Contents

List of Figures ix

List of Tables xv

1 Introduction 1

1.1 The Musculature ... 1
 1.1.1 Vertebrate Skeletal Muscle ... 1

1.2 Skeletal Muscle Development ... 4
 1.2.1 Embryonic development ... 4
 1.2.2 Myogenesis .. 5
 1.2.2.1 Embryonic Myogenesis ... 5
 1.2.2.2 Fetal Myogenesis ... 5
 1.2.2.3 Adult Myogenesis ... 6
 1.2.2.4 Sarcomerogenesis ... 7

1.3 Skeletal Muscle Regeneration .. 8

1.4 Skeletal Muscle remodelling ... 10

1.5 Sarcomere Structure .. 11
 1.5.1 Thin Filaments .. 11
 1.5.2 Thick Filaments .. 13
 1.5.3 Nebulin ... 14
 1.5.4 Nebulette .. 15
 1.5.5 The Z-disc ... 16
 1.5.5.1 α-Actinin ... 17
 1.5.5.2 Filamin C ... 18
 1.5.6 The M-Band ... 20

1.6 The Myotendinous Junction .. 21

1.7 Costameres .. 21
CONTENTS

1.8 The Heart .. 23
 1.8.1 Heart Development .. 23
 1.8.2 Cardiomyocytes ... 24
1.9 Cellular Junctions .. 26
 1.9.1 Cadherins .. 26
 1.9.1.1 β-Catenin ... 29
 1.9.2 Integrins .. 30
 1.9.3 Vinculin ... 32
 1.9.4 Talin ... 33
1.10 Xin-Repeat Proteins .. 34
1.11 Aim of the Study .. 37

2 Material and Methods ... 39
 2.1 Chemicals ... 39
 2.2 Culture Media .. 39
 2.3 Antibiotics .. 40
2.4 Bacterial and Yeast Strains 40
 2.4.1 Cloning ... 40
 2.4.2 Protein Expression 40
 2.4.3 Yeast Two-Hybrid System 40
2.5 Vectors and cDNA Libraries 40
 2.5.1 Protein Expression Vectors 41
 2.5.1.1 pET23aEEF ... 41
 2.5.1.2 pET23aT7 .. 41
 2.5.1.3 pET23aMyc .. 41
 2.5.1.4 pET28a ... 41
 2.5.1.5 pGEX-6P-3 ... 41
 2.5.2 Vectors for Eukaryotic Protein Expression 42
 2.5.2.1 Venus NT ... 42
 2.5.2.2 Venus CT ... 42
 2.5.2.3 Venus1-C .. 42
 2.5.2.4 Venus2-C .. 42
 2.5.2.5 Venus1-N3 .. 43
 2.5.2.6 Venus2-N3 .. 43
 2.5.3 Vectors for Yeast Two-Hybrid Assays 43
CONTENTS

2.8.1 Immunodetektion ... 55
 2.8.1.1 Quantitative Analysis 55
 2.8.1.2 Qualitative Analysis 56
2.8.2 Antibodies .. 56
 2.8.2.1 Purification of Polyclonal Antibodies 56
2.8.3 Frozen Tissue Sections 59
2.8.4 Immunostaining of Cells and Tissues 60
 2.8.4.1 Paraformaldehyde Fixation 60
 2.8.4.2 Methanol-Acetone Fixation 61
 2.8.4.3 Staining ... 61
2.9 Protein Interaction Assays 62
 2.9.1 Yeast Two-Hybrid System 62
 2.9.1.1 Sequential Transformation 62
 2.9.1.2 Test of Activation of the \(\text{HIS3} \) Reporter Gene .. 63
 2.9.1.3 Test of \(\beta \)-Galactosidase Activity 63
 2.9.2 Co-Immunoprecipitation 64
 2.9.3 Chemical Cross-linking 64
 2.9.4 Peptide Scan ... 65
 2.9.5 Bimolecular Fluorescence Complementation (BiFC) Analysis . 65
2.10 Cell Culture .. 67
 2.10.1 Cell Lines ... 68
 2.10.1.1 H-2K\(^b\)-tsA58 Cells 68
 2.10.1.2 A7R5 Cells 68
 2.10.2 Cell Thawing ... 69
 2.10.3 Cell Passaging .. 69
 2.10.4 Cell Freezing ... 69
 2.10.5 Isolation of Embryonic Mouse Cardiomyocytes 70
 2.10.6 Transient Transfections 70
 2.10.6.1 TurboFect Transfection 70
 2.10.6.2 Electroporation of Embryonic Mouse Cardiomyocytes .. 71
2.11 Microscopy .. 71
 2.11.1 Transmitted Light Microscopy 71
 2.11.1.1 Epi-fluorescence Microscopy 71
 2.11.1.2 Confocal Laser Scanning Microscopy 73
 2.11.1.3 Fluorescence Recovery After Photobleaching (FRAP) .. 73
3 Results

