1. GENERAL INTRODUCTION

1.1. RICE

1.2. IMPORTANCE OF RICE IN WEST AFRICA

1.2.1. The lowland type

1.2.2. The upland type

1.3. THE STUDY AREA

1.4. THE NERICA RICE

1.5. PROBLEM STATEMENT

1.5.1. Challenges for food security in SSA

1.5.2. Constraints of rice cultivation in West Africa

1.5.3. Agricultural and rice issues in Benin

1.5.4. Which soil-crop simulation models for rainfed rice culture in West Africa?

1.6. OBJECTIVES OF THE THESIS

2. SPATIAL AND TEMPORAL VARIABILITY OF RICE YIELD AND GROWTH CONSTRAINTS IN RAINFED LOWLAND SYSTEMS

2.1. INTRODUCTION

2.2. MATERIAL AND METHODS

2.2.1. Site description

2.2.2. Experiment

2.2.3. Field management

2.2.4. Field measurements and lab analysis

2.2.5. Statistical Analysis

2.3. RESULTS

2.3.1. Growth and Grain Yield

2.3.2. Spatio-temporal evolution of rice production and relationship with N, Fe and water level according to fertilizer bund and position factors

2.4. DISCUSSION

2.4.1. Effect of land position

2.4.2. Effect of fertilizer application

2.4.3. Effect of bund

3. SIMULATION OF SOIL WATER DYNAMICS AND RICE CROP GROWTH AS AFFECTED BY BUND AND FERTILIZER APPLICATION IN INLAND VALLEY SYSTEMS OF WEST AFRICA

3.1. INTRODUCTION

3.2. MATERIAL AND METHODS

3.2.2. Experiment

3.2.3. Weather input

3.2.4. Data collection

3.2.5. Model calibration and evaluation

3.3. RESULTS AND DISCUSSION

3.3.1. Parameters used for calibration

3.3.2. Simulation of soil water regimes

3.3.3. Simulation of water table dynamics

3.3.4. Simulation of crop growth development and grain yield
4. PEDOCLIMATIC AFFECTS ON IMPROVED UPLAND RICE VARIETIES IN DIFFERENT AGROECOLOGICAL ZONES OF BENIN REPUBLIC 59

4.1. INTRODUCTION 60
4.2. MATERIAL AND METHOD 61
4.2.1. Site general characteristics 61
4.2.2. Experiment description 63
4.2.3. Data collection 64
4.3. RESULTS AND DISCUSSION 64
4.3.1. Soils characteristics 64
4.3.2. Agronomic responses 65
4.3.3. Discussion 69

5. MULTISITE EVALUATION OF THE EPIC MODEL FOR NERICA RICE CROPPING IN DIFFERENT AGROECOLOGICAL ZONES OF WEST AFRICA 71

5.1. INTRODUCTION 72
5.2. MATERIAL AND METHODS 73
5.2.1. Study area 73
5.2.2. Model data input and source 76
5.2.3. Modelling with EPIC 78
5.3. RESULTS AND DISCUSSION 79
5.3.1. Calibration of crop parameters 79
5.3.2. Calibration of soil parameter 81
5.3.3. Calibration results for total aboveground biomass and grain yield 84
5.3.4. Model validation 86

6. GENERAL DISCUSSION 91

6.1. RICE PRODUCTIVITY IN RAINFED LOWLAND AND UPLAND SYSTEMS 92
6.1.1. Relationship between water level, soil parameters, N and Fe uptake by the plant in inland valley system 92
6.1.2. Relationship between grain yield, soil fertility (Corg) and crop intensity in upland systems 94
6.2. MODELLING THE RAINFED LOWLAND AND UPLAND WITH EPIC 96
6.2.1. Simulation outputs 96
6.2.2. Importance and limitation of the EPIC model simulations with respect to influence of water and N balance on grain yield in rainfed rice system 97

CONCLUSION AT A GLANCE 103

REFERENCES 105

LIST OF FIGURES 120