HIV-Therapie mit dem Nukleosidanalogon Abacavir:
Hypersensitivitätsreaktionen und HLA-B57-Status

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Hohen Medizinischen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität
Bonn

Nicola Tesch
aus Kobe/Japan

2008
Angefertigt mit Genehmigung der
Medizinischen Fakultät der Universität Bonn

1. Gutachter: Prof. Dr. med. Jürgen Rockstroh
2. Gutachter: PD Dr. rer. nat. Oliver Schildgen

Tag der Mündlichen Prüfung: 14.10.2008

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn unter
http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert.

Aus der Medizinischen Klinik und Poliklinik I der Universität Bonn
Direktor: Prof. Dr. med. Tilman Sauerbruch
Inhaltsverzeichnis

Inhaltsverzeichnis................................. 3
Abkürzungsverzeichnis 6
1 Einleitung 8
 1.1 Epidemiologie und Übertragung 8
 1.2 Virologie 10
 1.3 Diagnostik der HIV-Primärinfektion und Infektionsverlauf .. 11
 1.3.1 Antikörpernachweis 12
 1.3.2 Direkter Nachweis von Virusmaterial 12
 1.4 Der natürliche Verlauf der HIV-Infektion 13
 1.5 Antiretrovirale Therapie........................... 15
 1.5.1 Ziele und Indikationen 15
 1.5.2 Therapieerfolg 16
 1.5.3 Substanzklassen 17
 1.5.3.1 NRTIs 18
 1.5.3.2 NNRTIs 19
 1.5.3.3 PIs.. 19
 1.5.3.4 Entry-Inhibitoren 20
 1.5.3.5 Integrase-Inhibitoren 21
 1.5.4 Die Wahl der „richtigen“ Therapie............ 21
 1.6 Abacavir 22
 1.6.1 Pharmakologie 22
 1.6.2 Wirksamkeit und Einsatzgebiete 22
 1.6.3 Die Hypersensitivitätsreaktion 23
 1.6.3.1 ABC-HSR: Inzidenz und Zeitpunkt 23
 1.6.3.2 Charakteristika der ABC-HSR 24
 1.6.3.3 Pathogenese 26
 1.6.3.4 Umgang mit der ABC-HSR in der Klinik ... 30
 1.7 Fragestellung 31
2 Patienten und Methoden........................... 32
 2.1 Identifikation der Fälle: Definition der ABC-HSR 32
 2.2 Identifikation der Kontrollgruppe 33
 2.3 Erhobene Daten 33
<table>
<thead>
<tr>
<th>2.3.1</th>
<th>Daten der Fälle</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1.1</td>
<td>Epidemiologische/Persönliche Daten</td>
<td>33</td>
</tr>
<tr>
<td>2.3.1.2</td>
<td>Klinische Daten</td>
<td>34</td>
</tr>
<tr>
<td>2.3.1.3</td>
<td>Laborparameter</td>
<td>34</td>
</tr>
<tr>
<td>2.3.1.3.1</td>
<td>Lymphozytotypisierung</td>
<td>34</td>
</tr>
<tr>
<td>2.3.1.3.2</td>
<td>HIV-Viruslast</td>
<td>35</td>
</tr>
<tr>
<td>2.3.1.3.3</td>
<td>Klinische Chemie</td>
<td>35</td>
</tr>
<tr>
<td>2.3.1.3.4</td>
<td>Blutbild</td>
<td>36</td>
</tr>
<tr>
<td>2.3.1.4</td>
<td>HLA-B-Typisierung</td>
<td>36</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Daten der Abacavir-toleranten Kontrollpersonen</td>
<td>37</td>
</tr>
<tr>
<td>2.4</td>
<td>Auswertung und Statistik</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>Ergebnisse</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Ursachen für das Absetzen von Abacavir</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Risikofaktorenanalyse</td>
<td>40</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Risikofaktorenanalyse der Patienten mit Verdacht auf HSR</td>
<td>40</td>
</tr>
<tr>
<td>3.2.1.1</td>
<td>Modellberechnungen</td>
<td>40</td>
</tr>
<tr>
<td>3.2.1.1.1</td>
<td>Nominale Variable</td>
<td>40</td>
</tr>
<tr>
<td>3.2.1.1.2</td>
<td>Stetige Variable</td>
<td>42</td>
</tr>
<tr>
<td>3.2.1.2</td>
<td>Betrachtung der einzelnen Risikofaktoren</td>
<td>43</td>
</tr>
<tr>
<td>3.2.1.2.1</td>
<td>HLA-Status</td>
<td>43</td>
</tr>
<tr>
<td>3.2.1.2.2</td>
<td>Geschlecht</td>
<td>44</td>
</tr>
<tr>
<td>3.2.1.2.3</td>
<td>Ethnische Herkunft</td>
<td>44</td>
</tr>
<tr>
<td>3.2.1.2.4</td>
<td>Bisherige ART-Erfahrung</td>
<td>44</td>
</tr>
<tr>
<td>3.2.1.2.5</td>
<td>CDC-Klasse</td>
<td>45</td>
</tr>
<tr>
<td>3.2.1.2.6</td>
<td>Patientenalter</td>
<td>45</td>
</tr>
<tr>
<td>3.2.1.2.7</td>
<td>Zellzahlen und Viruslast</td>
<td>45</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Risikofaktorenanalyse der Patienten mit wahrscheinlicher HSR</td>
<td>45</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>Modellberechnungen</td>
<td>45</td>
</tr>
<tr>
<td>3.2.2.1.1</td>
<td>Nominale Variable</td>
<td>45</td>
</tr>
<tr>
<td>3.2.2.1.2</td>
<td>Stetige Variable</td>
<td>48</td>
</tr>
<tr>
<td>3.2.2.2</td>
<td>Betrachtung der einzelnen Risikofaktoren</td>
<td>49</td>
</tr>
<tr>
<td>3.2.2.2.1</td>
<td>HLA-Status</td>
<td>49</td>
</tr>
<tr>
<td>3.2.2.2.2</td>
<td>Geschlecht</td>
<td>50</td>
</tr>
<tr>
<td>3.2.2.2.3</td>
<td>Weitere mögliche Risikofaktoren</td>
<td>50</td>
</tr>
<tr>
<td>3.2.3</td>
<td>HLA-B57</td>
<td>51</td>
</tr>
</tbody>
</table>
3.2.4 HLA-B37 .. 53
3.2.5 HLA-B-Typisierung .. 54
3.3 Symptomatik der Hypersensitivitätsreaktion .. 56
 3.3.1 Klinische Symptomatik im Überblick .. 56
 3.3.2 Klinische Symptomatik: wahrscheinliche und fragliche Fälle 58
 3.3.3 Klinische Symptomatik: die Reexpositionsreaktion 61
 3.3.4 Der Abbruchzeitpunkt .. 62
 3.3.5 Laborveränderungen .. 63
4 Diskussion .. 64
 4.1 Zugrundeliegende Methodik und Limitationen dieser Studie 64
 4.2 Ursachen für das Absetzen .. 65
 4.3 Risikofaktorenanalyse .. 66
 4.3.1 Kaukasische Abstammung 67
 4.3.2 Alter .. 68
 4.3.3 Geschlecht .. 68
 4.3.4 Körpergewicht/BMI .. 68
 4.3.5 Erhöhte CD8+-Zellzahl bei Ansetzen von Abacavir 69
 4.3.6 Erhöhte CD4+-Zellzahl bei Ansetzen von Abacavir 70
 4.3.7 CDC-Klasse ... 70
 4.3.8 ART-Naivität ... 71
 4.3.9 Gleichzeitige Einnahme von NNRTIs 71
 4.4 Der HLA-Status als Risikofaktor 72
 4.4.1 Der 57.1-Urhaplotyp ... 72
 4.4.2 HLA-B37 und kombiniertes HLA-B57/B37-Screening 80
 4.5 Symptomatik der Hypersensitivitätsreaktion 81
 4.5.1 Klinische Symptomatik .. 81
 4.5.2 Laborveränderungen ... 83
5 Zusammenfassung .. 84
Poster für „HIV 8“, Glasgow 2006 .. 86
Literaturverzeichnis .. 87
Danksagung .. 105
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>Abacavir</td>
</tr>
<tr>
<td>ABC-HSR</td>
<td>Abacavir-Hypersensitivitätsreaktion</td>
</tr>
<tr>
<td>abs.</td>
<td>absolut</td>
</tr>
<tr>
<td>AIDS</td>
<td>erworbenes Immunschwächsyndrom, acquired immune deficiency syndrome</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanin-Amino-Transferase</td>
</tr>
<tr>
<td>AP</td>
<td>Alkalische Phosphatase</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartat-Amino-Transferase</td>
</tr>
<tr>
<td>ART</td>
<td>antiretrovirale Therapie</td>
</tr>
<tr>
<td>AUC</td>
<td>Fläche unter der Kurve, area under curve</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaar</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BSG</td>
<td>Blutsenkungsgeschwindigkeit</td>
</tr>
<tr>
<td>CD</td>
<td>cluster of differentiation</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>cDNA</td>
<td>komplementäre Desoxyribonukleinsäure, complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>CK</td>
<td>Kreatinkinase, creatine kinase</td>
</tr>
<tr>
<td>CMV</td>
<td>Cytomegalievirus</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reaktives Protein</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure, deoxyribonucleic acid</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr-Virus</td>
</tr>
<tr>
<td>EFV</td>
<td>Efavirenz</td>
</tr>
<tr>
<td>GGT</td>
<td>Gamma-Glutamyl-Transferase</td>
</tr>
<tr>
<td>GIT</td>
<td>Gastrointestinaltrakt</td>
</tr>
<tr>
<td>gp</td>
<td>Glykoprotein</td>
</tr>
<tr>
<td>GSK</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>HAART</td>
<td>hochaktive antiretrovirale Therapie</td>
</tr>
<tr>
<td>HIV</td>
<td>humanes Immunschwächevirus</td>
</tr>
<tr>
<td>HLA</td>
<td>humanes Leukozytenantigen</td>
</tr>
<tr>
<td>Hsp</td>
<td>Hitzeschockprotein</td>
</tr>
<tr>
<td>HSR</td>
<td>Hypersensitivitätsreaktion(en)</td>
</tr>
<tr>
<td>HTLV-III</td>
<td>humanes T-Zell-lymphotropes Virus III</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon-γ</td>
</tr>
</tbody>
</table>
IL (-2,-4,-10) Interleukin (-2,-4,-10)
i.v. intravenös
LDH Laktat-Dehydrogenase
MHC Haupthistokompatibilitätskomplex, major histocompatibility complex
NK-Zellen natürliche Killerzellen
NNRTI Nicht-Nukleosidischer Reverse-Transkriptase-Inhibitor
NPW negativ prädiktiver Wert
NRTI Nukleosidischer Reverse-Transkriptase-Inhibitor
NVP Nevirapin
NVP-HSR Nevirapin-Hypersensitivitätsreaktion
OR Kreuzproduktverhältnis, odds ratio
PCR Polymerase-Kettenreaktion, polymerase chain reaction
PI Proteaseinhibitor
rel. relativ
PPW positiv prädiktiver Wert
RNA Ribonukleinsäure, ribonucleic acid
RNase H Ribonuklease H
RF Risikofaktor
RT Reverse Transkriptase
STD sexuell übertragbare Krankheiten, sexual transmitted diseases
TNF (-α) Tumor-Nekrose-Faktor (-α)
TLR Toll-like Rezeptor
UEW unerwünschte Wirkung
V.a. Verdacht auf
1 Einleitung

1.1 Epidemiologie und Übertragung

ist dieser Übertragungsweg aufgrund der geringeren Durchseuchung sowie dank pränataler Diagnostik und folgender medizinischer Intervention (Kaiserschnitt, antiretrovirale Therapie) von untergeordneter Bedeutung (Übertragungsrate bei infizierter Mutter <1%).

1.2 Virologie

Bei dem HI-Virus handelt es sich um ein Retrovirus, d. h. ein RNA-Virus, das das Enzym Reverse Transkriptase mit sich bringt, um seine RNA in die für die Wirtszelle als Matrise dienende DNA umzuschreiben. Das Virus ist ein ca. 100 nm messender Partikel, dessen Hülle aus Lipiden der Wirtszellmembran besteht, in welche virale Glykoproteine wie gp120 eingelagert wurden (Gürtler, 2000a). Der kegelförmige innere Kern besteht aus p24-Molekülen (Kapsidprotein), deren Nachweis diagnostisch genutzt wird. Er beherbergt 2 Moleküle HIV-RNA sowie die Enzyme Reverse Transkriptase, RNase H und Integrase. Zwischen äußerem und
innerem Kern findet sich die virale Protease. Es sind vor allem Reverse Transkriptase und Protease, die als Angriffspunkte der antiretroviralen Therapie dienen (Gürtler, 2000a).

1.3 Diagnostik der HIV-Primärinfektion und Infektionsverlauf

Die Diagnose einer HIV-Infektion wird meist indirekt, d. h. über den Nachweis gegen das Virus gerichteter Antikörper gestellt. Diese lassen sich jedoch frühestens 3 Wochen, durchschnittlich nach 5 Wochen und in Ausnahmefällen erst bis zu 6 Monaten nach der Primärinfektion

1.3.1 Antikörpernachweis

1.3.2 Direkter Nachweis von Virusmaterial
Leukozyten oder aber freie RNA nachgewiesen werden. In letzterem Fall muss zunächst mithilfe einer Reversen Transkriptase die Umschreibung der viralen RNA in DNA erfolgen (RT-PCR). Die Sensitivität der modernen Tests beträgt 50 Kopien/ml Blut.

