert dafür aber korrekt die für die Berechnung entscheidende Absenkung der unteren Bandkante gegenüber dem ungekoppelten Zustand$^2$. Das durch die Berechnung erhaltene Stab-Spektrum wurde abschließend mit einer Gauss-Funktion (FWHM=24 cm$^{-1}$) experimentell verbreitert.

Abbildung 7.28: Berechnetes Spektrum ohne (schwarz) und mit (blau) Berücksichtigung der Veränderung der Vibrationsstruktur durch die Aggregation. Das experimentell gemessene FLE-Spektrum ist vierfach überhöht dargestellt (rot). Alle Spektren wurden horizontal so gegeneinander verschoben, dass die 0-0-Übergänge bei derselben Position liegen.

Abbildung 7.28 zeigt ein auf diese Art berechnetes FLE-Spektrum, das gemessene FLE-Spektrum und ein berechnetes Spektrum ohne Berücksichtigung der Umord-

$^1$ Die tatsächliche freie Exzitonenbandbreite wurde zu 916 cm$^{-1}$ berechnet.

$^2$ Die Absenkung der unteren Bandkante eines vibronischen Niveaus $v_1$ gegenüber dem ungekoppelten Zustand ergibt sich als $W/2f_{0,1}$. Damit erhält man für den 0-0-Übergang mit $W=1240$ cm$^{-1}$ und $f_{0,1}=0.21$ gerade den in Tabelle 7.4 angegeben Wert von 130 cm$^{-1}$.
nungen der Vibrationsmoden. Zunächst kann man festhalten, dass die Verschiebung der Vibrationsmoden zu höheren Energien, die experimentell festgestellt wurde, vom Modell qualitativ korrekt vorhergesagt wird. Im Bereich der höherenergetischen Moden zwischen 21000 und 21500 cm⁻¹ ergibt sich darüber hinaus auch eine recht gute Übereinstimmung der Linienpositionen. Eine genauere quantitative Auswertung ist aber (1) aufgrund der mangelnden vibronischen Auflösung im experimentellen Spektrum und (2) aufgrund der Veränderungen der Intensität der vibronischen Bänder, die vom verwendeten Modell nicht vorhergesagt werden können, nicht möglich.

Zusammenfassend lässt sich damit sagen, dass eine Interpretation der Linienlagen im FLE-Spektrum der BW-Phase bereits im Modell der schwachen Kopplung prinzipiell möglich erscheint. Dies ist ein wichtiges Indiz dafür, dass die Annahme einer schwachen Kopplung bei den in der vorliegenden Arbeit untersuchten Monolagen gerechtfertigt ist.

7.4.4. Überhöhung des 0-0-Übergangs im FL-Spektrum

In Abschnitt 7.3.1 wurde bereits ein FL-Spektrum der BW-Phase von PTCDA auf KCl gezeigt (Abbildung 7.11) und darauf hingewiesen, dass die relative Intensität des rein elektronischen Übergangs im Vergleich mit dem FL-Spektrum von vereinzelten Molekülen (d'-Phase) erhöht ist. Durch Variation der verwendeten Anregungsleistung von 2·10⁻³ bis 60 W/cm² konnte festgestellt werden, dass dieser Effekt unabhängig von der Anregungsleistung ist. Der Effekt hängt hingegen stark von der Probentemperatur ab. Diese Abhängigkeit wird im Folgenden beschrieben und diskutiert.


In Abbildung 7.29 erkennt man, dass mit steigender Temperatur die Intensität der vibronischen Bänder bezüglich des 0-0-Übergangs zunimmt und dass die Linienbreiten der einzelnen Moden ansteigen. Dieser Abschnitt konzentriert sich auf den ersten Effekt.
7.4 Detaillierte Analyse der Spektren der BW-Phase

Im Folgenden wird das Verhältnis der Intensität des 0-0-Übergangs $I_0$ zu $I_n$, der Intensität einer bestimmten vibronischen Bande n, als $R_{em}$ bezeichnet:

$$R_{em} = \frac{I_0}{I_n}. \quad 7.12$$

Zunächst werden die experimentellen Werte von $R_{em}$ für den Fall vereinzelter Moleküle ($R_{em, mono}$) mit denen der BW-Phase verglichen. Die Intensität der Banden wird dabei durch ihre spektrale Fläche charakterisiert [180]. Die Bestimmung der spektralen Flächen gelingt zuverlässig, wenn die verschiedenen Vibrationsmoden sich klar voneinander separieren lassen.

Im vorliegenden Fall von PTCDA überlagern sich die verschiedenen Vibrationsmoden aber so stark, dass eine zweifelsfreie Bestimmung der spektralen Flächen der einzelnen Moden nicht möglich ist. Im Folgenden wird daher eine effektive 0-1-Mode betrachtet werden\(^1\), die neben Beiträgen hochenergetischer 0-1-Moden auch Beiträge von Kombinationsmoden enthält. Da die Abhängigkeit der Halbwertsbreiten der einzelnen Beiträge von der Temperatur nicht bekannt ist, ist nicht klar, wie die Integrationsgrenzen für diese effektive Mode gewählt werden müssen, um die spektrale Fläche der Mode bei allen Temperaturen korrekt und konsistent zu ermitteln.

Für den 0-0-Übergang ergibt sich die Problematik, dass bei höheren Temperaturen die Bestimmung der spektralen Fläche dadurch erschwert wird, dass niederenergetische Moden nicht mehr abgetrennt werden können, was zwangsläufig zu einem zu großen Wert von $I_0$ führt.

Wenn die Form und die Halbwertsbreiten der einzelnen vibronischen Moden identisch sind, so gilt, dass das Verhältnis der Maximalintensitäten zweier Peaks dem Verhältnis der spektralen Flächen derselben Peaks entspricht. Setzt man weiterhin voraus, dass die Peaks der verschiedenen Vibrationsmoden nicht zu stark überlagern und dass die Halbwertsbreiten aller Moden dieselbe Temperaturabhängigkeit aufweisen, so vereinfacht sich das Problem der Bestimmung der spektralen Flächen zu einer Bestimmung der Maximalintensitäten der Moden. Von hier an wird das Verhältnis der Maximalintensitäten mit $R_{em'}$ bezeichnet.

