Hinweis zum Urheberrecht | Allgemeine Informationen | FAQ
Beim Zitieren dieses Dokumentes beziehen Sie sich bitte immer auf folgende URN: urn:nbn:de:hbz:5N-25331

 

Mathematisch-Naturwissenschaftliche Fakultät - Jahrgang 2011

 

Titel Equilibrium dynamics of continuous unbounded spin systems
Autor Georg Menz
Publikationsform Dissertation
Abstract The relaxation properties of the Glauber and Kawasaki dynamics are studied for large lattice systems of unbounded continuous spins. For this purpose the logarithmic Sobolev inequality is deduced for the canonical ensemble in two cases. In the first case, the Hamiltonian consists of a sum of superquadratic single-site potentials. In the second case, the Hamiltonian also has a weak two-body interaction. For technical reasons, the single-site potential is a perturbation of a quadratic potential in this case. The scaling of the logarithmic Sobolev constant is optimal in the system size and independent of the boundary data of the system.
Komplette Version pdf-Dokument (1 MB) Hier können Sie den Adobe Acrobat Reader downloaden
© Universitäts- und Landesbibliothek Bonn | Veröffentlicht: 25.05.2011