1.4 Der natürliche Verlauf der HIV-Infektion

Tabelle 1: CDC-Klassifikation der HIV-Infektion von 1993 (CDC, 1993)

<table>
<thead>
<tr>
<th>Klinische Kategorie : Laborkategorie:</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4+-Lymphozyten/µl</td>
<td>asymptomatic</td>
<td>symptomatisch, jedoch kein AIDS</td>
<td>AIDS</td>
</tr>
<tr>
<td>1: ≥ 500</td>
<td>A1</td>
<td>B1</td>
<td>C1</td>
</tr>
<tr>
<td>2: 200-499</td>
<td>A2</td>
<td>B2</td>
<td>C2</td>
</tr>
<tr>
<td>3: < 200</td>
<td>A3</td>
<td>B3</td>
<td>C3</td>
</tr>
</tbody>
</table>
Tabelle 2: Die klinischen Kategorien A-C nach der CDC-Klassifikation

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Erkrankungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kategorie A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asymptomatische HIV-Infektion</td>
</tr>
<tr>
<td></td>
<td>Persistierende generalisierte Lymphadenopathie (LAS)</td>
</tr>
<tr>
<td></td>
<td>Akute symptomatische (primäre) HIV-Infektion</td>
</tr>
<tr>
<td>Kategorie B</td>
<td>Krankheitssymptome oder Erkrankungen, die nicht in die AIDS-definierende Kategorie C fallen, dennoch aber der HIV-Infektion ursächlich zuzuordnen sind oder auf eine Störung der zellulären Immunabwehr hinweisen. Hierzu zählen:</td>
</tr>
<tr>
<td></td>
<td>Bazilläre Angiomatose</td>
</tr>
<tr>
<td></td>
<td>Oropharyngeale Candidose</td>
</tr>
<tr>
<td></td>
<td>Vulvovaginale Candidosen, die entweder chronisch (> 1 Monat) oder schlecht therapierbar sind</td>
</tr>
<tr>
<td></td>
<td>Zervikale Dysplasien oder Carcinoma in situ</td>
</tr>
<tr>
<td></td>
<td>Konstitutionelle Symptome wie Fieber über 38,5 °C oder eine > 4 Wochen bestehende Diarrhoe</td>
</tr>
<tr>
<td></td>
<td>Orale Haarleukoplakie</td>
</tr>
<tr>
<td></td>
<td>Herpes zoster bei Befall mehrerer Dermatome oder nach Rezidiven in einem Dermatom</td>
</tr>
<tr>
<td></td>
<td>Idiopathische thrombozytopenische Purpura</td>
</tr>
<tr>
<td></td>
<td>Listeriose</td>
</tr>
<tr>
<td></td>
<td>Entzündungen des kleinen Beckens, besonders bei Komplikationen eines Tuben- oder Ovarialabszesses</td>
</tr>
<tr>
<td></td>
<td>Periphere Neuropathie</td>
</tr>
<tr>
<td>Kategorie C</td>
<td>AIDS-definierende Erkrankungen</td>
</tr>
<tr>
<td></td>
<td>Pneumocystis carinii-Pneumonie</td>
</tr>
<tr>
<td></td>
<td>Toxoplasmose-Enzephalitis</td>
</tr>
<tr>
<td></td>
<td>Candidose von Ösophagus, Trachea, Bronchien oder Lungen</td>
</tr>
<tr>
<td></td>
<td>Chronische Herpes simplex-Ulzer (> 1 Monat), Herpes-Bronchitis, -Pneumonie oder -Ösophagitis</td>
</tr>
<tr>
<td></td>
<td>CMV-Retinitis</td>
</tr>
<tr>
<td></td>
<td>Generalisierte CMV-Infektion (außer Leber, Milz, Lymphknoten)</td>
</tr>
<tr>
<td></td>
<td>Rezidivierende Salmonellen-Septikämien</td>
</tr>
<tr>
<td></td>
<td>Rezidivierende bakterielle Pneumonien (> 2 innerhalb eines Jahres)</td>
</tr>
<tr>
<td></td>
<td>Extrapulmonale Kryptokokkose</td>
</tr>
<tr>
<td></td>
<td>Chronische (> 1 Monat) intestinale Kryptosporidieninfektion</td>
</tr>
<tr>
<td></td>
<td>Chronische (> 1 Monat) intestinale Infektion mit Isospora belli</td>
</tr>
<tr>
<td></td>
<td>Disseminierte oder extrapulmonale Histoplasmose</td>
</tr>
<tr>
<td></td>
<td>Tuberkulose</td>
</tr>
<tr>
<td></td>
<td>Disseminierte oder extrapulmonale Infektionen mit Mycobacterium avium complex oder M. kansasii</td>
</tr>
<tr>
<td></td>
<td>Kaposi-Sarkom</td>
</tr>
<tr>
<td></td>
<td>Burkitt’s Lymphom, Immunoblastisches Lymphom, Primär zerebrales Lymphom</td>
</tr>
<tr>
<td></td>
<td>Invasives Zervixkarzinom</td>
</tr>
<tr>
<td></td>
<td>HIV-Enzephalopathie</td>
</tr>
<tr>
<td></td>
<td>Progressive multifokale Leukenzephalopathie</td>
</tr>
<tr>
<td></td>
<td>Wasting-Syndrom</td>
</tr>
</tbody>
</table>

1.5 Antiretrovirale Therapie

1.5.1 Ziele und Indikationen

1.5.2 Therapieerfolg

Zur Beurteilung des Therapieerfolges werden virologische, immunologische und klinische Kriterien herangezogen:

Es ist jedoch zu bedenken, dass bereits ein deutliches Absinken der Virämie zur Reduktion von Mortalität und Morbidität des Patienten führt, auch wenn damit eine Selektionierung resisterter Mutanten möglich wird (Grabar et al., 2000; Mezzaroma et al., 1999). Gerade bei therapeutisch ausgereizten Patienten und Multiresistenz sollte eine Orientierung an der CD4+-Zellzahl und die Stabilisierung derselben vorrangiges Ziel sein. Letztere kann bereits durch Absenken der
Viruslast auf unter 10000 Kopien/ml oder um 1,5 log-Stufen im Vergleich zum individuellen Setpoint erreicht werden (Ledergerber et al., 2004).

Der **immunologische Therapieerfolg** wird anhand des Anstiegs der CD4+-Zellzahlen quantifiziert und stellt sich zeitlich nach dem virologischen Therapieerfolg ein. Auch hier ist ein biphasischer Verlauf erkennbar: Innerhalb der ersten 3-4 Monate kommt es zu einer deutlichen Erholung der CD4+-Zellzahlen, danach geht der Anstieg wesentlich langsamer vorstatten (Le Moing et al., 2002). In der Frage, ob es auch nach Jahren zu einer weiteren Erholung des Immunsystems kommt oder ob die CD4+-Zellzahl nach einiger Zeit stagniert, ist man sich zurzeit noch uneinig (Smith et al., 2004; Viard et al., 2004). Eine vollständige Erholung des Immunsystems wird jedoch umso unwahrscheinlicher, je niedriger die CD4+-Zellzahlen zu Therapiebeginn und je älter der Patient ist (Kaufmann et al., 2003; Lederman et al., 2000).

Der **klinische Therapieerfolg** lässt sich am schlechtesten objektivieren. Meist wird er anhand klinischer Endpunkte wie z. B. AIDS-definierender Erkrankungen bzw. anhand der Krankheitsprogression (CDC-Klasse) beurteilt, obwohl der Aspekt der Lebensqualität dabei etwas außer Acht gelassen wird. Der klinische Therapieerfolg ist aber in hohem Maße sowohl vom virologischen als auch vom immunologischen Therapieerfolg abhängig, was die starke Orientierung an Viruslast und Zellzahlen rechtfertigt.

1.5.3 Substanzklassen

Zurzeit sind Medikamente aus 6 Substanzklassen auf dem Markt: Nukleosidische Reverse-Transkriptase-Inhibitoren (NRTIs), Nicht-Nukleosidische Reverse-Transkriptase-Inhibitoren (NNRTIs), Proteaseinhibitoren (PI), Integraseinhibitoren sowie Fusionsinhibitoren und CCR5-Inhibitoren als zwei Vertreter der Entry-Inhibitoren.

Die ersten NRTIs kamen Ende der 80er auf den Markt, jedoch zeigten sich diese in der antiretroviralen Monotherapie (ART) als wenig wirkungsvoll, sodass die Lage Anfang der 90er ziemlich hoffnungslos erschien (Hoffmann, 2007). 1995 konnte zwar gezeigt werden, dass der gleichzeitige Therapiebeginn mit zwei NRTIs einen signifikanten Unterschied bezüglich der
klinischen Endpunkte AIDS und Tod mit sich bringt (Delta Coordinating Committee, 1996). Der Durchbruch kam aber 1996 mit der Entwicklung der PIs und NNRTIs, die eine hochaktive antiretrovirale Therapie (HAART) durch Kombination der an verschiedenen Stellen angreifenden Substanzklassen möglich machte (Brodt et al., 1997; Cameron et al., 1998; Mocroft et al., 2000). Eine effektive Suppression der Virusreplikation und damit eine Verminderung der Resistenzentwicklung wurde möglich.

1.5.3.1 NRTIs

NRTIs konkurrieren kompetitiv als „falsche Bausteine“ mit den physiologischen Nukleotiden der Zelle um das Enzym Reverse Transkriptase. Baut das Enzym ein NRTI in eine entstehende DNA-Kette ein, so kommt es zum Kettenabbruch, weil die NRTIs aufgrund bestimmter Veränderungen am Zuckermolekül keine stabilen Phosphodiesterbindungen eingehen können. Zuvor werden die Nukleosidanaloge unverändert von der Zelle aufgenommen und durch intrazelluläre Phosphorylierung, bei der die entsprechenden Triphosphate (Nukleotide) entstehen, aktiviert.

Es gibt Analoga zu allen natürlichen Nukleosiden. Bei 3TC (Dideoxy-Thiacytidin, Lamivudin), ddC (Dideoxycytidin, Zalcitabin) und FTC (Emtricitabin) handelt es sich um Cytidinanaloga, bei d4T (Didehydro-Dideoxythymidin, Stavudin) und bei AZT (Azidothymidin, Zidovudin) um Thymidinanaloga. DdI (Dideoxyinosin, Didanosin) ist ein Inosinanalogon, das in Dideoxyadenosin umgewandelt wird und ABC (Abacavir) schließlich ist ein Guanosinanalogon. In der Kombinationstherapie sollten Analogana unterschiedlicher natürlicher Nukleoside zur Anwendung kommen.

1.5.3.2 NNRTIs

Auch bei dieser Substanzklasse ist die Reverse Transkriptase der Angriffspunkt. Es kommt jedoch nicht zu einer Konkurrenz mit den „richtigen“ Nukleotiden um die Substratbindungsstelle, vielmehr binden diese Substanzen in einem der Substratbindungsstelle benachbarten Bereich und blockieren damit eine katalytisch aktive Bindungsstelle. Die Umsetzungsgeschwindigkeit der Polymerase wird deutlich herabgesetzt.

Im Gegensatz zu NRTIs müssen NNRTIs nicht erst durch die Zelle aktiviert werden. Ihre Eliminierung erfolgt überwiegend nach hepatischer Metabolisierung durch verschiedene Enzyme des Cytochrom P450-Systems, für das Nevirapin ein Induktor darstellt, während Efavirenz sowohl als Induktor als auch als Inhibitor wirken kann. Weitreichende Interaktionen mit anderen Medikamenten z. B. Proteaseinhibitoren sind die Folge und machen Dosisanpassungen notwendig. Neben Nevirapin (NVP) und Efavirenz (EFV) findet sich noch Delavirdin (DLV) auf dem Markt, welches heute jedoch kaum noch eingesetzt wird. Auch die NNRTIs werden meist gut vertragen, mögliche Nebenwirkungen sind Exanthem, Transaminasenanstieg, Fieber, Erhöhung der Blutfette und Schlafstörungen.

NNRTIs scheinen den Proteaseinhibitoren als mögliche Partner der NRTIs zumindest gleichwertig, wenn nicht sogar überlegen zu sein – vorausgesetzt, es erfolgt eine effektive Virussuppression (Friedl et al., 2001; Mocroft et al., 2006; Moyle, 2001; Staszewski et al., 1999). Ist dies nicht der Fall, so kommt es bei dieser Substanzklasse äußerst schnell zu Resistenzentwicklungen (Eshleman und Jackson, 2002). Leider handelt es sich dabei oft um Kreuzresistenzen. Eine einzige Mutation ist in der Lage, den Einsatz der NNRTIs wertlos zu machen, zumal die Replikationsfähigkeit von HIV durch NNRTI-Mutationen nicht so reduziert wird wie bei einigen PI- oder NRTI-Mutationen.

1.5.3.3 PIs

Der Einsatz der Proteaseinhibitoren in Kombination mit NRTIs seit Mitte der 90er Jahre hat die hochaktive antiretrovirale Therapie möglich gemacht und ließ die AIDS-Zahlen besonders in den Industrienationen einbrechen. Ihre klinische Wirksamkeit konnte in mehreren Studien bewiesen werden (Cameron et al., 1998; Hammer et al., 1997).

Die virale Protease findet sich zwischen innerem und äußerem Kern des HIV-Partikels und ist für die Aufspaltung des Gag-pol-Makromoleküls in seine aktiven Untereinheiten verantwortlich. Aus dem Gag-Vorläufer-Protein entstehen schließlich verschiedene virale Proteine (u. a. das p24), aus dem Pol-Vorläuferprotein die Protease, die Reverse Transkriptase und die Integrase. Aus dem Verständnis der entscheidenden Rolle der Protease für die Entstehung neuer infektiöser
Viruspartikel heraus und mit dem Wissen über die genaue Molekülstruktur konnten Anfang der 90er Jahre die ersten Proteaseinhibitoren designiert werden. Heute befindet sich eine ganze Palette von Proteaseinhibitoren auf dem Markt, unter ihnen Ritonavir (RTV), Indinavir (IDV), Saquinavir (SQV) und Lopinavir (LPV).

Nachteil der PIs sind, nachdem die anfänglich eingesetzte recht hohe Pillenzahl reduziert werden konnte, die nicht unerheblichen Nebenwirkungen. Neben stärkeren und anhaltenden gastrointestinalen Beschwerden finden sich in der Langzeittherapie Erhöhungen der Blutfettwerte und wiederum das Problem der Lipodystrophie (Nolan, 2003b). Auch die Proteaseinhibitoren werden durch das hepatische Cytochrom P450-System metabolisiert. Sie sind Inhibitoren des CYP3A4-Systems und daher ebenso wie die NNRTIs Ursache weitreichender Medikamenteninteraktionen. Diese werden im Falle der PI jedoch für eine effektivere Therapie genutzt: Durch Ritonavir werden die wichtigsten pharmakokinetischen Parameter fast aller PIs deutlich gesteigert ("geboostert") (Kempf et al., 1997). Reduktion der Pillenzahl, eine gesteigerte virale Suppression und somit geringere Resistenzentwicklung sind die gewünschten Folgen (Lichterfeld et al., 2003). In dieser Substanzklasse kommt es insgesamt weniger schnell zur Resistenzentwicklung, Kreuzresistenzen sind jedoch relativ ausgeprägt (Condra et al., 1995).