Im Rahmen der vorliegenden Arbeit wurden sowohl Werte für $R_{em'}$ als auch für $R_{em}$ bestimmt. Im Folgenden werden kurz die technischen Details der Bestimmung dieser Werte dargelegt. Für die Bestimmung von $R_{em'}$ wird lediglich die Intensität einer Referenzvibrationsbande benötigt. Hierfür wurde im Falle der BW-Phase die Bande bei 18320 cm\(^{-1}\) verwendet und im Fall der $d'$-Phase die gleiche Bande, die sich dann bei 18700 cm\(^{-1}\) befindet.

\(^1\) Die in diesem Abschnitt betrachtete effektive 0-1-Mode ist im Prinzip äquivalent zu der effektiven 0-1-Mode, wie sie für die Beschreibung von Spektren in Lösung verwendet wird.
Für die Bestimmung von \( R_{em} \) werden die spektralen Flächen des 0-0-Übergangs und eines 0-1-Übergangs benötigt. Für die Flächenbestimmung des 0-0-Übergangs wurde die hochenergetische halbe Halbwertsbreite des Peaks ausgemessen und die Fläche des Peaks dann unter Annahme eines Gauß'schen Profils berechnet. Dieses Vorgehen hat gegenüber der direkten Integration den Vorteil, dass die Verfälschung der spektralen Fläche durch niedenergetische Vibrationsmoden minimiert wird. Als Maß für die spektrale Fläche eines 0-1-Übergangs wurde das Spektrum für alle Temperaturen zwischen 18036 cm\(^{-1}\) und 18318 cm\(^{-1}\) (d'-Phase: 18435 bis 18717 cm\(^{-1}\)) integriert. Es sei erwähnt, dass die Wahl dieser festen Integrationsgrenzen bei höheren Temperaturen zwangsläufig zu einer Unterbewertung der spektralen Fläche führt, da durch die Zunahme der Halbwertsbreiten der einzelnen Komponenten deren spektrale Flächen in zunehmendem Maße außerhalb der Integrationsgrenzen liegen\(^1\). Außerdem sei nochmals erwähnt, dass die durch diese Integration ermittelte Fläche nicht der spektralen Fläche einer Vibrationsbande entspricht, son-

\(^1\) Es wurde versucht diesen Effekt zu minimieren, indem als Integrationsgrenzen gerade zwei relativ weit auseinanderliegende Maxima der Fluoreszenz (bei tiefer Temperatur) gewählt wurden.
dern lediglich proportional zu dieser ist. Tabelle 7.5 fasst die durch Integration und die durch die Maximalintensitäten ermittelten Werte zusammen.

**Tabelle 7.5:** Intensität der vibronischen Banden bezüglich des rein elektronischen Übergangs in Abhängigkeit von der Temperatur. Die Werte der zweiten bis vierten Spalte wurden aus Maximalintensitäten, die Werte der fünften bis siebten Spalte aus spektralen Flächen bestimmt. Spiegelstriche deuten an, dass die zugehörigen Werte nicht bestimmt wurden. Für die Berechnung der vierten und siebten Spalte wurden immer die bei 20 K gemessenen Werte von \( R_{em,mono} \) verwendet.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>( R_{em}' )</th>
<th>( R_{em,mono}' )</th>
<th>( R_{em}'/R_{em,mono}' )</th>
<th>( R_{em} )</th>
<th>( R_{em,mono} )</th>
<th>( R_{em}/R_{em,mono} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>143</td>
<td>5.0</td>
<td>29</td>
<td>38</td>
<td>2.0</td>
<td>20</td>
</tr>
<tr>
<td>60</td>
<td>69</td>
<td>–</td>
<td>14</td>
<td>19</td>
<td>–</td>
<td>9.9</td>
</tr>
<tr>
<td>80</td>
<td>44</td>
<td>–</td>
<td>8.7</td>
<td>15</td>
<td>–</td>
<td>7.4</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
<td>–</td>
<td>6.0</td>
<td>11</td>
<td>–</td>
<td>5.8</td>
</tr>
<tr>
<td>125</td>
<td>19</td>
<td>–</td>
<td>3.9</td>
<td>8.2</td>
<td>–</td>
<td>4.2</td>
</tr>
<tr>
<td>160</td>
<td>14</td>
<td>–</td>
<td>2.9</td>
<td>8.8</td>
<td>–</td>
<td>4.5</td>
</tr>
<tr>
<td>210</td>
<td>10</td>
<td>–</td>
<td>2.1</td>
<td>8.4</td>
<td>–</td>
<td>4.3</td>
</tr>
<tr>
<td>260</td>
<td>7.8</td>
<td>–</td>
<td>1.6</td>
<td>8.2</td>
<td>–</td>
<td>4.2</td>
</tr>
<tr>
<td>20</td>
<td>146</td>
<td>–</td>
<td>29</td>
<td>44</td>
<td>–</td>
<td>22</td>
</tr>
</tbody>
</table>

Tabelle 7.5 kann man entnehmen, dass die Intensität des 0-0-Übergangs bezogen auf die Intensität der vibronischen Seitenbanden durch die Aggregation der Moleküle in der BW-Phase deutlich zunimmt und dass die Größe dieser Zunahme stark temperaturabhängig ist. Bei 20 K findet man je nach verwendeter Methode eine Zunahme der Intensität des rein elektronischen Übergangs um einen Faktor 20 bis 30. Diese relative Veränderung der Intensität des 0-0-Übergangs, die durch die Aggregation hervorgerufen wird (d. h. \( R_{em}/R_{em,mono} \)), ist in Abbildung 7.30 als Funktion der Temperatur graphisch dargestellt. Im Folgenden wird dieser Effekt als *Überhöhung* des 0-0-Übergangs bezeichnet.