3.1 In vitro Myofibrillogenesis of Murine H-2Kb-tsA58 Cells 77
 3.1.1 Sarcomere Development 79
 3.1.1.1 Early Phase (Day 1–2) 80
 3.1.1.2 Intermediate Phase (Day 3–4) 84
 3.1.1.3 Late Phase (Day 5–8) 87
 3.1.2 Expression Profile of Sarcomeric Proteins 91

3.2 Murine Xin in H-2Kb-tsA58 Myoblasts During Myofibrillogenesis 94
 3.2.1 Transcription of Murine Xin During Myofibrillogenesis of H-2Kb-tsA58 Cells 94
 3.2.2 Protein Expression of Murine Xin During Myofibrillogenesis of H-2Kb-tsA58 Cells 97
 3.2.3 Xin Localization During In vitro Myofibrillogenesis of Murine H-2Kb-tsA58 Cells 100
 3.2.3.1 Xin and \(\alpha\)-Actinin 100
 3.2.3.2 Xin and Filamin C 102
 3.2.3.3 Xin and Nonmuscle Myosin IIA 104
 3.2.3.4 Xin and \(\beta\)-Catenin 107
 3.2.3.5 Xin Isoforms 107

3.3 Xin is a Novel Ligand of the SH3 Domain of Nebulin and Nebulette 110
 3.3.1 Xin A and C Interact with Nebulin 111
 3.3.2 Human Xin also Binds to Nebulette 112
 3.3.3 Biochemical Verification of the Nebulin/Nebulette-Xin Interaction 114
 3.3.4 Identification of the Nebulin/Nebulette SH3 Domain Binding Sequence in Human Xin 115
 3.3.5 Xin and Nebulin Localization During Myofibrillogenesis of H-2K Cells 117
 3.3.6 The Site of Xin and Nebulette Interaction Visualized by Bimolecular Fluorescence Complementation (BiFC) 124
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.6.1</td>
<td>Analysis of the Dynamics of BiFC Complexes Using Fluorescence Recovery After Photobleaching (FRAP)</td>
<td>124</td>
</tr>
<tr>
<td>3.3.6.2</td>
<td>BiFC Analysis of the Xin C and Nebulette Interaction in A7r5 Cells</td>
<td>129</td>
</tr>
<tr>
<td>3.3.6.3</td>
<td>Localization of the Xin-Nebulette Interaction in Embryonic Mouse Cardiomyocytes</td>
<td>136</td>
</tr>
<tr>
<td>3.4</td>
<td>Xin Contains Functional Heptad Repeats</td>
<td>143</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Localization of Xin C Dimerization</td>
<td>146</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Murine Xin Can Also Form Oligomers</td>
<td>152</td>
</tr>
<tr>
<td>3.5</td>
<td>The Protein LIMCH1 is the First Xin A-Specific Binding Partner</td>
<td>154</td>
</tr>
<tr>
<td>3.5.1</td>
<td>The LIM Domain of LIMCH1 Specifically Binds Xin A</td>
<td>155</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Biochemical Verification of the Xin–LIMCH1 interaction</td>
<td>159</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Targeting of LIMCH1 Fragments in A7r5 Cells</td>
<td>160</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Visualization of the Xin-LIMCH1 Interaction in A7r5 Cells Using BiFC</td>
<td>162</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Expression of LIMCH1 in Cells and Tissues</td>
<td>166</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Identification of a New Murine LIMCH1 Splice Variant</td>
<td>169</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Transcription of Murine LIMCH1 During Myofibrillogenesis of H-2Kb-tsA58 Myoblasts</td>
<td>172</td>
</tr>
<tr>
<td>3.5.8</td>