1.5.3.4 Entry-Inhibitoren

Entry-Inhibitoren können den Eintritt des HI-Virus in die Zelle grundsätzlich auf 3 Arten hemmen (Hoffmann, 2007):

1.5.3.5 Integrase-Inhibitoren

Die Integrase ist neben der Reversen Transkriptase und der Protease eines der drei Schlüsselenzyme im HIV-1-Replikationszyklus. Sie ist für die Integration viraler DNA in die Wirts-DNA und somit für die Virusreplikation essentiell. Raltegravir wurde als erster Vertreter dieser Substanzklasse im Dezember 2007 (EU) zugelassen, mit Elvitegravir befindet sich ein weiterer vielversprechender Wirkstoff in klinischer Testung (Grinsztejn et al., 2007; Markowitz et al., 2007; Zolopa et al., 2007).

1.5.4 Die Wahl der „richtigen“ Therapie

So ist die Wahl der (initialen) Therapie in besonderem Maße eine Individualentscheidung, bei der viele Faktoren und Interaktionen in die Überlegungen mit einbezogen werden müssen.

1.6 Abacavir

1.6.1 Pharmakologie

Abacavir ist ein nukleosidischer Reverse Transkriptase Inhibitor der HIV Typ 1 Replikation. Es ist ein Guanosinanalogon, das durch intrazelluläre Phosphorylierung in das aktive Agens, Carbovir-Triphosphat, umgesetzt wird. Letzteres hat eine lange Halbwertszeit, sodass Abacavir 2004 auch für die einmal tägliche Einnahme zugelassen wurde. Abacavir wird in der Leber metabolisiert, interferiert jedoch nicht mit Enzymen des Cytochrom P450-Systems (Ravitch et al., 1998). Es hat mit 83% eine relativ hohe orale Bioverfügbarkeit und das Verhältnis der AUC (area under curve) im ZNS zur AUC im Plasma beträgt um die 30%, sodass eine gute ZNS-Penetration gewährleistet ist (Chittick et al., 1999; Daluge et al., 1997).

1.6.2 Wirksamkeit und Einsatzgebiete

Abacavir findet sich mit Lamivudin (3TC) und Zidovudin (AZT) als Bestandteil von Trizivir® und zusammen mit Lamivudin in Kivexa®. Die in vitro Potenz ist der anderer NRTIs vergleichbar (Daluge et al., 1997; Foster und Faulds, 1998). In klinischen Studien konnte in Kombination mit Lamivudin und Zidovudin eine HIV-RNA-Reduktion um ca. 2 log10 Stufen nachgewiesen werden, jedoch zeigte sich Trizivir® in der 5095-Studie virologisch weniger wirksam als der NNRTI Efavirenz zusammen mit 3TC und AZT (Gulick et al, 2004; Saag et al., 1998; Staszewski et al., 1998). In der doppelblind randomisierten CNA3005-Studie zeigte sich ABC – abgesehen von der Patientengruppe mit hoher initialer Viruskonzentration – dem PI Indinavir
vergleichbar (Staszewski et al., 2001). In der offen randomisierten CNA3014-Studie war Abacavir jedoch wirksamer als Indinavir, was den Einfluss der besseren Compliance beleuchtet (Vibhagool et al., 2004). Die Effektivität von ABC + 3TC/EFV ist der von AZT + 3TC/EFV ebenso wie der von d4T + 3TC/EFV gleichzusetzen, es verursacht aber zumindest im Vergleich zu d4T + 3TC/EFV weniger Lipodystrophie (DeJesus et al., 2004; Podzamczer et al., 2007). In Übereinstimmung mit der These, dass die mitochondriale Toxizität mit für die durch PIs und manche NRTIs hervorgerufene Lipodystrophie verantwortlich ist, konnte nach Umstellung von d4T auf ABC ein Rückgang der Lipodystrophie und eine Zunahme der mitochondrialen DNA beobachtet werden (Carr et al., 2002; John et al., 2003; McComsey 2005).

Abacavir wird daher zum einen bei Patienten mit einem Lipodystrophiesyndrom, zum anderen zur Intensivierung einer virologisch versagenden Therapie eingesetzt (Katlama et al., 2000; Rozenbaum et al., 2001). Ein weiteres häufiges Einsatzgebiet von Abacavir ist die Vereinfachung eines Therapieregimes, es ersetzt dann einen NNRTI oder PI als „Triple-Nuke“-Therapie (Bonjoch et al., 2005; Katlama et al., 2003). Diese Umstellung birgt jedoch besonders bei länger vorbehandelten Patienten die Gefahr des virologischen Versagens (Martínez et al., 2003; Opravil et al., 2002).

1.6.3 Die Hypersensitivitätsreaktion

1.6.3.1 ABC-HSR: Inzidenz und Zeitpunkt

Abacavir ist im Allgemeinen gut verträglich. Es ist im Vergleich zu einigen anderen NRTIs weniger durch Langzeitnebenwirkungen wie Lipodystrophie, Polyneuropathie und Laktatazidose belastet, birgt jedoch andererseits die Gefahr einer potenziell lebensgefährlichen Hypersensitivitätsreaktion (Saag et al, 1998; Staszewski et al., 1998). Die Inzidenz dieser Hypersensitivitätsreaktion schwankt je nach Epidemiologie und Studie zwischen 0 und 14%, durchschnittlich muss in 4-8% der Fälle damit gerechnet werden (Cutrell et al., 2004; Hetherington et al., 2001a; Symonds et al., 2002). Sie tritt in über 90% der Fälle innerhalb der ersten 6 Wochen der Einnahme auf, der Median des Symptombeginns liegt bei 11 Tagen (Easterbrook et al., 2003; Hetherington et al., 2001a). Gemäß einer amerikanischen Studie sollen jedoch rund 5% der Fälle noch nach einer Einnahmedauer von 12 Wochen auftreten (Hetherington et al., 2001a).
1.6.3.2 Charakteristika der ABC-HSR

Es wird angenommen, dass es sich bei der Hypersensitivitätsreaktion auf Abacavir um eine sogenannte idiosynkratische Reaktion handelt, eine angeborene Überempfindlichkeit, deren zugrundeliegender Mechanismus noch unklar ist (Hetherington et al., 2001a; Martin et al., 2004b). Solche Reaktionen sind weniger dosisabhängig, schlecht vorhersagbar und eher von genetischen, immunologischen und metabolischen Faktoren des Patienten abhängig als von den pharmakologischen Eigenschaften des auslösenden Agens (Pohl et al., 1988).

Die Hypersensitivitätsreaktion auf Abacavir ist eine Multiorganreaktion. Symptomatisch wird sie meist mit Fieber (73-78%), einem Exanthem (66-71%), gastrointestinalen Symptomen (53%) wie Übelkeit/Erbrechen (46%) und Diarrhoe (22%) sowie Unwohlsein/Abgeschlagenheit (46-66%) (Easterbrook et al., 2003; Hetherington et al., 2001a). Des Weiteren können auftreten: respiratorische Symptome (Husten, Dyspnöe, Angina), musculoskelettale Symptome (Myalgien, Arthralgien – auch mit Abgeschlagenheit und allgemeinem Krankheitsgefühl als konstitutionelle Symptome zusammengefasst), neurologische Symptome (Kopfschmerzen, Parästhesien), Stomatitis, Konjunktivitis, Ödeme und Lymphadenopathien (Clay, 2002; Easterbrook et al., 2003; EMEA, 2000; Hetherington et al., 2001a). Zu beachten ist, dass unabhängig von einer HSR Abgeschlagenheit, Kopfschmerzen sowie Übelkeit und Erbrechen gehäuft unter der Therapie mit ABC auftreten (Clay, 2002). Sind innere Organe beteiligt, so sind dies meist Leber oder Niere. Veränderte Laborwerte können die Transaminasen der Leber, Kreatinin, LDH, CK, AP und die Blutzellzahlen betreffen (Hetherington et al., 2001a; Hewitt, 2002). Weiter wurde über Einzelfälle berichtet, in denen eine ABC-induzierte Agranulozytose aufgetreten ist (Sankatsing und Prins, 2001; Tikhomirov et al., 1999). In einem Fall wurde aufgrund der schnellen Regredienz eine Beteiligung des Immunsystems vermutet, im anderen Fall hingegen eine durch ABC ausgelöste Myelosuppression. Im Gegensatz zu einigen anderen medikamenteninduzierten Hypersensitivitätsreaktionen, die oft auch als sogenanntes DRESS-Syndrom (drug rash with eosinophilia and systemic symptoms) bezeichnet werden, ist die HSR auf Abacavir jedoch nicht mit einer Eosinophilie assoziiert (Hewitt, 2002).

Wird Abacavir nicht abgesetzt, kommt es typischerweise nach jeder weiteren Dosis zu einer Verstärkung der Beschwerden und es kann zu einer anaphylaxieartigen Reaktion mit Tachykardie und Blutdruckabfall kommen (Hewitt, 2002). Selten kann bereits eine Dosis eine schwere, möglicherweise tödliche Hypersensitivitätsreaktion auslösen (de la Rosa et al., 2004). Typisch sind solche rasch nach einer Dosis einsetzenden Symptome eher für eine Reexpositionsreaktion (Shapiro et al., 2001). Bei dieser treten meist die gleichen Symptome wie beim Erstkontakt auf. Die Symptomatik ist jedoch erschwert, weitere Symptome können hinzutreten und
anaphylaktische Reaktionen treten in bis zu 30% auf (Clay, 2002; Escaut et al., 1999; Hetherington et al., 2001a; Walensky et al., 1999). Eine Reexposition nach Absetzen aufgrund beginnender Symptome ist daher kontraindiziert.

Es gibt auch Berichte, wonach eine ABC-HSR nach Reexposition bei Patienten aufgetreten ist, die zuvor keine Symptome einer Hypersensitivität gezeigt hatten (El Sahly, 2004; Frissen et al., 2001; Loelinger et al., 2001). Der Verlauf war dabei zumeist der einer Reexpositions-HSR, nur in einem Fall setzten die Symptome entsprechend einer Erstexpositions-HSR verzögert ein. Insgesamt ist dieser Fall zwar ausgesprochen selten, dennoch sollte die Möglichkeit einer HSR im Rahmen eines ABC-Wiederbeginns in bisher toleranten Patienten nicht völlig ausgeschlossen werden. Eine Unterbrechung der ABC-Medikation aus anderen Gründen als dem Verdacht auf HSR scheint dabei nicht zu einer Sensibilisierung zu führen (Berenguer et al., 2002; Clay, 2002). Wird Abacavir rechtzeitig vor Auftreten eines Blutdruckabfalls abgesetzt, kommt es im Allgemeinen innerhalb von 24-48 Stunden zu einer deutlichen Besserung der Symptomatik und innerhalb weniger Tage zur völligen Wiederherstellung (Hewitt, 2002; Mallal et al., 2002).

In einer Studie aus dem Jahre 2001 betrug die Mortalitätsrate ca. 0,03% aller mit ABC behandelten Patienten, 32% der Fälle traten nach Reexposition auf (Hetherington et al., 2001a). Obwohl respiratorische Symptome der Häufigkeit nach erst an fünfter Stelle rangieren (ca. 30% der Fälle), so hatten doch 58% der Todesfälle bereits bei initialer Exposition respiratorische Symptome entwickelt. Daher sollte bei jedem Patienten unter ABC-Medikation bei plötzlichem Auftreten respiratorischer Symptome auch dann die Möglichkeit einer ABC-HSR erwogen werden, wenn eine andere Erklärung (Pneumonie, Bronchitis) nicht unwahrscheinlich ist. Eine Entscheidungshilfe gibt eine Studie, wonach es sich immer dann eher um eine ABC-HSR als um eine Grippe handelt, wenn auch gastrointestinale Symptome auftreten (Keiser et al., 2003).

tritt die ABC-HSR in über 30% der Fälle ohne Exanthem auf. Umgekehrt wird auch in 10% der ABC-Therapien ein Exanthem beobachtet, ohne dass es zu einer HSR käme (Clay, 2002). Keines der genannten Symptome erlaubt alleine die Diagnose einer ABC-HSR. Eine Symptomkombination führt zur Verdachtsdiagnose, die definitive Diagnose ist jedoch an eine Reexposition oder eine immunologische Sicherung gekoppelt (Mallal et al., 2008; Phillips et al., 2005).

1.6.3.3 Pathogenese

Beim ABC-hypersensitiven Patienten wurde eine im Vergleich zu HIV-positiven Kontrollen höhere IL-4-Produktion gefunden, Hauptprodukt der T2-Zellpopulation und wichtiger Regulator des Verlaufs der HIV-1-Infektion (Easterbrook et al., 2003; Kalinkovich et al., 1999; King et al., 2005). T1-Zellen vermitteln über die Freisetzung von IFN-γ, TNF-α und IL-2 zellvermittelte Immunreaktionen (und somit Viruseradikation). T2-Zellen sezernieren hingegen eine Reihe antiinflammatorischer Zytokine wie IL-4, -5, -10 und -13, die unter anderem für die humorale Immunantwort gegen extrazelluläre Pathogene verantwortlich sind, die Antikörperproduktion durch B-Zellen anregen sowie eosinophile Granulozyten anlocken (Lucey et al., 1996; Spellberg und Edwards, 2001). Nach einem Modell repräsentiert die Expansion IL-4-produzierender Zellen (T0- und T2-Zellen) in ABC-Hypersensitiven die Produktion spezifischer Gedächtniszellen nach Antigenstimulation durch haptenisiertes Abacavir oder einen haptenisierten Abacavirmetaboliten (King et al., 2005). Erhöhte TNF-α und IFN-γ Konzentrationen bei hypersensitiven Individuen nach ex vivo ABC-Exposition sprechen jedoch eher für eine durch T1-Zellen vermittelte Immunantwort (Martin et al., 2004a; Martin et al., 2006a). Des Weiteren wurden in der immunhistochemischen Aufarbeitung von Exanthembiopsien ebenso wie in Biopsien von epikutanten Reiztests, sogenannten Patch-Tests, Oberflächenmarker nachgewiesen, die eine Th1-Zellantwort als Vermittler der Hypersensitivität auf Abacavir nahe legen (Phillips et al., 2002).