Wie in Abschnitt 2.3.2 bereits ausgeführt wurde, kann Superradianz theoretisch zu einer N-fachen Erhöhung der Oszillatorstärke des tiefstliegenden Zustands führen, wobei N die Anzahl der Moleküle im Aggregat bezeichnet. In der experimentellen Realität wird jedoch niemals eine Verstärkung um einen Faktor N beobachtet, da die kohärente Kopplung der Moleküle durch eine Reihe von Effekten begrenzt wird. Man ersetzt daher die Anzahl der Moleküle N durch die (kleinere) Anzahl der Moleküle über die das Exziton kohärent ausgedehnt ist, \( N_{coh} \). Zu den Effekten, die die Größe von \( N_{coh} \) begrenzen, gehören statische und dynamische Unordnung, Streuung an Phononen und die thermische Besetzung von Zuständen oberhalb der Bandkante.
Wie Spano in einer Reihe von theoretischen Arbeiten zeigen konnte [184,185], ist \( R_{em} \) ein Maß für \( N_{coh} \), d. h. für die Größe des Exzitons. Für ein vereinzeltes Molekül gilt zunächst, das der experimentell beobachtete Wert von \( R_{em} \) durch den Franck-Condon-Faktor, die kubische Frequenzabhängigkeit der spontanen Emission und die Instrumentenfunktion gegeben ist. In der Näherung des harmonischen Oszillators ergibt sich dann:

\[
R_{em,mono} = \frac{I_{0,mono}}{I_{0,mono}} = \frac{1}{S} \left( \frac{\nu_{00,mono}}{\nu_{01,mono}} \right)^3 \frac{\Gamma_{00,mono}}{\Gamma_{01,mono}},
\]

mit dem Huang-Rhys-Faktor \( S \), den Frequenzen \( \nu \) und der Sensitivität des Instruments \( \Gamma \). Für ein Aggregat von \( N_{coh} \) gekoppelten Molekülen wird die Intensität des 0-0-Übergangs um einen Faktor \( N_{coh} \) erhöht, so dass gilt:

\[
R_{em} = \frac{I_0}{I_1} = \frac{N_{coh}}{S} \left( \frac{\nu_{00}}{\nu_{01}} \right)^3 \frac{\Gamma_{00}}{\Gamma_{01}}.
\]
Aufgrund der *geringen* energetischen Verschiebung der Fluoreszenzspektren von d'-Phase und BW-Phase kann man nähern:

\[
\left( \frac{v_{00,\text{mono}}}{v_{01,\text{mono}}} \right)^3 \approx \left( \frac{v_{00}}{v_{01}} \right)^3 \quad \text{und} \quad \frac{\Gamma_{00,\text{mono}}}{\Gamma_{01,\text{mono}}} \approx \frac{\Gamma_{00}}{\Gamma_{01}}
\]

womit sich dann aus Gleichung 7.13 und 7.14 ergibt:

\[
\frac{R_{\text{em}}}{R_{\text{em,mono}}} \approx N_{\text{coh}}.
\]

Das bedeutet, dass ein Vergleich von \( R_{\text{em}} \) und \( R_{\text{em,mono}} \) einen direkten experimentellen Zugang zur Anzahl der kohärent gekoppelten Moleküle \( N_{\text{coh}} \) liefert.

Im vorliegenden Fall der BW-Phase von PTCDA kann aus der geringen Linienbreite geschlossen werden, dass statische Unordnung nicht wesentlich zur Begrenzung von \( N_{\text{coh}} \) beiträgt, sondern dass dynamische Unordnung der entscheidende Faktor ist. Für diesen Fall wurde \( N_{\text{coh}} \) von Möbius und Kuhn auf der Grundlage eines anschaulichen Modells für die vorliegende Backsteinanordnung zu:

\[
N_{\text{coh}} = \frac{E_{\text{bond}}}{k_B T} \quad 7.17
\]

abgeschätzt [52,182,186]. \( E_{\text{bond}} \) ist hierbei die Energie, die sich als Differenz zwischen dem tiefstliegenden Zustand des Aggregats und der Energie des freien Moleküls in der Gasphase für \( D=0 \) ergibt, d. h. es gilt \( E_{\text{bond}} = E_0 - E(k=0) \). Offensichtlich kann Gleichung 7.17 aber nur im Bereich tiefer Temperaturen gelten (für \( E_{\text{bond}} \geq k_B T \) gelten, da \( N_{\text{coh}} \geq 1 \) gelten muss. Für hohe Temperaturen muss folglich die Addition von 1 ergänzt werden.

Dies ist konsistent mit aktuelleren Arbeiten von Spano [180,184,185], die dieselbe Temperaturabhängigkeit von \( N_{\text{coh}} \) vorhersagen und zusätzlich auch die Abhängigkeit von der Dimension \( d \) des molekularen Aggregats behandeln. Nach diesen Arbeiten gilt:

\[
N_{\text{coh}} = 1 + \left( \frac{4\pi \hbar \omega_c}{k_B T} \right)^{d/2} \quad 7.18
\]

Hierbei ist \( \omega_c \) proportional zur Krümmung des Exzitonenbandes in der Näherung eines parabelförmigen Bandes [180,184].

Nach dem einfachen Modell von Möbius und Kuhn wurde \( N_{\text{coh}} \) für verschiedene Werte von \( E_{\text{bond}} \) als Funktion der Temperatur berechnet. Die entsprechenden Kurven sind in Abbildung 7.30 als durchgezogene Linien eingezeichnet. Man kann feststellen, dass die berechneten Kurven den Verlauf der experimentellen Werte qualitativ korrekt wiedergeben.
Für die Werte der Überhöhung, die auf Grundlage der spektralen Flächen bestimmt wurden (rote Punkte), wird der Verlauf im Temperaturbereich von 20 bis 125 K am besten durch $E_{\text{bond}}=300 \text{ cm}^{-1}$ beschrieben. Dieser Wert für $E_{\text{bond}}$ ist damit deutlich größer als der berechnete Wert für $E_{\text{bond}}$ von 130 cm$^{-1}$ (vgl. Abschnitt 7.3.2). Oberhalb von 125 K bleibt die Überhöhung nahezu konstant, was auf eine Unterbestimmung der spektralen Fläche der vibronischen Bande zurückzuführen ist.


