Contents

Preface

1 Theoretical Background

1.1 The Standard Model of particle physics

1.1.1 Particle content and interactions

1.2 R-parity violating supersymmetry

1.2.1 Motivation

1.2.2 The MSSM

1.2.3 RPV mSUGRA with stau-LSP

2 The ATLAS detector at the Large Hadron Collider

2.1 The Large Hadron Collider

2.2 The ATLAS Experiment

2.2.1 Tracking detectors

2.2.2 Calorimetry

2.2.3 Muon Spectrometer

2.2.4 Trigger system

2.2.5 Particle reconstruction and identification

3 Detector simulation

3.1 The ATLAS fast track simulation FATRAS

3.1.1 Basic principle

3.1.2 Comparison to first ATLAS data

3.2 Comparison of generic detector simulations

3.3 Summary

4 Tau identification

4.1 Tau lepton properties

4.2 Experimental challenges

4.2.1 Track reconstruction for charged pions from tau decays

4.2.2 Detector misalignments

4.3 Energy flow algorithms

4.4 Common algorithms for tau reconstruction in ATLAS

4.5 PanTau – Tau ID with energy flow for ATLAS

4.5.1 PanTau approach

4.5.2 Energy dependency of tau identification variables

4.5.3 Performance of the PanTau identification in Monte Carlo samples