Diese gegensätzlichen Angaben zur Zytokinsekretion und Beteiligung von T1- bzw. T2-Zellpopulationen mögen jedoch auch damit zusammenhängen, dass mit der Progression der HIV-Infektion ein Wechsel von einer zunächst dominierenden T1- hin zu einer dominierenden T2-Antwort angenommen wird (Clerici und Shearer, 1994). Diese geht mit einem reduzierten zytolytischen Potenzial sowie einer gesteigerten IgE-Synthese und Eosinophilie einher und führt
somit zu einer reduzierten Abwehr gegen Viren und intrazelluläre Parasiten und zu einer Disposition für allergieähnliche Reaktionen (Lucey et al., 1996; Maggi et al., 1994). Die schnelle Reexpositionsreaktion und das deutlich häufigere Auftreten der Symptome Tachykardie (11% bei Reexposition, 1% bei initialer Exposition), Blutdruckabfall (25% bei Reexposition, 5% bei initialer Exposition), Fieber und Ödem könnten bei der Pathogenese der Reexpositionsreaktion zunächst eine IgE-Beteiligung vermuten lassen (Hetherington et al., 2001a). Bronchospasmus, Angioödem und Eosinophilie werden jedoch auch in Fällen mit Blutdruckabfall selten beobachtet und die Reexpositionsreaktion erfolgt nicht innerhalb von Minuten, wie es bei der klassischen anaphylaktischen Reaktion der Fall wäre (Hetherington et al., 2001a). Auch konnten keine ABC-spezifischen IgE-Antikörper nachgewiesen werden (King et al, 2005). Eine Desensibilisierung ist bei der ABC-HSR im Gegensatz zur Hypersensitivität auf Cotrimoxazol, abgesehen von der Gefahr der Resistenzentwicklung, unmöglich und spricht ebenfalls gegen eine IgE-Beteiligung bei dieser Immunantwort (Vilar et al., 2003).

Zumindest für einige Medikamente wird angenommen, dass ein Ungleichgewicht zwischen Entgiftung und metabolischer Bioaktivierung, die zu chemisch reaktiven Zwischenprodukten führt, eine Ursache für das Auftreten von Hypersensitivität darstellt (Hess und Rieder, 1997; Koopmans et al., 1995; Shapiro und Shear; 1996). Diese Zwischenprodukte entstehen zu großen Teilen in der Leber und werden mit dem Blutstrom im Körper verteilt; aber auch die Haut besitzt eine nicht zu unterschätzende metabolische Aktivität. In den letzten Jahren wurden zwei Hypothesen aufgestellt, die zu erklären versuchen, wie reaktive Medikamentenmetabolite zu einer Immunreaktion führen können (Pirmohamed et al., 2002; Vilar et al., 2003):

Die Haptenhypothese postuliert die kovalente Bindung eines chemisch reaktiven Zwischenproduktes an körpereigene Proteine unter Bildung eines Medikament-Protein-Konjugates, welches groß genug ist, um eine Immunreaktion hervorzurufen. Präsentation dieses Haptens führt zur T-Zell-Aktivierung und diese in Gegenwart passender kostimulatorischer Signale zu Zytokinfreisetzung und einer Hypersensitivitätsreaktion (Coleman, 1998; Park et al., 1998; Park et al., 2001).

IFN-\(\gamma\) frei. Ein Medikament kann zum einen als Antigenquelle dienen, aber auch toxisch auf die Zielzelle wirken und auf diesem Weg das Gefahrsignal geben, das zur pathogenen Immunantwort führt. Die Gefahrhypothese liefert auch eine mögliche Erklärung für die höhere Frequenz von Hypersensitivitätsreaktionen in HIV-positiven Individuen: Man findet als Ausdruck der Virusinfektion höhere Konzentrationen an IFN-\(\gamma\), das als kostimulatorisches Signal dienen kann (Baier-Bitterlich et al., 1997).

1.6.3.4 Umgang mit der ABC-HSR in der Klinik

Im Zweifelsfall wird Abacavir abgesetzt, häufig mit der etwas unbefriedigenden Diagnose „Mögliche ABC-HSR“. Bei Verdacht auf HSR in Abwesenheit effektiver Alternativtherapien besteht auch die Möglichkeit, in Absprache mit dem Patienten eine weitere Dosis einzunehmen und sich nach wenigen Stunden wieder zu besprechen. Bei Progredienz der Symptomatik erfolgt das sofortige Absetzen; bleiben die Symptome in gleicher Weise bestehen, kann eine weitere Dosis – wiederum unter engmaschiger Kontrolle – eingenommen werden (Hewitt, 2002).

1.7 Fragestellung

Die vorliegende Arbeit befasst sich mit der Untersuchung von Hypersensitivitätsreaktionen, die zwischen 1997 und 2006 in der Betreuung der Immunologischen Ambulanz der Universitätsklinik Bonn unter Abacavir-Therapie aufgetreten sind. Dabei sollen folgende Punkte berücksichtigt werden:

1. Wie viele der Bonner HIV-Patienten, die mit Abacavir behandelt wurden, haben die Therapie innerhalb der ersten 12 Wochen abgebrochen und aus welchen Gründen?
2. Welche Faktoren beeinflussen das Risiko für das Auftreten einer Hypersensitivitätsreaktion auf Abacavir?
 a. Epidemiologische, klinische und Labordaten der Patienten, bei denen eine ABC-HSR als Abbruchursache anzunehmen oder nicht auszuschließen ist, werden mit den entsprechenden Daten einer ABC-toleranten Kontrollgruppe verglichen und auf mögliche Risikofaktoren untersucht.
 b. Eine zweite Analyse unter Ausschluss der Fälle, bei denen eine ABC-HSR zwar nicht auszuschließen aber zumindest fraglich ist, wird mit der ersten verglichen.
 c. Besonderes Augenmerk soll bei beiden Analysen auf den genetischen Marker HLA-B57 gelegt und seine statistische Aussagekraft untersucht werden (Odds Ratio, Sensitivität, Spezifität, positiv prädiktiver Wert, negativ prädiktiver Wert, durch retrospektives HLA-Screening ermittelte mögliche Senkung der HSR-Rate in der Bonner Kohorte).
2 Patienten und Methoden

Zwischen 1997 und 2006 wurde bei 233 durch die Immunologische Ambulanz der Universitätsklinik Bonn betreuten HIV-positiven Patienten der NRTI Abacavir angesetzt. Für die vorliegende Arbeit wurden deren Krankenakten gesichtet und abhängig von Einnahmedauer sowie Abbruchursache ausgewertet. Die Patienten wurden anhand der unter 2.1 und 2.2 aufgeführten Kriterien in vier Gruppen eingeteilt:

1. Patienten, die möglicherweise eine ABC-HSR erfahren haben (Fälle, n = 17, davon 12 wahrscheinlich, 5 fraglich)
2. Patienten, bei denen eine ABC-HSR als Abbruchursache nicht auszuschließen ist (n = 2)
3. Patienten, die aus anderen Gründen ABC innerhalb der ersten 12 Wochen der Einnahme abgesetzt haben (n = 16)
4. Patienten, die Abacavir mindestens 12 Wochen ohne Symptome einer ABC-HSR eingenommen haben (Kontrollgruppe, n = 198)

Patienten, die zum Zeitpunkt ihrer Erstvorstellung in Bonn bereits mehr als 12 Wochen auf Abacavir eingestellt waren, bei denen somit eine Abacavir-Toleranz anzunehmen ist, wurden nicht in die Untersuchung mit einbezogen. Entsprechend wurden auch die Patienten ausgeschlossen, die anamnestisch bereits bei ihrer Erstvorstellung einen Verdacht auf eine ABC-HSR gehabt hatten.

2.1 Identifikation der Fälle: Definition der ABC-HSR

Waren die folgenden Bedingungen erfüllt, so wurde von einer wahrscheinlichen Hypersensitivitätsreaktion auf Abacavir ausgegangen:

1. Symptomatik:
 a. Anaphylaktische Reaktion und/oder
 b. \(\geq 1 \) Symptom aus \(\geq 2 \) der folgenden Symptom(gruppen):
 i. Exanthem
 ii. Fieber
 iii. Gastrointestinale Symptome (Übelkeit, Erbrechen, Diarrhoe, Oberbauchschmerzen)
 iv. Respiratorische Symptome (Husten, Dyspnoe, Pharyngitis)
 v. Konstitutionelle Symptome (schwere Abgeschlagenheit, Müdigkeit, Arthralgie, Myalgie, allgemeines Krankheitsgefühl)
2. Auftreten innerhalb der ersten 6 Wochen nach Beginn der Abacavir-Therapie
3. Besserung innerhalb von 72 Stunden nach Absetzen von Abacavir
4. Keine Besserung sofern fortgesetzte Therapie
5. Keine andere sehr wahrscheinliche Ursache
6. Wiederauftreten sofern Reexposition (**definitiver Fall**)

In folgenden Fällen wurde eine Reaktion als **unwahrscheinliche, aber mögliche (nicht auszuschließende)** Hypersensitivitätsreaktion definiert:

1. Symptome erfüllen die Kriterien nicht vollständig
2. Auftreten nach Ablauf der ersten 6 Wochen unter Abacavir-Therapie
3. Keine Besserung innerhalb der ersten 72 Stunden nach Absetzen von Abacavir
4. Besserung bei fortgesetzter Therapie bzw. keine Symptomatik bei Reexposition (sehr unwahrscheinlich!)
5. Eine andere Erklärung ist mindestens ebenso wahrscheinlich (andere Medikamente, Infektion, Psyche).

2.2 Identifikation der Kontrollgruppe

Die Kontrollgruppe setzt sich aus HIV-positiven und mit Abacavir behandelten Patienten zusammen, die Abacavir mindestens 12 Wochen ohne Entwicklung von Symptomen vertragen hatten.

2.3 Erhobene Daten

2.3.1 Daten der Fälle

2.3.1.1 Epidemiologische/Persönliche Daten

Folgende epidemiologische Daten wurden erfasst:

Geschlecht (w, m), Alter zu Beginn der Abacavir-Exposition (in Jahren: j), ethnische Herkunft (kaukasisch, afrikanisch, andere), Zeitpunkt der Erstdiagnose, Infektionsrisiko (homosexuelle Kontakte, heterosexuelle Kontakte, Endemie, Hämophilie).

Der Begriff „kaukasisch“ bzw. „Kaukasier“ bezeichnet hier wie im Folgenden entsprechend der für diese Arbeit ausgewerteten englischsprachigen Literatur Menschen heller Hautfarbe und indoeuropäischer Abstammung („caucasian“).
2.3.1.2 Klinische Daten
Die klinischen Parameter wurden Untersuchungsbögen und Arztbriefen entnommen. Dabei wurde zwischen klinischen Daten, die vor Beginn der Abacavir-Exposition erhoben worden waren (Status d0), und klinischen Daten zum Zeitpunkt des Abbruchs (d-Abbruch) unterschieden.

Bezüglich des Status vor ABC-Exposition (d0) waren von Interesse:
Zeitpunkt des Therapiebeginns mit ABC sowie der Grund für das Ansetzen (Unverträglichkeit/UEW der Vortherapie, Resistenz, Studie), BMI (kg/m²), ART-Erfahrung vor Therapiebeginn mit ABC (ja, nein), CDC-Klasse nach Symptomatik (A, B, C), CDC-Klasse nach Helferzellzahl (≥ 500, 200-499, < 200), signifikante Vorerkrankungen (insbesondere chronische Hepatitis B und C), regelmäßiger Alkoholkonsum (ja, nein), bekannte Nevirapinallergie (ja, nein), gleichzeitige Therapie mit NNRTI (ja, nein), antivirale Begleitmedikation.

Folgende klinischen Parameter wurden zum Abbruchzeitpunkt (d-Abbruch) erhoben:
Zeitpunkt des Abbruchs und Dauer der Einnahme (in Tagen: d), Notwendigkeit einer stationären Aufnahme (ja, nein), Unklarheit bezüglich HSR-Diagnose (ja, nein und Begründung), andere möglicherweise ursächliche Medikamente (die ein Exanthem bzw. HSR-artige Symptome auslösen können), gleichzeitig vorliegende Schwangerschaft (ja, nein), akute Begleiterkrankung/Infektion (ja, nein und welche), Symptomatik der HSR.

2.3.1.3 Laborparameter

2.3.1.3.1 Lymphozytentypisierung
Die Lymphozytentypisierung erfolgte im Immunologischen Labor der Medizinischen Klinik I der Universitätsklinik Bonn per Durchflusszytometrie mithilfe eines FACS Calibur und monoklonaler Antiseren des Herstellers Becton & Dickenson (bis 2003 Simultest IMK Kit, anschließend MultiTEST IMK Kit). Erfasst wurden CD4+-Lymphozyten, CD8+-Lymphozyten
sowie B-Lymphozyten in absoluter (/µl) und relativer (%) Menge zum Zeitpunkt des Therapiebeginns sowie -abbruchs. Sofern in der Zwischenzeit keine Therapieveränderung stattgefunden hatte, konnten die Daten zum Zeitpunkt d0 bis zu einem halben Jahr alt sein. Den Abbruchzeitpunkt (d-Abbruch) betreffende Daten durften nicht mehr als 7 Tage vor bzw. nach dem Absetzen von Abacavir erhoben worden sein.

2.3.1.3.2 HIV-Viruslast
Auch hier durften Werte, die den Zeitpunkt d0 repräsentierten, ein halbes Jahr alt sein, sofern sich am Behandlungsregime in der Zwischenzeit nichts geändert hatte. Die Viruslast zum Zeitpunkt d-Abbruch durfte nicht mehr als 7 Tage vor und maximal 7 Tage nach Abbruch der Therapie bestimmt worden sein.