Bei 20 K, der tiefsten im verwendeten Experiment zugänglichen Temperatur, ist das Exziton über etwa 20-30 Moleküle kohärent verteilt. Diese Anzahl ist deutlich geringer als die Anzahl der Moleküle in einer Domäne von etwa 50 - 70 Molekülen. Es kann daher erwartet werden, dass die Superradianz durch Verwendung tieferer Temperaturen noch deutlich verstärkt werden kann, da sie noch nicht durch die Größe der Domäne limitiert ist.

### 7.4.5. Diskussion der beobachteten Superradianz der BW-Phase

Im vorherigen Abschnitt wurde die Temperaturabhängigkeit der Überhöhung des 0-0-Übergangs im Fluoreszenzspektrum der BW-Phase analysiert und gezeigt, dass diese als Beleg für das Vorliegen von Superradianz gedeutet werden kann. In diesem Abschnitt werden diese Ergebnisse im Hinblick auf ähnliche Experimente, die in der Literatur verzeichnet sind, diskutiert.


Erst in den letzten Jahren wurde das superradiante Verhalten eines anderen Moleküls, Tetracen (Tc), vermehrt untersucht. Lim et al. konnten 2004 durch zeitaufgelöste Fluoreszenzmessungen erstmals zeigen, dass Tc-Dünnfilme Superradianz aufweisen [181]. Weiterhin beobachteten sie eine temperaturabhängige Überhöhung des 0-0-Übergangs der Fluoreszenz, wie sie auch in der vorliegenden Arbeit beobachtet wurde. Die Linienbreite der Fluoreszenzspektren von Lim et al. betrug allerdings auch bei einer Temperatur von 4 K noch etwa 700 cm\(^{-1}\), was auf ein hohes Maß an statischer Unordnung schließen lässt und die Frage aufwirft, inwiefern Fallenzustände am Emissionsprozess beteiligt sind. In der Tat konnten Voigt et al. in einer späteren Arbeit zeigen, dass Fallenzustände für die Emissionseigenschaften von Tc-Dünnfilmen eine wichtige Rolle spielen [190]. Für Tc-Einkristalle konnte kürzlich ebenso Superradianz beobachtet werden [191].


Abschließend lässt sich damit sagen, dass aufgrund der Kombination aus hoher vibronischer Auflösung und guter struktureller Kontrolle die Spektren der BW-Phase
als zukünftiger Prüfstein für theoretische Modelle prädestiniert sind. Dieser Vergleich wird möglicherweise zu einem besseren Verständnis von Superradianz führen.

Dieses verbesserte Verständnis kann dann eventuell genutzt werden, um zu verstehen, warum die Superradianz gerade in der BW-Phase so stark ist. Zwar wurde für die Q-Phase auch eine Überhöhung des 0-0-Übergangs festgestellt, diese war aber etwa um einen Faktor 15 geringer als für die Q-Phase. Nach Gleichung 7.17 ist dies zunächst nicht zu verstehen, da $E_{\text{bond}}$ nach Tabelle 7.4 für die Q-Phase etwa 40% und für die HB*-Phase sogar beinahe 90% des Werts der BW-Phase beträgt.

Man kann vermuten, dass die genaue Form der Bandstruktur einen Einfluss auf das Auftreten von Superradianz hat. Einen Hinweis darauf liefert Gleichung 7.18, die die Krümmung der Exzitonenbandstruktur berücksichtigt. Man kann nun spekulieren, dass im Falle der HB*-Phase die Superradianz dadurch verhindert wird, dass der $\Gamma$-Punkt nicht das globale Minimum der Bandstruktur ist.

Die Bandstruktur der Q-Phase unterscheidet sich nur in $\Gamma X$-Richtung von der Bandstruktur der BW-Phase. Daher kann man in diesem Fall vermuten, dass eventuell durch das untere Band, das eine geringe Krümmung am $\Gamma$-Punkt aufweist, das effektive Auftreten von Superradianz verhindert wird.

Da die Q- und die HB*-Phase beide auf NaCl-Filmen gewachsen werden, ist allerdings auch denkbar, dass das Substrat einen Einfluss auf das Auftreten von Superradianz hat. Ein Hinweis darauf, dass das Substrat generell einen Einfluss auf die Abregungskanäle adsorbierter Moleküle hat, ist die geringe Stokes-Verschiebung (≈30 cm⁻¹), die nur auf NaCl beobachtet wurde. Es ist allerdings vollkommen unklar, wie der Mechanismus einer solchen substratinduzierten Superradianzunterdrückung aussähe.
7.4 Detaillierte Analyse der Spektren der BW-Phase
8. Zusammenfassung und Ausblick


Aufdampfen von PTCDA auf die beschriebenen Alkalihalogenid-Dünnfilme führte zur Ausbildung von geordneten Monolagenstrukturen, die sich mit SPA-LEED charakterisieren ließen. In diesen Strukturen ist PTCDA sowohl auf NaCl als auch auf KCl flach liegend adsorbiert. Bei Raumtemperatur wurde auf beiden Substraten die Entnetzung zu Festkörperkristalliten beobachtet.

Auf NaCl wachsen PTCDA-Monolagen in Abhängigkeit von der Substrattemperatur in zwei unterschiedlichen Strukturen auf. Die kommensurable Q-Phase weist eine quadratische Einheitszelle mit zwei zueinander senkrecht orientierten Molekülen auf. Die rechtwinklige Einheitszelle der inkommensurablen HB*-Phase (vonengl. herringbone) enthält ebenfalls zwei Moleküle, die aber einen Winkel kleiner 90° einschließen, woraus eine Fischgrät-Anordnung der Moleküle resultiert. Die HB*-Phase wird durch Präparation bei geringer Substrattemperatur erhalten. Bei Erhöhung der Temperatur erfolgte eine Umwandlung in die stabilere Q-Phase.


Die Tatsache, dass die Anordnung der Moleküle in allen drei Monolagenphasen deutlich von der Anordnung in PTCDA-Volumenkristallen abweicht und dass sich die auf NaCl und auf KCl gefundenen Strukturen voneinander unterscheiden, belegt, dass die Anordnung durch das verwendete Substrat induziert wird. Ein gegensätzliches Bild ergibt sich für das Wachstum von PTCDA-Multilagen auf NaCl, das zusätzlich zu den Monolagen strukturell untersucht wurde. Die dabei ermittelte Einheitszelle entspricht der Einheitszelle der (102)-Ebene von Festkörperkristallen von PTCDA, was belegt, dass die Anordnung der Moleküle in den höheren Lagen entscheidend durch die intermolekularen Wechselwirkungen beeinflusst wird und sich nur die Anordnung der Moleküle der ersten Monolage durch das Substrat beeinflussen lässt.

