Eine Anwendung von Kolmogorovs Superpositionen Theorem zur Funktionsrekonstruktion in höheren Dimensionen

Jürgen Braun

Zusammenfassung

 

In der vorliegenden Arbeit wird ein Regularisierungsnetzwerk zur Rekonstruktion von stetigen Funktionen ƒ:[0,1]nR vorgestellt, welches direkt auf einer neuen konstruktiven Version von Kolmogorovs Superpositionen Theorem basiert. Dabei sind lediglich die Funktionswerte ƒ(xj) an diskreten Datenpunktenxj, j=1,…,P bekannt.

Typischerweise leidet die numerische Lösung mathematischer Probleme unter dem sogenannten Fluch der Dimension. Dieser Begriff beschreibt das exponentielle Wachstum der Komplexität des verwendeten Verfahrens mit der Dimension n. Um dies zumindest teilweise zu vermeiden, werden üblicherweise höhere Regularitätsannahmen an die Lösung des Problems gemacht, was allerdings häufig unrealistisch ist. Daher wird in dieser Arbeit eine Darstellung der Funktion ƒ als Superposition eindimensionaler Funktionen verwendet, welche keiner höheren Regularitätsannahmen als Stetigkeit bedarf. Zu diesem Zweck wird eine konstruktive Variante des Kolmogorov Superpositionen Theorems, welche auf D. Sprecher zurückgeht, so angepasst, dass nur eine äußere Funktion Φ sowie eine universelle innere Funktion ψ zur Darstellung von ƒ notwendig ist. Die Funktion ψ ist nach einer Definition von M. Köppen explizit und unabhängig von ƒ als Fortsetzung einer Funktion, welche auf einer Dichten Teilmenge der reellen Achse definiert ist, gegeben. Der fehlende Beweis von Existenz, Stetigkeit und Monotonie von ψ wird in dieser Arbeit geführt. Zur Berechnung der äußeren Funktion Φ wird ein iterativer Algorithmus von Sprecher so modifiziert, dass jeder Iterationsschritt, abhängig von ƒ, ein Element einer Folge univariater Funktionen{ Φr}r liefert. Es wird gezeigt werden, dass die Folge gegen einen stetigen Grenzwert Φ:RR konvergiert. Dies liefert einen konstruktiven Beweis einer neuen Version des Kolmogorov Superpositionen Theorems mit einer äußeren und einer inneren Funktion.

Da die numerische Komplexität des Algorithmus zur Berechnung von Φ exponentiell mit der Dimension wächst, stellen wir alternativ ein Regularisierungsnetzwerk, basierend auf dieser Darstellung, vor. Dabei wird die äußere Funktion aus gegebenen Daten (xj,ƒ(xj)), j=1,…,P berechnet. Das Modell zur Rekonstruktion von ƒ wird in zwei Schritten eingeführt. Zunächst wird zur Definition eines vorläufigen Modells die äußere Funktion, bzw. eine Approximation an Φ, in einer endlichen Basis mit unbekannten Koeffizienten dargestellt. Diese werden dann durch eine Variationsformulierung bestimmt, d.h. durch die Minimierung eines regularisierten empirischen Fehlerfunktionals. Eine detaillierte numerische Analyse zeigt dann, dass Kolmogorovs Darstellung die Dimensionalität von ƒ in Oszillationen von F transformiert. Somit ist die Verwendung von Basisfunktionen mit lokalem Träger nicht geeignet, da die räumliche Auflösung der Approximation die starken Oszillationen erfassen muss. Des Weiteren zeigt eine Analyse der Fouriertransformation von Φ, dass die relevanten Frequenzen, unabhängig von ƒ, a priori bestimmbar sind, und dass die äußere Funktion Produktstruktur aufweist. Dies motiviert die Definition des endgültigen Modells. Dazu wird Φ nun durch ein Produkt von Funktionen ersetzt und jeder Faktor in einer Fourierbasis entwickelt. Die Koeffizienten werden ebenfalls durch Minimierung eines regularisierten empirischen Fehlerfunktionals bestimmt.

Für beide Modelle wird ein theoretischer Rahmen in Form von Hilberträumen mit reproduzierendem Kern entwickelt. Die zugehörigen Normen bilden dabei jeweils den Regularisierungsterm der entsprechenden Fehlerfunktionale. Somit können beide Ansätze als Regularisierungsnetzwerke interpretiert werden. Allerdings ist zu beachten, dass das Fehlerfunktional für den Produktansatz nicht konvex ist und nichtlineare Minimierungsverfahren zur Berechnung der Koeffizienten notwendig sind. Weitere ausführliche numerische Tests zeigen, dass dieses Modell in der Lage ist Funktionen zu rekonstruieren welche von bis zu zehn Variablen abhängen.

Komplette Version (4 MB) Hier können Sie den Adobe Acrobat Reader downloaden

zurück zur Übersicht

© Universitäts- und Landesbibliothek Bonn | Veröffentlicht: 01.12.2009