2.3.1.3.3 Klinische Chemie
Die folgenden Laborwerte wurden im Institut für Klinische Biochemie der Universitätsklinik Bonn bestimmt:
- Kreatinin (Referenzbereich 0,5-1,4 mg/dl)
- Gamma-Glutamyl-Transferase (Referenzbereich Frauen 4-18 U/l, Männer 6-28 U/l bei 25°C)
- Alanin-Amino-Transferase (ALT, früher GPT = Glutamat-Pyruvat-Transaminase) (Referenzbereich Frauen -19 U/l, Männer -23 U/l bei 25°C)
- Laktat-Dehydrogenase (LDH) (Referenzbereich 100-240 U/l bei 25°C)
- Kreatinkinase (CK) (Referenzbereich Frauen -70 U/l, Männer -80 U/l bei 25°C)
- Bilirubin gesamt (Referenzbereich 0,1-1,2 mg/dl)
- Laktat (Referenzbereich 0,4-2,2 mmol/l)
- C-reaktives Protein (CRP) (Referenzbereich -3 mg/l)
Wiederum durften die d0-Werte bis zu einem halben Jahr alt sein, sofern sich der Patient unter der gleichen Therapie befunden hatte und keine Besonderheiten (z. B. Infektionen) aufgetreten waren. Die Werte für d-Abbruch hingegen durften maximal 7 Tage vom wahren Zeitpunkt abweichen.

2.3.1.3.4 Blutbild

Das Blutbild der Patienten wurde zum größten Teil im Institut für Klinische Biochemie der Universitätsklinik Bonn bestimmt, das der Hämophiliepatienten hingegen im Hämatologisch-Zytologischen Labor der Medizinischen Klinik I der Universitätsklinik Bonn. Bezüglich der Datenerhebung wurden erneut die bereits unter 2.3.1.3.1 genannten Kriterien angewandt.

Erfasst wurden:

- Hämoglobin (Referenzbereich: Frauen 12,3-15,3 g/dl, Männer 14,0-17,5 g/dl, hämatologisch-zytologisches Labor: Frauen 11,5-16,5 g/dl, Männer 13,5-18 g/dl)
- Thrombozytenzahl (Referenzbereich: individuell geschlechts- und altersangepasst, hämatologisch-zytologisches Labor allgemein 150-300 G/l)
- Leukozytenzahl (Referenzbereich: 4,3-10,5 G/l, hämatologisch-zytologisches Labor: 4,0-9,0 G/l)
- Neutrophile (rel.) (Referenzbereich: 40-74%, hämatologisch-zytologisches Labor 55-70%)
- Lymphozyten (rel.) (Referenzbereich: 19-48%, hämatologisch-zytologisches Labor: 25-40%)
- Monozyten (rel.) (Referenzbereich: 3-9%, hämatologisch-zytologisches Labor: 2-9%)
- Basophile (rel.) (Referenzbereich: -2%, hämatologisch-zytologisches Labor: -1,5%)
- Eosinophile (rel.) (Referenzbereich: -7%, hämatologisch-zytologisches Labor: -5%)
- Blutsenkungsgeschwindigkeit (BSG) (Referenzbereich: Frauen 6-11 mm pro 1h / 6-20 mm pro 2h, Männer 3-8 mm pro 1h / 5-18 mm pro 2h)

2.3.1.4 HLA-B-Typisierung

Die HLA-B-Typisierung wurde zunächst mithilfe einer sequenzspezifischen Oligonukleotid-PCR (SSO-PCR) der Firma Innogenetics durchgeführt. Bei der PCR wird zunächst doppelsträngige DNA denaturiert, es kommt zur Anlagerung kurzer komplementärer Nukleinsäuresequenzen (Primer) an das 3'-Ende der Matrise, und eine thermostabile Polymerase verlängert das 3'-Ende des Primers. Mit jedem Zyklus verdoppelt sich die Anzahl der Kopien. Dabei erfolgt in diesem Fall eine Amplifikation des gesamten multivariablen Bereiches des HLA-B-Genlokus mithilfe

2.3.2 Daten der Abacavir-toleranten Kontrollpersonen

Die klinischen sowie die Labordaten der Kontrollgruppe wurden mit denselben Methoden bestimmt wie die der Fälle (s. 2.3.1). In der Kontrollgruppe wurden jedoch nur diejenigen Daten erfasst, die im Rahmen einer Risikofaktorenanalyse mit der Gruppe der ABC-hypersensitiven Patienten verglichen werden sollten. Aus diesem Grunde waren grundsätzlich nur Daten und Angaben vor Beginn der Abacavir-Therapie (d0) von Interesse.

Folgende Faktoren wurden analysiert:

- Geschlecht (m, w)
- Ethnische Herkunft (kaukasisch, afrikanisch, andere)
- HLA-B-Genotyp, insbesondere HLA-B57-Status (positiv, negativ)
- Bisherige ART-Erfahrung (ja, nein)
- Gleichzeitiger Therapiebeginn mit NNRTI (ja, nein)
- CDC-Klasse anhand der Symptomatik (A, B, C)
- CDC-Klasse anhand der Helferzellzahl (≥ 500/µl, 200-499/µl, < 200/µl)
- Alter des Patienten zu ABC-Therapiebeginn (j)
- Viruslast (Kopien/ml)
- CD4+-Zellzahl absolut (/µl) und relativ (%)
- CD8+-Zellzahl absolut (/µl) und relativ (%)
- Ratio der CD4+/CD8+-Zellzahl
2.4 Auswertung und Statistik

Die Auswertung der Ursachen für frühe Abbrüche der ABC-Therapie (3.1) sowie die Analyse der klinischen Symptomatik der HSR-Fälle (3.3.1 und 3.3.2) erfolgte mit einfacher Prozentrechnung.

Die weitergehende statistische Auswertung erfolgte mithilfe des PC-Programms SPSS Version 14.0. Im Rahmen der Risikofaktorenanalyse (3.2) wurde dabei zunächst zwischen nominalen und stetigen Parametern unterschieden:

Der Vergleich zwischen den Verdachts- bzw. wahrscheinlichen HSR-Fällen und der Kontrollgruppe erfolgte bezüglich der nominalen Parameter Geschlecht, ethnische Herkunft, HLA-Status, bisherige ART-Erfahrung, gleichzeitige Therapie mit NNRTI und CDC-Klasse mittels logistischer Regression.

Bezüglich des zeitlichen Auftretens der Hypersensitivitätsreaktion (3.3.4) wurde der mediane Abbruchzeitpunkt der wahrscheinlichen bzw. Verdachtsfälle ermittelt.

3 Ergebnisse

3.1 Ursachen für das Absetzen von Abacavir

35 der 233 in Bonn auf Abacavir eingestellten Patienten (15%) brachen ihre Therapie innerhalb der ersten 12 Wochen ab und waren somit nicht sicher Abacavir-tolerant. Die Tabelle 3 gibt die Abbruchursachen nach Häufigkeit wieder.

Tabelle 3: Die häufigsten Ursachen für einen Abbruch der ABC-Therapie innerhalb der ersten 12 Wochen

<table>
<thead>
<tr>
<th>Abbruchursachen</th>
<th>absolut</th>
<th>relativ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.a. HSR / HSR nicht auszuschließen:</td>
<td>19</td>
<td>54,3</td>
</tr>
<tr>
<td>Andere UEW:</td>
<td>9</td>
<td>25,7</td>
</tr>
<tr>
<td>Non-Compliance:</td>
<td>2</td>
<td>5,7</td>
</tr>
<tr>
<td>UEW und Non-Compliance:</td>
<td>2</td>
<td>5,7</td>
</tr>
<tr>
<td>Tod:</td>
<td>1</td>
<td>2,9</td>
</tr>
<tr>
<td>Unklar:</td>
<td>2</td>
<td>5,7</td>
</tr>
</tbody>
</table>

In der Anfangsphase der Einstellung auf Abacavir ist eine mögliche Hypersensitivitätsreaktion somit die häufigste Abbruchursache. Dies liegt darin begründet, dass eine solche Reaktion typischerweise innerhalb der ersten 6 Wochen der Einnahme auftritt. Außerdem sind Patient ebenso wie behandelnder Arzt bei entsprechenden Symptomen besonders aufmerksam.

Bei 8,2% (19) der Gesamtpopulation (233) wurde die Abacavir-Therapie abgebrochen, weil der Verdacht auf eine HSR bestand. Im Nachhinein erfüllten 5,2% (12) der Patienten alle Kriterien einer HSR, bei 2,1% (5) war die Diagnose fraglich und bei 0,9% (2) Patienten erschien eine HSR im Nachhinein sehr unwahrscheinlich, da die Reexposition klinisch unauffällig verlief. Diese zwei Patienten wurden daher in der vorliegenden Untersuchung nicht mehr in das Kollektiv der Patienten mit HSR-Verdacht aufgenommen.

198 (85%) Patienten des Bonner „Abacavir-Kollektivs“ führten ihre Abacavir-Therapie über die ersten 12 Wochen hinaus fort, sie fungierten in dieser Untersuchung als Kontrollgruppe. Erwähnenswert ist hier, dass bei keinem Patienten der Bonner Kohorte nach 12 Wochen der Einnahme noch ein Therapieabbruch mit Verdacht auf ABC-HSR erfolgte, obwohl in einer anderen Untersuchung 5% der Hypersensitivitätsreaktionen noch nach zwölf Wochen komplikationsloser Einnahme auftraten (Hetherington et al., 2001a).
3.2 Risikofaktorenanalyse

3.2.1 Risikofaktorenanalyse der Patienten mit Verdacht auf HSR

Die 17 Bonner Patienten, bei denen auch im Nachhinein der Verdacht auf eine Hypersensitivitätsreaktion bestand, wurden mit den Patienten, die sich über mindestens 12 Wochen als Abacavir-tolerant erwiesen hatten, verglichen. Dabei wurden die unter 2.3.2 genannten Parameter berücksichtigt. Bei den nominalen Variablen erfolgte die statistische Analyse mittels logistischer Regression, bei den stetigen Variablen wurde der Mann-Whitney-Rangsummentest (U-Test) für zwei unabhängige Stichproben angewandt.

3.2.1.1 Modellberechnungen

3.2.1.1.1 Nominale Variable

Modell A (vorwärts bedingt - Herausnehmen aller Kreuzeffekte):

Die Tabelle 4 gibt die Signifikanz und die Odds Ratio als Ergebnisse der vorwärts bedingten logistischen Regression möglicher nominaler Risikofaktoren für einen Verdacht auf eine ABC-HSR wieder. Die Odds Ratio (das Kreuzproduktverhältnis) dient bei Ereignissen mit relativ geringer Inzidenz als Näherung für das relative Risiko.

Tabelle 4: Vorwärts bedingte logistische Regression nominaler Risikofaktoren für einen Verdacht auf ABC-HSR

<table>
<thead>
<tr>
<th>Variable</th>
<th>Aufnahme in Gleichung</th>
<th>Signifikanz</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA-B57</td>
<td>ja</td>
<td>< 0,001</td>
<td>14,086</td>
</tr>
<tr>
<td>Geschlecht (m)</td>
<td>nein</td>
<td>0,130</td>
<td>nm</td>
</tr>
<tr>
<td>Ethnische Herkunft, afrikanisch im Vgl. zu kaukasisch</td>
<td>nein</td>
<td>0,561</td>
<td>nm</td>
</tr>
<tr>
<td>Bisherige ART-Erfahrung (+)</td>
<td>nein</td>
<td>0,557</td>
<td>nm</td>
</tr>
<tr>
<td>CDC-Klasse anhand Symptomatik, B im Vgl. zu A</td>
<td>nein</td>
<td>0,834</td>
<td>nm</td>
</tr>
<tr>
<td>CDC-Klasse anhand Symptomatik, C im Vgl. zu A</td>
<td>nein</td>
<td>0,589</td>
<td>nm</td>
</tr>
<tr>
<td>CDC-Klasse anhand Helferzahlen, 200-499 im Vgl. zu ≥ 500</td>
<td>nein</td>
<td>0,442</td>
<td>nm</td>
</tr>
<tr>
<td>CDC-Klasse anhand Helferzahlen, < 200 im Vgl. zu ≥ 500</td>
<td>nein</td>
<td>0,537</td>
<td>nm</td>
</tr>
</tbody>
</table>

nm = nicht möglich

Lediglich HLA-B57 erreicht das geforderte Signifikanzniveau von 95% und führt zu einem rund 14fach erhöhten Risiko für den Verdacht auf eine Hypersensitivitätsreaktion auf ABC.
Modell B (Prinzip Einschluss - Zulassen von Kreuzeffekten):

Schließt man in die Statistik zunächst alle Variablen in das Modell ein, lässt man also Kreuzeffekte zu, so ergeben sich andere Signifikanzen für die einzelnen Variablen. Des Weiteren erhält man auch für die nicht signifikanten Variablen die Odds Ratio, die Rückschlüsse auf Zusammenhänge erlaubt, welche nicht das vorgegebene Signifikanzniveau erreichen. Tabelle 5 gibt die Ergebnisse dieser Analyse wieder.

Tabelle 5: Analyse nominaler Risikofaktoren für einen Verdacht auf ABC-HSR mittels logistischer Regression durch Einschluss

<table>
<thead>
<tr>
<th>Variable</th>
<th>Aufnahme in Gleichung</th>
<th>Signifikanz</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA-B57</td>
<td>ja</td>
<td>< 0,001</td>
<td>16,079</td>
</tr>
<tr>
<td>Geschlecht (m)</td>
<td>ja</td>
<td>0,032</td>
<td>0,195</td>
</tr>
<tr>
<td>Ethnische Herkunft, afrikanisch im Vgl. zu kaukasisch</td>
<td>ja</td>
<td>0,186</td>
<td>0,181</td>
</tr>
<tr>
<td>Bisherige ART-Erfahrung (+)</td>
<td>ja</td>
<td>0,554</td>
<td>2,052</td>
</tr>
<tr>
<td>CDC-Klasse anhand Symptomatik, B im Vgl. zu kaukasisch</td>
<td>ja</td>
<td>0,311</td>
<td>0,448</td>
</tr>
<tr>
<td>CDC-Klasse anhand Symptomatik, C im Vgl. zu A</td>
<td>ja</td>
<td>0,589</td>
<td>0,480</td>
</tr>
<tr>
<td>CDC-Klasse anhand Helferzahlen, 200-499 im Vgl. zu ≥ 500</td>
<td>ja</td>
<td>0,999</td>
<td>nm</td>
</tr>
<tr>
<td>CDC-Klasse anhand Helferzahlen, < 200 im Vgl. zu ≥ 500</td>
<td>ja</td>
<td>0,999</td>
<td>nm</td>
</tr>
</tbody>
</table>

nm = nicht möglich

Werden Kreuzeffekte zugelassen, stellt sich das Geschlecht als signifikanter Risikofaktor dar. Das Risiko der Männer für einen Verdacht auf eine ABC-HSR beträgt dabei nur ca. 20% des Risikos der Frauen.