Im Rahmen der optischen Untersuchungen von PTCDA konnte zunächst gezeigt werden, dass sich vereinzelte Moleküle auf Oberflächen mit optischer Spektroskopie untersuchen lassen. Die vereinzelten Moleküle wurden durch Aufdampfen einer sehr geringen Menge PTCDA (0.01 Monolagen) auf das kalte Substrat (T=20 K) präpariert. Durch die geringe Temperatur konnte eine Aggregation der Moleküle verhindert werden. Die FL- und FLE-Spektren dieser vereinzelten Moleküle sind sehr schmalbandig mit einer vollen Halbwertsbreite von weniger als 30 cm⁻¹. Aufgrund dieser geringen Linienbreite konnten in den Spektren einzelne Vibrationsmoden aufgelöst werden. Die Linienlagen der Vibrationsmoden relativ zum rein elektronischen Über-
gang zeigen nur geringe Abweichungen von den Linienlagen, die aus Experimenten in Helium-Tröpfchen bekannt sind [130,131], aber es konnte eine zusätzliche niederennergetische Bande \((v_s \approx 100 \text{ cm}^{-1})\) beobachtet werden, die durch das Substrat induziert wird. Zudem unterscheiden sich die absoluten Linienlagen deutlich von den in He-Tröpfchen beobachteten: auf KCl wurde eine Rotverschiebung der Fluoreszenz von 980 cm\(^{-1}\), auf NaCl eine Rotverschiebung von 1300 cm\(^{-1}\) beobachtet. Aus einer Simulation der Spekten der vereinzelten Moleküle auf KCl konnten die Huang-Rhys-Faktoren von PTCDA bestimmt werden. Durch die Kenntnis dieser Faktoren und der substratinduzierten Rotverschiebung konnten später die Spekten der kompakten Monolagen interpretiert werden.

Wie die Spekten der vereinzelten Moleküle, so ermöglichen auch die Spekten der PTCDA-Monolagen aufgrund sehr kleiner Linienbreiten die Auflösung von vibronischen Moden. Die Spekten weisen weiterhin keine (KCl) bzw. nur eine sehr geringe (30 cm\(^{-1}\), NaCl) Stokes-Verschiebung auf, was die Abwesenheit von fluoreszenten Fallen in diesen Filmen bestätigt. Neben diesen Gemeinsamkeiten gibt es aber auch einige Unterschiede zwischen den Spekten, die durch die Aggregation der Moleküle verursacht werden.

So sind die Spekten der Monolagen gegenüber den Spekten der vereinzelten Moleküle auf den entsprechenden Substraten um 300 cm\(^{-1}\) bis 560 cm\(^{-1}\) zu niedrigeren Energien verschoben. Die Größe dieser Verschiebung hängt von der strukturellen Anordnung der Moleküle und damit von der jeweiligen Phase ab (Q-Phase 300 cm\(^{-1}\), HB*-Phase 560 cm\(^{-1}\), BW-Phase 400 cm\(^{-1}\)). Zu der Verschiebung tragen sowohl resonante als auch nicht-resonante Wechselwirkungen der Moleküle bei. Durch eine Berechnung der resonanten Wechselwirkung im Rahmen der Exzitonentheorie konnte gezeigt werden, dass diese Wechselwirkung nur einen kleineren Anteil der Verschiebung erklärt (Q-Phase: 18%, HB*-Phase: 21%, BW-Phase 33%) und dass folglich der Anteil der Verschiebung aufgrund der nicht-resonanten Wechselwirkung überwiegt.


Die hohe Ähnlichkeit der Spekten von vereinzelten Molekülen und von Monolagen ist damit zu begründen, dass die Übergangsdiopolmomente der Moleküle in den Monolagen konstruktiv miteinander wechselwirken und dadurch zur Ausbildung eines
J-Aggregats führen. Im Gegensatz dazu wird die Wechselwirkung der Übergangsdi-
pole in Multilagen durch stark repulsive Wechselwirkungen der Übergangsdi-
pole verschiedener Lagen dominiert. Dies führt zur Ausbildung eines H-Aggregats und
erläutert damit die in diesem Fall beobachteten breitbandigen Spektren.

Die vorliegende Arbeit zeigt, dass es möglich ist Molekülaggregate einer Dicke von
nur einer molekularen Lage und sogar vereinzelte Moleküle auf Festkörperoberflä-
chen mit optischer Spektroskopie zu untersuchen. Daraus ergibt sich eine Reihe von
weiteren interessanten Fragestellungen, die im Folgenden diskutiert werden.

Für die weitere Untersuchung vereinzelter Moleküle erscheint zunächst die Untersu-
chung von PTCDA auf einer Substratoberfläche mit höheren Ionenladungen attraktiv.
Man kann erwarten, dass höhere Ionenladungen durch größere elektrostatische
Wechselwirkungen zu einer stärkeren Anbindung des Moleküls an das Substrat
führen. Dies könnte zu stärkeren Verschiebungen der Vibrationsmoden des adsor-
bierten Moleküls gegenüber den Adsorptionsmoden des freien Moleküls führen.
Besonders interessant wäre außerdem zu untersuchen, wie sich die Position der
Vibrationsbande, die durch das Substrat induziert wird, durch die höheren Ionenla-
dungen verändert. Die verstärkte Anbindung der Moleküle an die Oberfläche resul-
tiert weiterhin vermutlich in einer verminderten Diffusionrate der Moleküle auf der
Oberfläche. Eventuell ist die Anbindung stark genug, um die Aggregation der Mole-
küle auch bei Temperaturen überhalb von 20 K zu verhindern, was die Untersuchung
der Temperaturabhängigkeit von spektralen Eigenschaften einzelner Moleküle er-
möglichen würde.