<td>LIMCH1 Contains Functional Heptad Repeats</td>
<td>174</td>
</tr>
<tr>
<td>3.6</td>
<td>The C-terminus of Xin B Targets to Focal Adhesions</td>
<td>176</td>
</tr>
<tr>
<td>3.7</td>
<td>Characterization of Human Xirp2</td>
<td>181</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Human Xirp2 is a Filamin C-Specific Binding Partner</td>
<td>181</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Human Xirp2 Binds to the SH3 Domain of Nebulin and Nebulette</td>
<td>184</td>
</tr>
<tr>
<td>3.7.3</td>
<td>The Human Xirp2-Repeat Region and not the Xin-Repeat Region Interacts With α-Actinin</td>
<td>188</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Human Xirp2 Forms Dimers In Vitro</td>
<td>191</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Transcription of Murine Xirp2 During Myofibrillogenesis of H-2Kb-tsA58 Cells</td>
<td>191</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Protein Expression of Murine Xirp2 During Myofibrillogenesis of H-2Kb-tsA58 Cells</td>
<td>195</td>
</tr>
<tr>
<td>3.7.7</td>
<td>Human Xirp2 Localization in Adult Skeletal Muscle Tissue</td>
<td>196</td>
</tr>
<tr>
<td>3.8</td>
<td>Xin-Repeat Proteins During Skeletal Muscle Remodelling</td>
<td>202</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Xin-Repeat Proteins and α-Actinin in Structures of Human Skeletal Muscle Remodelling</td>
<td>203</td>
</tr>
</tbody>
</table>
3.8.2 Xin-Repeat Proteins and Nebulin in Structures of Human Skeletal Muscle Remodelling ... 208
3.8.3 Xin-Repeat Proteins and Filamin C in Structures of Human Skeletal Muscle Remodelling ... 214

4 Discussion ... 218
4.1 Myofibrillogenesis of Murine H-2Kb-tsA58 Cells 218
4.2 Xin-Repeat Proteins During In Vitro Myofibrillogenesis of Murine H-2Kb-tsA58 Cells .. 221
 4.2.1 Transcription and Expression of Xin Isoforms 221
 4.2.2 Localization of Xin Isoforms ... 223
4.3 Xin-Repeat Proteins Are Novel Ligands of the SH3 Domain of Nebulin and Nebulette ... 225
 4.3.1 The Site of Interaction of Xin-Repeat Proteins with Nebulin/Nebulette Interaction ... 228
 4.3.2 Evolutionary Conservation of the Nebulin/Nebulette Binding Motifs in Xin-Repeat Proteins .. 231
4.4 Xin-Repeat Proteins and Skeletal Muscle Remodelling 234
4.5 LIMCH1 – The First Xin A-Specific Binding Partner 237
 4.5.1 Expression of LIMCH1 Isoforms in Cells and Tissues 238
 4.5.2 Oligomer Formation of LIMCH1 240
 4.5.3 Dissection of Functional Domains in LIMCH1 241
 4.5.4 The Site of Xin–LIMCH1 Interaction 241
 4.5.5 The Potential Role of the Xin–LIMCH1 Interaction 243
4.6 Xin and Xirp2 – Overlapping and Distinct Function 243
4.7 Xirp2 Orientation and Interactions Within the Sarcomeric Z-disc - Implications for Z-disc Structure 247

Bibliography ... 252

A Abbreviations .. I
B Sequences of Primers ... IV
C Vector Maps ... VII
D Human Xin cDNA Sequence .. XX
E Murine Xin cDNA Sequence XXVII
F Human Xirp2 cDNA Sequence XXXII
G Murine Xirp2 cDNA Sequence XL
H Human LIMCH1 cDNA Sequence XLIX
I Murine LIMCH1 cDNA Sequence LIII