Modell C (nur HLA-B37, vorwärts bedingt):

Tabelle 6 gibt Signifikanz und Odds Ratio als Ergebnisse der vorwärts bedingten logistischen Regression des möglichen Risikofaktors HLA-B37 für einen Verdacht auf eine ABC-HSR wieder. Weitere mögliche Risikofaktoren wurden in die Betrachtung nicht mit einbezogen.

Tabelle 6: Vorwärts bedingte logistische Regression des Risikofaktors HLA-B37 für einen Verdacht auf ABC-HSR

<table>
<thead>
<tr>
<th>Variable</th>
<th>Aufnahme in Gleichung</th>
<th>Signifikanz</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA-B37</td>
<td>ja (bei p ≤ 0,10)</td>
<td>0,076</td>
<td>4,771</td>
</tr>
</tbody>
</table>
Bei herabgesetztem Signifikanzniveau stellt auch HLA-B37 einen Risikofaktor für einen ABC-HSR-Verdacht dar.

Modell D (Aufnahme von HLA-B37 in das Gesamtmodell, vorwärts bedingt):

Die Tabelle 7 gibt die Signifikanz und die Odds Ratio als Ergebnisse der vorwärts bedingten logistischen Regression derjenigen nominalen Risikofaktoren für einen Verdacht auf eine ABC-HSR wieder, die das erweiterte Signifikanzniveau von mindestens 90% erreichen.

Tabelle 7: Analyse nominaler Risikofaktoren einschließlich HLA-B37 für einen Verdacht auf ABC-HSR mittels vorwärts bedingter logistischer Regression

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Variable</th>
<th>Aufnahme in Gleichung</th>
<th>Signifikanz</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HLA-B57</td>
<td>ja</td>
<td>< 0,001</td>
<td>14,086</td>
</tr>
<tr>
<td>2</td>
<td>HLA-B57</td>
<td>ja</td>
<td>< 0,001</td>
<td>14,378</td>
</tr>
<tr>
<td></td>
<td>HLA-B37</td>
<td>ja (bei p ≤ 0,10)</td>
<td>0,098</td>
<td>5,160</td>
</tr>
</tbody>
</table>

hier nicht aufgeführt: nicht in die Gleichung aufgenommene Variable (Vgl. Tabelle 4)

Lediglich HLA-B57 erreicht ein Signifikanzniveau von 95% bei einem ca. 14fach erhöhten Risiko für einen Verdacht auf eine ABC-HSR. Bei Erweiterung des Signifikanzniveaus auf 90% kann auch HLA-B37 mit in die Gleichung aufgenommen werden. Das Risiko für einen HSR-Verdacht ist bei Vorhandensein dieses Risikofaktors ca. 5fach erhöht.

3.2.1.1.2 Stetige Variable

Die statistische Analyse möglicher stetiger Risikofaktoren für einen Verdacht auf eine ABC-HSR erfolgte mittels des Mann-Whitney-Rangsummentests (U-Test) für zwei unabhängige Stichproben.

Tabelle 8 gibt die mittleren Ränge der Verdachtsfälle im Vergleich zur Kontrollgruppe sowie die Signifikanz des Unterschiedes als Ergebnisse der Auswertung wieder.
Tabelle 8: Analyse stetiger Risikofaktoren für einen Verdacht auf ABC-HSR mittels des Mann-Whitney-Rangsummentests

<table>
<thead>
<tr>
<th>Variable</th>
<th>HSR+</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
<th>Mann-Whitney-U</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter zu Beginn</td>
<td>nein</td>
<td>198</td>
<td>108,51</td>
<td>21485,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>17</td>
<td>102,03</td>
<td>1734,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td>215</td>
<td></td>
<td></td>
<td>1581,50</td>
<td>0,680</td>
</tr>
<tr>
<td>Viruslast</td>
<td>nein</td>
<td>190</td>
<td>104,69</td>
<td>19891,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>17</td>
<td>96,26</td>
<td>1636,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td>207</td>
<td></td>
<td></td>
<td>1483,50</td>
<td>0,577</td>
</tr>
<tr>
<td>CD4+-Zellzahl abs.</td>
<td>nein</td>
<td>186</td>
<td>102,19</td>
<td>19008,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>16</td>
<td>93,44</td>
<td>1495,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td>202</td>
<td></td>
<td></td>
<td>1359,00</td>
<td>0,565</td>
</tr>
<tr>
<td>CD4+-Zellzahl rel.</td>
<td>nein</td>
<td>186</td>
<td>102,10</td>
<td>18990,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>16</td>
<td>94,56</td>
<td>1513,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td>202</td>
<td></td>
<td></td>
<td>1377,00</td>
<td>0,620</td>
</tr>
<tr>
<td>CD8+-Zellzahl abs.</td>
<td>nein</td>
<td>178</td>
<td>98,35</td>
<td>17505,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>16</td>
<td>88,09</td>
<td>1409,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td>194</td>
<td></td>
<td></td>
<td>1273,50</td>
<td>0,484</td>
</tr>
<tr>
<td>CD8+-Zellzahl rel.</td>
<td>nein</td>
<td>179</td>
<td>98,44</td>
<td>17621,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>16</td>
<td>93,03</td>
<td>1488,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td>195</td>
<td></td>
<td></td>
<td>1352,50</td>
<td>0,713</td>
</tr>
<tr>
<td>CD4+-CD8+-Ratio</td>
<td>nein</td>
<td>179</td>
<td>98,20</td>
<td>17578,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>16</td>
<td>95,75</td>
<td>1532,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td>195</td>
<td></td>
<td></td>
<td>1396,00</td>
<td>0,868</td>
</tr>
</tbody>
</table>

Keiner der hier untersuchten möglichen stetigen Risikofaktoren erreicht das geforderte Signifikanzniveau.

3.2.1.2 Betrachtung der einzelnen Risikofaktoren

3.2.1.2.1 HLA-Status

Es zeigt sich, dass von den oben aufgeführten Faktoren lediglich der HLA-Status einen eindeutig signifikanten Einfluss auf das Auftreten einer Hypersensitivitätsreaktion hat. Mit einer Signifikanz von $p < 0,001$ steigt bei einem Patienten mit positivem HLA-B57-Status die Wahrscheinlichkeit für das Auftreten einer HSR auf das 14,1fache im Vergleich zu einem Patienten mit negativem HLA-B57-Status (s. Tabelle 4 und 7).
Des Weiteren zeigt sich für den HLA-Marker B37 ebenfalls eine Risikosteigerung für das Auftreten einer Hypersensitivitätsreaktion auf Abacavir. Im Vergleich der HSR-Verdachtsfälle mit der Kontrollgruppe erreicht dieser Faktor jedoch nicht die geforderte Signifikanz (Tabelle 6: \(p = 0,076, \text{OR} = 4,8 \) bei alleiniger Betrachtung von HLA-B37, Tabelle 7: \(p = 0,098, \text{OR} = 5,2 \) bei gleichzeitiger Betrachtung aller Variablen). Da in dieser Analyse lediglich der HLA-B-Status untersucht wurde, konnten keinerlei Rückschlüsse auf eventuell bestehende Zusammenhänge mit anderen HLA-Loci gezogen werden.

3.2.1.2.2 Geschlecht
Wenn alle Faktoren von vornherein in die Analyse mit eingeschlossen werden (Modell B, Tabelle 5), erreicht das Geschlecht ein Signifikanzniveau von 95%. Männer scheinen im Vergleich zu Frauen ein tendenziell geringeres Risiko für das Auftreten einer Hypersensitivitätsreaktion zu besitzen, es beträgt hier 19,5% des Risikos der Frauen (\(p = 0,032 \)). Wird jedoch jeder Faktor einzeln betrachtet, so lässt sich die statistische Signifikanz nicht mehr nachweisen (\(p = 0,13 \), s. Tabelle 4). Es muss daher bei dem Faktor Geschlecht davon ausgegangen werden, dass Kreuzeffekte mit anderen Faktoren deutlichen Einfluss ausüben.

3.2.1.2.3 Ethnische Herkunft
Im Bonner Kollektiv hatten nur 3,2% (1 von 31) der Patienten afrikanischer Abstammung einen HSR-Verdacht im Vergleich zu 8,1% (16 von 198) der Patienten kaukasischer Abstammung. Auch betrug die Odds Ratio als Näherung für das relative Risiko für Afrikaner nur 0,18 (vgl. Tabelle 5), der Zusammenhang erreichte jedoch nicht die geforderte statistische Signifikanz. Es ist davon auszugehen, dass Kreuzeffekte mit HLA-B57 sehr ausgeprägt sind.

3.2.1.2.4 Bisherige ART-Erfahrung
3.2.1.2.5 CDC-Klasse
Hier zeigt sich tendenziell ein geringeres Risiko für das Auftreten einer HSR bei Patienten mit einer symptomatischen Störung der zellulären Immunabwehr (Stadium B) und bei Patienten im Stadium AIDS (C) im Vergleich zu asymptomatischen HIV-Patienten (Stadium A), jedoch erreicht dieser Zusammenhang keinerlei statistische Signifikanz (s. Tabelle 5). Bezüglich der Helferzellzahl konnte keine Korrelation zum Auftreten einer Hypersensitivitätsreaktion ermittelt werden. Es muss jedoch angemerkt werden, dass in unserem Kollektiv nur wenige Patienten mit guten Helferzellzahlen vertreten waren.

3.2.1.2.6 Patientenalter
Anhand unserer Daten ergibt sich keinerlei Einfluss des Alters auf die Wahrscheinlichkeit des Auftretens einer HSR (s. Tabelle 8).

3.2.1.2.7 Zellzahlen und Viruslast
Sowohl bezüglich CD4+- und CD8+-Zellzahlen als auch bezüglich der Viruslast zeigt die Gruppe der HSR-Verdachtsfälle vor Ansetzen von Abacavir etwas niedrigere Werte als die Gruppe der Patienten ohne Hypersensitivitätsreaktion (s. Tabelle 8, mittlere Ränge). Ein statistisch signifikanter Zusammenhang lässt sich jedoch nicht darstellen.

3.2.2 Risikofaktorenanalyse der Patienten mit wahrscheinlicher HSR
Die 12 Bonner Patienten, bei denen auch retrospektiv die Kriterien einer HSR vollständig erfüllt werden, die somit wahrscheinlich eine Hypersensitivitätsreaktion erlitten haben, wurden wiederum mittels logistischer Regression bzw. Mann-Whitney-Rangsummentest bezüglich der bereits unter 2.3.2 aufgeführten Parameter mit den Patienten der Kontrollgruppe verglichen.

3.2.2.1 Modellberechnungen
3.2.2.1.1 Nominale Variable
Modell A (vorwärts bedingt - Herausnehmen aller Kreuzeffekte):
Die Tabelle 9 gibt die Signifikanz sowie die Odds Ratio (OR) als Ergebnisse der vorwärts bedingten logistischen Regression möglicher nominaler Risikofaktoren für eine wahrscheinliche ABC-HSR wieder. Dabei werden diejenigen Faktoren mit $p \leq 0,1$ schrittweise auf eine mögliche
Aufnahme in das Modell geprüft. Die Odds Ratio dient dabei der Abschätzung des relativen Risikos eines Faktors.

Tabelle 9: Vorwärts bedingte logistische Regression nominaler Risikofaktoren für eine wahrscheinliche ABC-HSR

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Variable</th>
<th>Aufnahme in Gleichung</th>
<th>Signifikanz</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HLA-B57</td>
<td>ja</td>
<td>< 0,001</td>
<td>31,694</td>
</tr>
<tr>
<td></td>
<td>Geschlecht (m)</td>
<td>nein</td>
<td>0,69</td>
<td>nm</td>
</tr>
<tr>
<td></td>
<td>Ethnische Herkunft, afrikanisch im Vgl. zu kaukasisch</td>
<td>nein</td>
<td>0,989</td>
<td>nm</td>
</tr>
<tr>
<td></td>
<td>Bisherige ART-Erfahrung (+)</td>
<td>nein</td>
<td>0,806</td>
<td>nm</td>
</tr>
<tr>
<td></td>
<td>CDC-Klasse anhand Symptomatik, B im Vgl. zu A</td>
<td>nein</td>
<td>0,395</td>
<td>nm</td>
</tr>
<tr>
<td></td>
<td>CDC-Klasse anhand Symptomatik, C im Vgl. zu A</td>
<td>nein</td>
<td>0,127</td>
<td>nm</td>
</tr>
<tr>
<td></td>
<td>CDC-Klasse anhand Helferzahlen, 200-499 im Vgl. zu ≥ 500</td>
<td>nein</td>
<td>0,776</td>
<td>nm</td>
</tr>
<tr>
<td></td>
<td>CDC-Klasse anhand Helferzahlen, < 200 im Vgl. zu ≥ 500</td>
<td>nein</td>
<td>0,841</td>
<td>nm</td>
</tr>
<tr>
<td>2</td>
<td>HLA-B57</td>
<td>ja</td>
<td>< 0,001</td>
<td>37,631</td>
</tr>
<tr>
<td></td>
<td>Geschlecht (m)</td>
<td>ja (bei p ≤ 0,10)</td>
<td>0,084</td>
<td>0,240</td>
</tr>
<tr>
<td></td>
<td>Ethnische Herkunft, afrikanisch im Vgl. zu kaukasisch</td>
<td>nein</td>
<td>0,323</td>
<td>nm</td>
</tr>
<tr>
<td></td>
<td>Bisherige ART-Erfahrung (+)</td>
<td>nein</td>
<td>0,752</td>
<td>nm</td>
</tr>
<tr>
<td></td>
<td>CDC-Klasse anhand Symptomatik, B im Vgl. zu A</td>
<td>nein</td>
<td>0,657</td>
<td>nm</td>
</tr>
<tr>
<td></td>
<td>CDC-Klasse anhand Symptomatik, C im Vgl. zu A</td>
<td>nein</td>
<td>0,179</td>
<td>nm</td>
</tr>
<tr>
<td></td>
<td>CDC-Klasse anhand Helferzahlen, 200-499 im Vgl. zu ≥ 500</td>
<td>nein</td>
<td>0,832</td>
<td>nm</td>
</tr>
<tr>
<td></td>
<td>CDC-Klasse anhand Helferzahlen, < 200 im Vgl. zu ≥ 500</td>
<td>nein</td>
<td>0,876</td>
<td>nm</td>
</tr>
</tbody>
</table>

nm = nicht möglich

Auch bei Betrachtung der wahrscheinlichen Fälle erreicht in Schritt 1 wiederum lediglich HLA-B57 das hier geforderte Signifikanzniveau von 95% und führt zu einem um den Faktor 31,7 erhöhten Risiko für eine Hypersensitivitätsreaktion auf Abacavir.