Die Verwendung von Oberflächen mit höheren Ionenladungen wäre auch im Fall von
Monolagen interessant, da durch die zu erwartende stärkere Anbindung an die
Oberfläche eventuell das Entnetzen der Filme bei Raumtemperatur verhindert wer-
den kann. Dies würde ermöglichen, die molekularen Filme aus der in der vorliegen-
den Arbeit verwendeten Apparatur zu entnehmen und dann in anderen Experimenten
die Dynamik der Filme mit zeitaufgelöster Spektroskopie zu untersuchen. Ein mögli-
ches Substrat für die hier vorgeschlagenen Experimente auf Oberflächen mit höhe-
ren Ionenladungen wäre MgO, dessen Wachstum auf Ag(100) [194,195] und
Mo(100) [196] bereits untersucht wurde.

Methodisch erscheint es außerdem hochinteressant die Spektroskopie vereinzelter
Moleküle auf Oberflächen, wie sie in der vorliegenden Arbeit dargestellt wurde, zur
Spektroskopie von einem Einzelmolekül weiterzuentwickeln. Die spektralen Eigen-
schaften dieses Moleküls könnten dann analog zu Einzelmolekü-Experimenten an
Gast-Molekülen in Volumen-Festkörperkristallen [23,197-199] als Sonde für seine
lokale Umgebung verwendet werden. Auf diese Weise könnte z. B. der Einfluss von
Oberflächendefekten oder anderen Molekülen, die sich in der Nähe des Moleküls
befinden untersucht werden. Es ist zudem denkbar, ein einzelnes Molekül auch für
mikroskopische Untersuchungen auf Oberflächen zu verwenden. Einzelmolekülmik-
roskopie ermöglicht durch Superauflösung eine Lokalisierungsgenauigkeit jenseits
des Beugungslimits [200,201]. Es ist somit denkbar, dass diese hohe Auflösung zukünftig die Beobachtung von molekularer Diffusion auf Oberflächen ermöglicht.


Anhang

A. Sensitivität des PowerMeters PM120

Für geringe Lichtleistungen (<10 mW) ist eine Verwendung des thermisch arbeiten-
den Powermeters von Coherent nicht mehr zweckmäßig, da die Anzeigegenauigkeit
bei diesem Gerät nur 1 mW beträgt. In diesen Fällen wurde das Powermeter PM120
der Firma ThorLabs eingesetzt, welches Leistungen ab 50 nW mit Hilfe einer Photo-
diode messen kann. Da der Photostrom der Diode jedoch stark von der Wellenlänge
des einstrahlenden Lichts abhängig ist, muss am Powermeter die Wellenlänge des
Lichts eingestellt werden.

In vielen Fällen, insbesondere bei den FLE-Messungen, war dies nicht praktikabel.
Stattdessen wurde die Leistung bei konstanter Geräteeinstellung gemessen und
diese anschließend korrigiert. Hierfür wurde die in Abbildung A.1 gezeigte Kurve
benutzt. Diese zeigt die Sensitivität der Photodiode in Abhängigkeit von der Wellen-
länge. Die Sensitivität wurde hierbei für 532 nm willkürlich auf 1 festgelegt. Dies
bedeutet, dass falls das Powermeter auf 532 nm eingestellt ist, die tatsächliche
Lichtleistung erhalten wird, indem die angezeigte Leistung durch die Sensitivität der
Photodiode für die Wellenlänge des einstrahlenden Lichts dividiert wird.

Die Sensitivitätskurve der Abbildung wurde experimentell bestimmt. Dafür wurde auf
die Photodiode eine konstante Lichtleistung einer festen Wellenlänge (532 nm)
eingestrahlt. Unter diesen Bedingungen fließt folglich ein konstanter Photostrom.
Anschließend wurde die am Gerät eingestellte Wellenlänge von 400 bis 1100 nm
variiert und die dann angezeigte Lichtleistung protokolliert. Diese angezeigte
„scheinbare“ Lichtleistung ist gerade antiproportional zur Sensitivität der Photodiode
bei der eingestellten Wellenlänge, so dass sich die Kurve der Abbildung A.1 leicht
aus diesen Werten errechnen ließ.
Abbildung A.1: Sensitivität der Photodiode des Powermeters PM120 in Abhängigkeit von der einstrahlenden Wellenlänge.
**B. Sensitivität des CCD-Spektrometers**


Für eine quantitative Auswertung von Fluoreszenzspektren ist daher eine Kalibrierung mit Hilfe einer speziellen Eichlampe, die ein Schwarzkörperspektrum einer definierten Farbtemperatur liefert, notwendig. Im Rahmen der vorliegenden Arbeit wurde allerdings eine solche Eichung nicht durchgeführt.

Die Herstellerdaten für die Quanteneffizienz des CCDs [204-206] und die Transmission des Gitters [207] sind in Abbildung B.1 dargestellt. Zusätzlich ist auch die sich daraus ergebende Gesamteffizienz dargestellt. Im Rahmen der vorliegenden Arbeit war vor allem der Spektralbereich von 500 nm bis 700 nm relevant. Dort bleibt die Gesamteffizienz beinahe konstant, weswegen auf eine Korrektur der Spektren, die die Effizienz des Detektionssystems berücksichtigt, in der vorliegenden Arbeit verzichtet wurde.

**Abbildung B.1:** Gittertransmission für das 300g/mm Gitter mit 500 nm Blaze-Wellenlänge (rot), Quanteneffizienz des CCDs (grün) und Gesamteffizienz des Detektionssystems (blau). Im für die vorliegende Arbeit relevanten Spektralbereich von 500 nm bis 700 nm bleibt die Gesamteffizienz nahezu konstant.

