Contents

1 Motivation 1

2 Fundamentals of XAS 4
 2.1 The X-ray absorption process 4
 2.2 The XANES spectrum 5
 2.2.1 Qualitative interpretation of a XANES spectrum 7
 2.2.2 Quantitative interpretation of a XANES spectrum 8
 2.3 The EXAFS spectrum 10
 2.3.1 Quantitative interpretation of an EXAFS spectrum 12

3 Fundamentals of High Resolution X-ray Emission Spectroscopy (HRXES) 17
 3.1 Non-resonant HRXES 17
 3.2 Resonant HRXES 18
 3.2.1 Extended resonant HRXES 20

4 The experiments 25
 4.1 ANKA and DORIS III 25
 4.2 The INE-Beamline 25
 4.2.1 The measuring modes and the experimental set-up 27
 4.2.2 The Double Crystal Monochromator (DCM) 30
 4.2.3 The samples 32
 4.3 The W1 beamline 33

5 Lithium niobate 35
 5.1 Growth, defects and structure of the lithium niobate crystals 35
 5.2 Absorption spectra of lithium niobate from IR to hard X-ray regions 36
6 Doped lithium niobate

6.1 Copper-doped lithium niobate
 6.1.1 Introduction
 6.1.2 Preparation of the samples
 6.1.3 Experiment, methods and data evaluation
 6.1.4 Results and discussion
 6.1.5 Conclusion

6.2 Manganese-doped lithium niobate
 6.2.1 Introduction
 6.2.2 Samples
 6.2.3 Experimental details
 6.2.4 Results
 6.2.5 Discussion
 6.2.6 Conclusion

6.3 Iron-doped lithium niobate
 6.3.1 Introduction
 6.3.2 Samples
 6.3.3 Experimental details
 6.3.4 Results and discussions
 6.3.5 Conclusion

6.4 Bond Valence Model (BVM)

7 Lithium niobate irradiated with $^3\text{He}^{2+}$ ions

7.1 Introduction
7.2 Preparation of the samples
7.3 Experiment, methods and data evaluation
7.4 Results and discussion
 7.4.1 XANES analysis
 7.4.2 EXAFS analysis
7.5 Conclusion

8 Summary and outlook

A The studied LN cluster and graphical comparison of the Cu, Mn and Fe EXAFS results
B MoO$_3$ nanoparticles supported on Mesoporous SBA-15: Characterization of starting materials and the products using X-ray scattering, Physisorption, Transmission Electron microscopy, Raman and XAFS spectroscopy

B.1 Introduction ... 95
B.2 Experimental section ... 96
 B.2.1 Synthesis of pristine Mesoporous SBA-15 96
 B.2.2 Synthesis of MoO$_3$/SBA-15 96
B.3 Results and discussion ... 98
 B.3.1 Powder X-ray Diffraction 98
 B.3.2 Raman spectroscopy ... 100
 B.3.3 Nitrogen physisorption 102
 B.3.4 Transmission Electron Microscopy and Scanning Electron Microscopy ... 103
 B.3.5 XAFS .. 103
B.4 Conclusion ... 111