In Schritt 2 wird das Geschlecht in das Modell mit einbezogen und erreicht dabei ein Signifikanzniveau von 90%. Das relative Risiko für das wahrscheinliche Auftreten einer HSR beträgt dabei für Männer ca. ein Viertel des Risikos der Frauen.
Modell B (Prinzip Einschluss - Zulassen von Kreuzeffekten):
Schließt man in die Statistik zunächst alle Variablen in das Modell ein (Prinzip Einschluss), so führen Kreuzeffekte, d. h. die gegenseitige Beeinflussung der einzelnen Faktoren, zu veränderten Signifikanzen. Die Ergebnisse dieses in Tabelle 10 zusammengefassten Modells sind daher unter Vorbehalt zu betrachten. Dennoch erlauben sie auch für Faktoren, die nicht das geforderte Signifikanzniveau erreichen, Rückschlüsse auf bestehende Zusammenhänge.

Tabelle 10: Analyse nominaler Risikofaktoren für eine wahrscheinliche ABC-HSR mittels logistischer Regression durch Einschluss

<table>
<thead>
<tr>
<th>Variable</th>
<th>Aufnahme in Gleichung</th>
<th>Signifikanz</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA-B57</td>
<td>ja</td>
<td>< 0,001</td>
<td>48,583</td>
</tr>
<tr>
<td>Geschlecht (m)</td>
<td>ja</td>
<td>0,045</td>
<td>0,101</td>
</tr>
<tr>
<td>Ethnische Herkunft, afrikanisch im Vgl. zu kaukasisch</td>
<td>ja</td>
<td>0,216</td>
<td>0,132</td>
</tr>
<tr>
<td>Bisherige ART-Erfahrung (+)</td>
<td>ja</td>
<td>0,707</td>
<td>1,631</td>
</tr>
<tr>
<td>CDC-Klasse anhand Symptomatik, B im Vgl. zu A</td>
<td>ja</td>
<td>0,383</td>
<td>0,395</td>
</tr>
<tr>
<td>CDC-Klasse anhand Symptomatik, C im Vgl. zu A</td>
<td>ja</td>
<td>0,093</td>
<td>0,132</td>
</tr>
<tr>
<td>CDC-Klasse anhand Helferzahlen, 200-499 im Vgl. zu ≥</td>
<td>ja</td>
<td>0,999</td>
<td>nm</td>
</tr>
<tr>
<td>CDC-Klasse anhand Helferzahlen, < 200 im Vgl. zu ≥</td>
<td>ja</td>
<td>0,999</td>
<td>nm</td>
</tr>
</tbody>
</table>

nm = nicht möglich

Werden Kreuzeffekte zugelassen, stellt sich wiederum das Geschlecht als signifikanter Risikofaktor dar. Das Risiko der Männer für eine wahrscheinliche ABC-HSR beträgt dabei nur ca. 10% des Risikos der Frauen.

Modell C (nur HLA-B37, vorwärts bedingt):
Tabelle 11 gibt Signifikanz und Odds Ratio als Ergebnisse der vorwärts bedingten logistischen Regression des möglichen Risikofaktors HLA-B37 für eine wahrscheinliche ABC-HSR wieder. Weitere mögliche Risikofaktoren wurden in die Betrachtung nicht mit einbezogen.

Tabelle 11: Vorwärts bedingte logistische Regression des Risikofaktors HLA-B37 für eine wahrscheinliche ABC-HSR

<table>
<thead>
<tr>
<th>Variable</th>
<th>Aufnahme in Gleichung</th>
<th>Signifikanz</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA-B37</td>
<td>ja</td>
<td>0,027</td>
<td>7,422</td>
</tr>
</tbody>
</table>

Bei Betrachtung der wahrscheinlichen Fälle erreicht HLA-B37 das geforderte Signifikanzniveau von 95% und stellt sich als Risikofaktor für das Auftreten einer ABC-HSR dar.
Modell D (Aufnahme von HLA-B37 in das Gesamtmodell, vorwärts bedingt):

Die Tabelle 12 gibt die Signifikanz und die Odds Ratio als Ergebnisse der vorwärts bedingten logistischen Regression derjenigen nominalen Risikofaktoren für einen HSR-Verdacht wieder, die das erweiterte Signifikanzniveau von mindestens 90% erreichen. Im Gegensatz zu Tabelle 9 wird hier auch HLA-B37 berücksichtigt. Die Faktoren mit \(p \leq 0,1 \) wurden dabei mit ansteigendem \(p \) schrittweise auf eine mögliche Aufnahme in das Modell geprüft.

Tabelle 12: Analyse nominaler Risikofaktoren einschließlich HLA-B37 für eine wahrscheinliche ABC-HSR mittels vorwärts bedingter logistischer Regression

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Variable</th>
<th>Aufnahme in Gleichung</th>
<th>Signifikanz</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HLA-B57</td>
<td>ja</td>
<td>< 0,001</td>
<td>31,694</td>
</tr>
<tr>
<td></td>
<td>HLA-B37</td>
<td>nein</td>
<td>0,19</td>
<td>nm</td>
</tr>
<tr>
<td></td>
<td>Geschlecht</td>
<td>nein</td>
<td>0,69</td>
<td>nm</td>
</tr>
<tr>
<td>2</td>
<td>HLA-B57</td>
<td>ja</td>
<td>< 0,001</td>
<td>37,497</td>
</tr>
<tr>
<td></td>
<td>HLA-B37</td>
<td>ja</td>
<td>0,027</td>
<td>12,339</td>
</tr>
<tr>
<td></td>
<td>Geschlecht</td>
<td>nein</td>
<td>0,116</td>
<td>nm</td>
</tr>
</tbody>
</table>

hier nicht aufgeführt: übrige nicht in die Gleichung aufgenommene Variable (vgl. Tabelle 9); nm = nicht möglich

In Schritt 1 wird lediglich HLA-B57 in das Modell aufgenommen und führt zu einem ca. 31,7fach erhöhten Risiko für eine wahrscheinliche Hypersensitivitätsreaktion auf Abacavir.

Im zweiten Schritt wird HLA-B37 mit in das Gesamtmodell aufgenommen. Zu beachten ist, dass bei Aufnahme von HLA-B37 in das Modell der Risikofaktor Geschlecht das vorgegebene Signifikanzniveau von mindestens 90% nicht mehr erreicht.

3.2.2.1.2 Stetige Variable

Die statistische Analyse möglicher stetiger Risikofaktoren für eine wahrscheinliche Hypersensitivitätsreaktion auf Abacavir erfolgte mittels des Mann-Whitney-Rangsummentests (U-Test) für zwei unabhängige Stichproben.

Tabelle 13 gibt die mittleren Ränge der Verdachtsfälle im Vergleich zur Kontrollgruppe sowie die Signifikanz des Unterschiedes als Ergebnisse der Auswertung wieder.
Tabelle 13: Analyse stetiger Risikofaktoren für eine wahrscheinliche ABC-HSR mittels des Mann-Whitney-Rangsummentests

<table>
<thead>
<tr>
<th>Variable</th>
<th>HSR+</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
<th>Mann-Whitney-U</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter zu Beginn</td>
<td>nein</td>
<td>198</td>
<td>105,53</td>
<td>20894,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>12</td>
<td>105,04</td>
<td>1260,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td>210</td>
<td></td>
<td>1182,50</td>
<td>0,979</td>
<td></td>
</tr>
<tr>
<td>Viruslast</td>
<td>nein</td>
<td>190</td>
<td>101,29</td>
<td>19244,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>12</td>
<td>104,88</td>
<td>1258,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td>202</td>
<td></td>
<td>1099,50</td>
<td>0,836</td>
<td></td>
</tr>
<tr>
<td>CD4+-Zellzahl abs.</td>
<td>nein</td>
<td>186</td>
<td>99,75</td>
<td>18554,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>11</td>
<td>86,27</td>
<td>949,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td>197</td>
<td></td>
<td>883,00</td>
<td>0,446</td>
<td></td>
</tr>
<tr>
<td>CD4+-Zellzahl rel.</td>
<td>nein</td>
<td>186</td>
<td>99,43</td>
<td>18493,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>11</td>
<td>91,77</td>
<td>1009,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td>197</td>
<td></td>
<td>943,50</td>
<td>0,665</td>
<td></td>
</tr>
<tr>
<td>CD8+-Zellzahl abs.</td>
<td>nein</td>
<td>178</td>
<td>95,74</td>
<td>17042,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>11</td>
<td>82,95</td>
<td>912,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td>189</td>
<td></td>
<td>846,50</td>
<td>0,452</td>
<td></td>
</tr>
<tr>
<td>CD8+-Zellzahl rel.</td>
<td>nein</td>
<td>179</td>
<td>96,14</td>
<td>17209,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>11</td>
<td>85,05</td>
<td>935,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td>190</td>
<td></td>
<td>869,50</td>
<td>0,516</td>
<td></td>
</tr>
<tr>
<td>CD4+-CD8+-Ratio</td>
<td>nein</td>
<td>179</td>
<td>95,50</td>
<td>17095,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ja</td>
<td>11</td>
<td>95,45</td>
<td>1050,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gesamt</td>
<td>190</td>
<td></td>
<td>984,00</td>
<td>0,998</td>
<td></td>
</tr>
</tbody>
</table>

Wie bereits bei Betrachtung der Verdachtsfälle erreicht keiner der untersuchten möglichen stetigen Risikofaktoren das geforderte Signifikanzniveau auch nur näherungsweise.

3.2.2.2 Betrachtung der einzelnen Risikofaktoren

3.2.2.2.1 HLA-Status

Es zeigt sich, dass von den oben aufgeführten Faktoren wiederum lediglich der HLA-Status einen eindeutig signifikanten Einfluss auf das Auftreten einer Hypersensitivitätsreaktion hat. Dieser Zusammenhang wird jedoch bei alleiniger Betrachtung der wahrscheinlichen HSR-Fälle im Vergleich zur Kontrollgruppe noch deutlicher: Ein HLA-B57-positiver Patient hat demnach ein 31,7-fach erhöhtes Risiko für das Auftreten einer ABC-HSR im Vergleich zu einem Patienten mit negativem HLA-B57-Status (p < 0,001, Tabelle 9 und 12).
Des Weiteren zeigt sich beim Vergleich der Patienten mit wahrscheinlicher HSR mit der Kontrollgruppe auch eine signifikante Risikosteigerung für die HLA-B37-positiven Patienten. Diese haben in der Bonner Kohorte bei alleiniger Betrachtung des Risikofaktors HLA-B37 ein 7,4-fach erhöhtes Risiko für das Auftreten einer Hypersensitivitätsreaktion (p = 0,027, Tabelle 11). Wird HLA-B37 in das Gesamtmodell aufgenommen, so zeigt sich ein 12,3fach erhöhtes Risiko für das Auftreten einer HSR bei HLA-B37-positiven Patienten (p = 0,027, Tabelle 12). Bemerkenswert ist an dieser Stelle, dass sich mit der Aufnahme von HLA-B37 in das Modell auch das relative Risiko eines HLA-B57-positiven Patienten von 31,7 auf 37,5 erhöht. Eine gleichzeitige Aufnahme beider HLA-Marker in das Modell ist jedoch nicht ohne Weiteres möglich, da das Auftreten eines Markers die Wahrscheinlichkeit für das Auftreten des anderen mindert, somit dem Modell unweigerlich unzulässige Kreuzeffekte zugrunde liegen.

3.2.2.2 Geschlecht

Auch hier erhält man wie schon bei der Analyse der Verdachtsfälle nur dann einen statistisch signifikanten Zusammenhang, wenn alle Faktoren von vornherein in die Analyse mit einbezogen werden (Prinzip Einschluss). Es zeigt sich dann bei Männern eine Wahrscheinlichkeit für das Auftreten einer Hypersensitivitätsreaktion, die 10,1 % des Risikos der Frauen entspricht (p = 0,045, Tabelle 10). Wird jeder Faktor einzeln betrachtet und werden Kreuzeffekte somit eliminiert, verfehlt das Geschlecht wiederum den hier vorgegebenen p-Wert von ≤ 0,05. Setzt man jedoch – wie in einigen anderen Risikofaktoranalysen geschehen – das Signifikanzniveau auf 90% herab, so haben die Frauen des Bonner Kollektivs ein vierfach erhöhtes Risiko für das Auftreten einer HSR (p = 0,084, Tabelle 9). Bei Mitaufnahme von HLA-B37 in das Gesamtmodell wird jedoch auch das erweiterte Signifikanzniveau nicht mehr erreicht (p = 0,116, Tabelle 12).