Betrachtet man beispielsweise die Intensitäten des 0-0-Übergangs bei 20.000 cm\(^{-1}\) und der vibronischen Bande mit einer Schwingungswellenzahl von 1296 cm\(^{-1}\), so wird die Intensität der vibronischen Bande durch die Korrektur auf eine $\bar{v}$-Achse um 14\% erhöht. Nach Abbildung B.1 ist aber die (über beide Polarisationsrichtungen gemittelte) Sensitivität des Spektrometers bei der Frequenz der vibronischen Bande um 5\% größer als bei der Frequenz des 0-0-Übergangs. Da zur Berücksichtigung der Sensitivitätskurve durch die Sensitivitäten dividiert werden muss, ergibt sich, dass die Intensität des betrachteten vibronischen Übergangs bei Berücksichtigung beider Korrekturen um 8.5\% erhöht wäre. Eine analoge Betrachtung für alle Normalmoden und anschließende Berechnung des Franck-Condon-Faktors des 0-0-Übergangs ergibt, dass der Fehler des Franck-Condon-Faktors, der durch die Vernachlässigung der beiden Korrekturen (Sensitivitäts- und $\bar{v}$- bzw. $\lambda^2$-Korrektur) zustande kommt, etwa 7\% beträgt, wobei davon auszugehen ist, dass der tatsächliche Wert vom experimentell bestimmten Wert nach unten abweicht. Der Gesamtfehler des Franck-Condon-Faktors wurde im Rahmen der vorliegenden Arbeit auf Grundlage dieses Wertes und der unterschiedlichen integralen Intensitäten im Spektrum abgeschätzt (vgl. Abschnitt 7.1.2 und 7.1.3).
C. Verwendete LabView Programme

C.1 Messung der FLE-Spektren


- Pfad der Positionsdatei
- Belichtungszeit und Akkumulationsanzahl pro FL-Spektrum (10 × 0.1 s)
- Dateiname für die auszugebenden Dateien
- Ausleseport des CCDs (low noise)
- Geschwindigkeit des A/D-Wandlers der CCD-Camera (100 kHz)
- Verstärkung des A/D-Wandlers (2)

Nach jeder Messung eines FL-Spektrums liest das Programm die mit Hilfe des PowerMeters vom Typ PM120 gemessene Anregungsleistung des Farbstofflasers aus. Anschließend verstellt das Programm den Lyot-Filter und misst das nächste FL-Spektrum. Während der Messung wird stets die letzte FL-Messung angezeigt, so dass die Qualität der Spektren überprüft werden kann. Sollten experimentelle Veränderungen nötig sein, so kann das Programm kontrolliert gestoppt und fortgesetzt werden.

Nach Abschluss der Messungen liefert das Programm eine Reihe von ASCII-Dateien, die die FL-Spektren (enden auf eine fünfstellige Nummer, die der Position des Schrittmotors entspricht), die Messung der Anregungsleistung (endet auf „PowerMeterMessung“) und die vorgenommenen Einstellungen (endet auf „Info“) enthalten.

Mit Hilfe dieser Dateien können nun FLE-Spektren generiert werden. Eine komfortable Möglichkeit dazu bietet das selbstgeschriebene Programm SpectraSquared, das in Anhang D kurz vorgestellt wird.

C.2 Messung und Integration des QMS-Ionenstroms

Wie bereits in Abschnitt 4.1.3 beschrieben wurde, ist es möglich die Aufdampfrate der Substanzen mit Hilfe des Massenspektrometers zu überwachen. Der dabei gemessene Ionenstrom ist proportional zur Aufdampfrate. Ein Maß für die insgesamt in einem bestimmten Zeitraum aufgedampfte Stoffmenge kann folglich durch zeitliche Integration des Ionenstroms erhalten werden.

Häufig ergibt sich aber das Problem, dass die Aufdampfrate nicht über die gesamte Dauer des Aufdampfens konstant ist. Dies kann die Abschätzung des zeitlichen Integrals während des Aufdampfens deutlich erschweren. Um eine optimale Kontrolle der aufgedampften Stoffmenge zu erhalten wurde vom Autor der vorliegenden Arbeit das LabVIEW-Programm IntegrationQMSKanal0.vi und Quadstar-Sequenzen (z. B. ptdca_evp.sqe) geschrieben. Die Quadstar-Sequenzen übergeben mittels der in Windows integrierten DDE-Schnittstelle (dynamic data exchange) den aktuellen Ionenstrom an das LabVIEW-Programm. Dieses integriert dann den Ionenstrom
fortlaufend zeitlich, was *in-situ* eine sehr genaue Kontrolle der aufgedampften Menge ermöglicht.

Zusätzlich sind im Programm der Abzug einer Basislinie, die Umrechnung des integrierten Ionenstromes in Monolagen und eine graphische Darstellung des zeitlichen Verlaufs des Ionenstroms integriert.
D. FLE-Spektren erstellen mit SpectraSquared


Für die Auswertung müssen zunächst die FL-Spektren (→File→Open Spectra), die Leistungsmessung (→File→Open PowerData) sowie eine Informationsdatei (→File→Open InfoFile) in das Programm eingelesen werden. Anschließend sollte zunächst von den FL-Spektren der Dunkelstrom der CCD-Kamera subtrahiert werden (→Edit→Subtract DarkCurrent) und auf Anregungsleistung und Belichtungsdauer normiert werden (→Edit→Normalize).

Das Programm ermöglicht weiterhin eine lineare Umrechnung der Schrittmotorposition und der CCD-Pixel in Wellenlängen oder Wellenzahlen. Hierfür müssen unterhalb der Graphen die Parameter der Kalibrierungsgeraden eingestellt werden (in Abbildung D.1 durch einen roten, gestrichelten Kasten markiert).

Um nun ein FL-Spektrum mit einer anderen Anregungswellenlänge zu betrachten oder ein FLE-Spektrum mit einer anderen Detektionswellenlänge zu generieren, müssen die Parameter links unterhalb des entsprechenden Graphen verändert werden (grüne, gestrichelte Kästen in Abbildung D.1). Die jeweils aktuell angezeigten Spektren können dann als Textdateien exportiert werden (Export → Export PL(E)).

