Hinweis zum Urheberrecht | Allgemeine Informationen | FAQ
Beim Zitieren dieses Dokumentes beziehen Sie sich bitte immer auf folgende URN: urn:nbn:de:hbz:5N-23401


Mathematisch-Naturwissenschaftliche Fakultät - Jahrgang 2010


Titel State-selective transport of single neutral atoms
Autor Michał Karski
Publikationsform Dissertation
Abstract The present work investigates the state-selective transport of single neutral cesium atoms in a one-dimensional optical lattice. It demonstrates experimental applications of this transport, including a single atom interferometer, a quantum walk and controlled two-atom collisions. The atoms are stored one by one in an optical lattice formed by a standing wave dipole trap. Their positions are determined with sub-micrometer precision, while atom pair separations are reliably inferred down to neighboring lattice sites using real-time numerical processing. Using microwave pulses in the presence of a magnetic field gradient, the internal qubit states, encoded in the hyperfine levels of the atoms, can be separately initialized and manipulated. This allows us to perform arbitrary single-qubit operations and prepare arbitrary patterns of atoms in the lattice with single-site precision.
Chapter 1 presents the experimental setup for trapping a small number of cesium atoms in a one-dimensional optical lattice. Chapter 2 is devoted to fluorescence imaging of atoms, discussing the imaging setup, numeric methods and their performance in detail. Chapter 3 focuses on engineering of internal states of trapped atoms in the lattice using optical methods and microwave radiation. It provides a detailed investigation of coherence properties of our experimental system. Finally manipulation of individual atoms with almost single-site resolution and preparation of regular strings of atoms with predefined distances are presented.
In Chapter 4, basic concepts, the experimental realization and the performance of the state-selective transport of neutral atoms over several lattice sites are presented and discussed in detail. Coherence properties of this transport are investigated in Chapter 5, using various two-arms single atom interferometer sequences in which atomic matter waves are split, delocalized, merged and recombined on the initial lattice site, while the interference contrast and the accumulated phase difference are measured. By delocalizing a single atom over several lattice sites, possible spatial inhomogeneities of fields along the lattice axis in the trapping region are probed.
In Chapter 6, experimental realization of a discrete time quantum walk on a line with single optically trapped atoms is presented as an advanced application of multiple path quantum interference in the context of quantum information processing. Using this simple example of a quantum walk, fundamental properties of and differences between the quantum and classical regimes are investigated and discussed in detail. Finally, by combining preparation of atom strings, position-dependent manipulation of qubit states and state-selective transport, in Chapter 7, two atoms are deterministically brought together into contact, forming a starting point for investigating two-atom interactions on the most fundamental level. Future prospects and suggestions are finally presented in Chapter 8.
Komplette Version pdf-Dokument (6 MB) Hier können Sie den Adobe Acrobat Reader downloaden
© Universitäts- und Landesbibliothek Bonn | Veröffentlicht: 05.11.2010