E. Wichtige verwendete Abkürzungen

Chemische Abkürzungen:
- PTCDA: 3,4,9,10-Perylentetracarbonsäuredianhydrid
- DiMe-PTCDI: N,N'-Dimethyl-3,4,9,10-Perylentetracarbonsäurediimid
- DMSO: Dimethylsulfoxid

Methodische Abkürzungen:
- LEED: Beugung langsamer Elektronen
- TPD: Thermisch Programmierte Desorption
- STM: Rastertunnelmikroskop
- AFM: Rasterkraftmikroskop
- UHV: Ultrahochvakuum
- DRS: Differentielle Reflektionsspektroskopie
- FL: Fluoreszenz
- FLE: Fluoreszenzanregung (engl. fluorescence excitation)

Variablen:
- \( E_{\text{des}} \): Aktivierungsenergie der Desorption
- \( R_{\text{des}} \): Desorptionsrate
- \( \lambda_{\text{exc}} \): Anregungswellenlänge
- \( \lambda_{\text{det}} \): Detektionswellenlänge
- \( S \): Huang-Rhys-Faktor
- \( \lambda \): Kernrelaxationsenergie
- \( W \): freie Exzitonenbandbreite
- \( E_0 \): \( S_0-S_1 \) Übergangsenergie eines freien Moleküls (Gasphase)
- \( \varepsilon_f \): Energie des angeregten Zustands
- \( D \): nicht-resonante Wechselwirkungsenergie
- \( M \): Transformmatrixelement
- \( \mu \): Übergangsdiopolmoment
- \( N_{\text{vib}} \): Schwingungsfreiheitsgrade eines Moleküls
- \( \nu \): Schwingungsquantenzahl
- \( f_{uv} \): Franck-Condon-Faktor
- \( q_1, q_2 \ldots q_i \): Normalkoordinaten
Literaturverzeichnis


Erklärung

An Eides statt versichere ich, dass ich die Dissertation „Optische Spektroskopie von PTCDA auf Alkalihalogenidoberflächen: vereinzelte Moleküle und Monolagen“ selbst und ohne jede unerlaubte Hilfe angefertigt habe, dass diese oder eine ähnliche Arbeit noch keiner anderen Stelle als Dissertation eingereicht worden ist und dass sie an den nachstehenden Stellen auszugsweise veröffentlicht worden ist:

- E. Le Moal, M. Müller, O. Bauer und M. Sokolowski, „Misfit driven azimuthal orientation of NaCl domains on Ag(100)“, Surface Science, 603, 2434 (2009).
- E. Le Moal, M. Müller, O. Bauer und M. Sokolowski, “Stable and metastable phases of PTCDA on epitaxial NaCl films on Ag(100)“, Physical Review B, 82, 045301 (2010).

Bonn, 24.11.2011

Mathias Müller
Danksagung

Zum Gelingen dieser Arbeit hat eine Vielzahl von Personen beigetragen. Ich möchte mich ganz herzlich bedanken bei:

- Herrn Prof. Dr. M. Sokolowski für das entgegengebrachte Vertrauen, die exzellente wissenschaftliche Betreuung und die allumfassende Unterstützung meiner Tätigkeiten.
- Herrn Prof. Dr. T. Fritz für bereitwillige Übernahme des Zweitgutachtens.
- Herrn Prof. Dr. R. Glaum und Herrn Prof. Dr. D. Meschede für die Teilnahme an der Prüfungskommission.
- Herrn Prof. Dr. F. Stienkemeier für die Bereitstellung noch unveröffentlichte Ergebnisse der Spektroskopie von PTCDA in Helium-Tröpfchen.
- Herrn Dr. A. Eisfeld für sehr hilfreiche Diskussionen zur Exzitonentheorie und insbesondere für die Programmierung der Skripte, die die Berechnung der Aggregatspektren ermöglichten. Diese haben ganz entscheidend zum Gelingen dieser Arbeit beigetragen.
- Herrn PD Dr. R. Scholz ebenfalls für Diskussionen zur Exzitonentheorie, insbesondere zur Rolle des Franck-Condon-Faktors.
- Allen Arbeitskollegen der Arbeitsgruppe „Organische Filme“ für die hervorragende Arbeitsatmosphäre und die große Hilfsbereitschaft.
  - Dr. Julian Ikonomov insbesondere für die sehr gute Zusammenarbeit bei der Untersuchung der KCl-Dünfilme mit dem STM.
  - Dr. Eric Le Moal, Christian Marquardt und Alexander Paulheim besonders für die Zusammenarbeit am „Optik“-Experiment.
- Herrn Prof. Dr. U. Höfer und Herrn Manuel Marks von der Universität Marburg für die sehr gute Kooperation auf dem Gebiet der 2-Photonen-Photoemission.
- Bei allen Mitarbeitern der Feinmechanischen Werkstätten für die tolle Hilfe in allen technischen und (fein)mechanischen Fragen und bei den Mitarbeitern der Elektronikwerkstatt, die letztlich jedes elektronische Problem lösen konnten.
- Herrn Dr. K. Schmitz für die Verteidigung des Instituts gegen externe Machenschaften (BLB NRW…), für sein unermüdliches Streiten für mehr Sicherheit im Institut und für den Fahrradkäfig.
- Bei Herrn Prof. Dr. W.D. Schneider und Frau Dr. M. Pivetta für spannende Messungen zur STM-induzierten Lichtemission und für Diskussionen über das Wachstum von NaCl auf Ag(100).
- Der DFG für die finanzielle Unterstützung im Rahmen der Forschergruppe „Light Confinement and Control with Structured Dielectrics and Metals“.
Lebenslauf

von Mathias Müller, geboren am 19. März 1982 in Engelskirchen

akademischer Werdegang:

seit 09/2007

Wissenschaftlicher Mitarbeiter am Institut für Physikalische und Theoretische Chemie der Universität Bonn und Anfertigung der vorliegenden Doktorarbeit in der Arbeitsgruppe von Prof. Dr. M. Sokolowski.

01/2007 – 07/2007

Anfertigung der Diplomarbeit „Optische Spektroskopie dünner und ultradünner Rubren-Filme auf epitaktisch gewachsenem Aluminiumoxid“ am Institut für Physikalische und Theoretische Chemie der Universität Bonn.


Studium der Chemie an der Rheinischen Friedrich-Wilhelms-Universität Bonn

Zivildienst:

08/2001 – 05/2002

Betreuung von behinderten Menschen bei den Rhein-Sieg-Werkstätten der Lebenshilfe

Schulische Ausbildung:

1992 – 2001

Anno-Gymnasium in Siegburg und Erhalt des Abiturs

1988 – 1992

Grundschule in Much