3.2.2.3 Weitere mögliche Risikofaktoren

Bezüglich der übrigen untersuchten Faktoren (ethnische Herkunft, bisherige ART-Erfahrung, CDC-Klasse, Patientenalter, Zellzahlen, Viruslast) zeigen sich abgesehen von der Viruslast die gleichen Tendenzen wie schon bei der Untersuchung der HSR-Verdachtsfälle und sind teilweise deutlicher ausgeprägt. Dennoch erreicht keiner der genannten Faktoren einen statistisch signifikanten Zusammenhang.
3.2.3 HLA-B57

In der Kohorte der 233 Patienten, die in Bonn auf ABC eingestellt wurden, wurde in 35 Fällen (15%) die Therapie innerhalb der ersten 12 Wochen beendet, in 25 Fällen (10,1%) erfolgte der Abbruch sogar innerhalb der ersten 6 Wochen. Bei 19 Patienten (8,2%) wurde die Therapie bei Verdacht auf HSR beendet; 17 (7,3%) wurden auch retrospektiv als mögliche HSR eingestuft.

Abb Abbildung 1: Frühzeitige Therapieabbrüche im Bonner Kollektiv

Bei 203 Patienten des Gesamtkollektivs konnte der HLA-Status ermittelt werden (s. Abb. 2). Von den 17 Patienten mit möglicher HSR wurden 16 typisiert, 7 der 16 (43,8%) waren HLA-B57-positiv. Innerhalb der Gruppe der Patienten mit einer möglichen HSR erfüllten 12 (5,2% der Gesamtpopulation) einschließlich der 7 HLA-B57-positiven Patienten die Kriterien für eine wahrscheinliche HSR. Somit waren 7 der 12 Patienten (58,3%) mit wahrscheinlicher HSR HLA-B57-positiv.

Abb Abbildung 2: Das Bonner Kollektiv im Überblick

Neun von 17 Patienten (52,9%) mit einer möglichen HSR hatten einen negativen HLA-B57-Status. Obwohl eine Hypersensitivitätsreaktion als Abbruchursache dokumentiert wurde, erfüllten 5 dieser Patienten die HSR-Kriterien nicht. Es erschien daher unwahrscheinlich, dass bei diesen
Patienten tatsächlich eine Hypersensitivitätsreaktion aufgetreten ist. Somit besaßen nur 4 von 12 (33,3%) mit wahrscheinlicher HSR einen negativen HLA-B57-Status.

Auf der anderen Seite muss bemerkt werden, dass bei 12 Patienten (5,2% des Gesamtkollektivs) trotz positiven HLA-B57-Status keine Hypersensitivitätsreaktion aufgetreten ist.

Betrachtet man lediglich die typisierten Patienten (s. Abb. 3), so wurde die Therapie bei 16 von 203 (7,9%) unter HSR-Verdacht abgebrochen. Von diesen 16 Patienten erfüllten 11 (5,4% der Gesamtpopulation) die Kriterien für eine wahrscheinliche HSR. Ein Screening bezüglich des HLA-Status hätte bei einer Odds Ratio von 11,3 (p < 0,001) eine Sensitivität von 43,8% (entspricht 7/16) und eine Spezifität von 93,6% (entspricht 175/187) erbracht.

Bei Annahme einer Vortestinzidenz von 8% (bzw. 5%, vgl. Rauch et al., 2006) erreicht der positiv prädiktive Wert 37,2% (bzw. 26,4%), der negativ prädiktive Wert 95,0% (bzw. 96,9%).

Abbildung 3: Die typisierten Patienten des Bonner Kollektivs und ihr HLA-Status in Abhängigkeit von der Abacavir-Toleranz

Hätte man ABC den HLA-B57-positiven Patienten vorenthalten, so wäre die Inzidenz der Hypersensitivitätsreaktion in diesem Kollektiv von 7,9% (16 von 203, s. Abb. 3) auf 4,9% (9 von 184, s. Abb. 4) reduziert worden. Auf der anderen Seite hätte man 5,9% dieser Population (12 von 203, s. Abb. 3 und 4) den Zugang zur Abacavir-Medikation unnötigerweise verwehrt.

Betrachtet man nun nur diejenigen Fälle, in denen die Kriterien für eine Hypersensitivitätsreaktion erfüllt wurden (die wahrscheinlichen HSR), so steigt die Sensitivität des HLA-B57-Screenings auf 63,6% (entspricht 7/11, s. Abb. 3) mit einer Odds Ratio von 26,3 und p < 0,001. Die Hypersensitivitätsrate wäre durch den Test im Bonner Kollektiv von 5,4% (11 von 203, s. Abb. 3) auf 2,2% (4 von 184, s. Abb. 4) gesenkt worden. Bei Annahme einer Vortestinzidenz von 8% (bzw. 5%, s.o.) steigt der positiv prädiktive Wert auf 48,8% (bzw. 34,9%), der negativ prädiktive Wert auf 96,7% (bzw. 98%) an.
Abbildung 4: Die typisierten Patienten des Bonner Kollektivs und ihre Abacavir-Toleranz in Abhängigkeit vom HLA-Status

Wie bereits unter 3.2.1 und 3.2.2 aufgeführt, erhält man ähnliche Daten bezüglich der Odds Ratio (bzw. des relativen Risikos) von HLA-B57-positiven Patienten, wenn man jeweils nur die Gruppe der Patienten mit Verdacht auf bzw. mit wahrscheinlicher HSR mit der Kontrollgruppe vergleicht. Bei dieser Betrachtung werden alle Patienten, die ohne Verdacht auf HSR vor Abschluss der 12. Woche die ABC-Therapie beendet haben, ausgeschlossen. Ebenso wenig gehen bei der auf wahrscheinlichen HSR-Fällen beruhenden Berechnung des relativen Risikos diejenigen HSR-Verdachtsfälle ein, die nicht die Kriterien einer wahrscheinlichen HSR erfüllen. In diesem Fall erhält man bezüglich HLA-B57 für die Betrachtung der Verdachtsfälle im Vergleich zur Kontrollgruppe eine Odds Ratio von 14,1 (statt 11,3) und bei Betrachtung der wahrscheinlichen Fälle im Vergleich zur Kontrollgruppe eine Odds Ratio von 31,7 (statt 26,3).

3.2.4 HLA-B37

Der HLA-Marker B37 zeigte im Bonner Kollektiv eine deutlich geringere Prävalenz als HLA-B57. Von den 203 typisierten Patienten des Gesamtkollektivs waren lediglich 7 HLA-B37-positiv (3,4%), während 9,4% einen positiven HLA-B57-Status aufwiesen. Von den 17 Patienten mit möglicher Hypersensitivitätsreaktion wurden 16 typisiert, von denen 2 der 16 (12,5%) waren HLA-B37-positiv. Innerhalb der Gruppe der Patienten mit einer möglichen HSR erfüllten 12 (5,2% der Gesamtpopulation) einschließlich der 2 HLA-B37-positiven Patienten die Kriterien für eine wahrscheinliche HSR. 2 der 12 Patienten (16,7%) mit wahrscheinlicher HSR waren somit HLA-B37-positiv. 14 von 17 Patienten (82,4%) mit einer möglichen und 9 von 12 Patienten (75%) mit einer wahrscheinlichen Hypersensitivitätsreaktion hatten jedoch einen negativen HLA-B57-Status.
Auf der anderen Seite muss bemerkt werden, dass bei nur 5 Patienten trotz positiven HLA-B37-Status keine Hypersensitivitätsreaktion aufgetreten ist (2,1% des Gesamtkollektivs).

Betrachtet man lediglich die typisierten Patienten, so hätte ein Screening auf HLA-B37 nur eine Sensitivität von 12,5%, jedoch eine Spezifität von 97,3% erbracht (Odds Ratio 5,2, p = 0,061). Hätte man ABC den HLA-B37-positiven Patienten vorenthalten, so wäre die Inzidenz der Hypersensitivitätsreaktion in diesem Kollektiv kaum gesunken (von 7,9% auf 7,1%). Man hätte jedoch auch im Vergleich zum HLA-B57-Screening einem deutlich geringeren Prozentsatz der Population unnötigerweise den Zugang zur Abacavir-Medikation verwehrt (2,5% statt 5,9%). Bei Annahme einer Vortestinzidenz von 8% (bzw. 5%, s.o.) erreicht der positiv prädiktive Wert hier 28,9% (bzw. 19,8%), der negativ prädiktive Wert 92,7% (bzw. 95,5%).

Betrachtet man nun nur diejenigen Fälle, in denen die Kriterien für eine HSR erfüllt wurden (die wahrscheinlichen Hypersensitivitätsreaktionen), so steigt die Sensitivität des HLA-B37-Screenings auf 18,2% an (Odds Ratio 8,3, p = 0,019) und die Hypersensitivitätsrate wäre durch den Test im Bonner Kollektiv von 5,4% auf 4,6% gesenkt worden. Bei Annahme einer Vortestinzidenz von 8% (bzw. 5%) erreicht der positiv prädiktive Wert hier 37,8% (bzw. 26,9%), der negativ prädiktive Wert 93,2% (bzw. 95,8%).

Wie bereits unter 3.2.1 und 3.2.2 aufgeführt, erhält man ähnliche Daten bezüglich der Odds Ratio (bzw. des relativen Risikos) von HLA-B37-positiven Patienten, wenn man jeweils nur die Gruppe der Patienten mit Verdacht auf bzw. wahrscheinliche HSR mit der Kontrollgruppe vergleicht. In diesem Fall ergibt sich bezüglich des HLA-B37-Status für die Betrachtung der Verdachtsfälle im Vergleich zur Kontrollgruppe eine Odds Ratio von 4,8 (statt 5,2) und bei Betrachtung der wahrscheinlichen Fälle im Vergleich zur Kontrollgruppe eine Odds Ratio von 7,4 (statt 8,3).

3.2.5 HLA-B-Typisierung

Welchen Vorteil bringt dann eine HLA-B-Typisierung samt Ausschluss aller HLA-B37 und -B57 (bzw. -B*5701) -positiven Patienten von der ABC-Medikation im Gegensatz zu einem „Schnelltest“ auf HLA-B57/58 (per Durchflusszytometrie) mit nachgeschalteter Typisierung nur der HLA-B57/58-positiven Patienten (Martin et al., 2006b)?

Bei Betrachtung der HSR-Verdachtsfälle haben Patienten mit positivem HLA-B37- und/oder HLA-B57-Status ein 10-fach erhöhtes Risiko gegenüber Patienten, die weder HLA-B37 noch -57-positiv sind (p < 0,001). Das relative Risiko steigt bei Untersuchung der wahrscheinlichen HSR-Fälle auf 27,5 an (p < 0,001). Wiederholt man diese Berechnungen mit der Gruppe der Verdachts- bzw. wahrscheinlichen Fälle im Vergleich zur Kontrollgruppe, so erhält man bei den Verdachtsfällen eine Odds Ratio von 11,3 (p < 0,001) und bei den wahrscheinlichen Fällen eine
Odds Ratio von 7.6 (p = 0.002). Vergleicht man diese Zahlen mit denen für HLA-B57 alleine, so steigt die Odds Ratio als Näherung für das relative Risiko durch Hinzunehmen des HLA-B37-Status kaum an bzw. fällt beim Vergleich der wahrscheinlichen Fälle mit der Kontrollgruppe sogar ab. Die Sensitivität des Screenings auf HLA-B57 steigt jedoch in Kombination mit HLA-B37 merklich an. Diese beträgt bei Betrachtung der Verdachtsfälle 50% (im Vgl. zu 43.8%) und bei Betrachtung der wahrscheinlichen Fälle 72.7% (im Vgl. zu 63.6%). Die Inzidenz der Hypersensitivitätsreaktion wäre in diesem Kollektiv einmal von 7.9 auf 4.5% (statt 4.9%) und einmal von 5.4 auf 1.7% (statt 2.2%) gesenkt worden. Auf der anderen Seite sinkt jedoch auch die Spezifität des Screenings (auf 90.9 bzw. 91.1%) und 8.4% der Patienten des Gesamtkollektivs wäre Abacavir fälschlicherweise vorenthalten worden.

Bei Annahme einer Vorstestinzidenz von 8% (bzw. 5%) erreicht der positiv prädiktive Wert bei Betrachtung der Verdachtsfälle 32.4% (bzw. 22.5%), der negativ prädiktive Wert 95.4% (bzw. 97.2%). Bei Betrachtung der wahrscheinlichen Fälle erreicht der positiv prädiktive Wert 41.7% (bzw. 30.2%), der negativ prädiktive Wert 97.5% (bzw. 98.4%).

Die Tabelle 14 gibt die Odds Ratio sowie die Testgütekriterien für ein Screening auf HLA-B37, -B57 sowie HLA-B37 und -B57 an.

<table>
<thead>
<tr>
<th>Screening auf B57</th>
<th>OR</th>
<th>p</th>
<th>Sensitivität (%)</th>
<th>Spezifität (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.a. HSR</td>
<td>11.3</td>
<td>< 0.001</td>
<td>43.8</td>
<td>93.6</td>
</tr>
</tbody>
</table>
| Screening auf B57
| wahrscheinliche HSR | 26.3| < 0.001 | 63.6 | 93.8 |
| Screening auf B37 | 5.2 | 0.061 | 12.5 | 97.3 |
| V.a. HSR | 8.3 | 0.019 | 18.2 | 97.4 |
| Screening auf B37
| wahrscheinliche HSR | 10.0| < 0.001 | 50.0 | 90.9 |
| Screening auf B37 ∧ ∨ 57
| V.a. HSR | 27.5| < 0.001 | 72.7 | 91.1 |
| Screening auf B37 ∧ ∨ 57
| wahrscheinliche HSR | 14.1| < 0.001 | 14.1 | 26.4 |
| Screening auf B57
| V.a. HSR | 96.9| 0.061 | 37.2 | 95.0 |
| Screening auf B57
| wahrscheinliche HSR | 98.0| 0.061 | 34.9 | 96.7 |
| Screening auf B37 | 92.7| 0.061 | 28.9 | 96.7 |
| V.a. HSR | 95.5| 0.061 | 19.8 | 96.7 |
| Screening auf B37
| wahrscheinliche HSR | 93.2| 0.061 | 26.9 | 96.7 |
| Screening auf B37 ∧ ∨ 57
| V.a. HSR | 95.8| 0.061 | 32.4 | 96.7 |
| Screening auf B37 ∧ ∨ 57
| wahrscheinliche HSR | 7.4 | 0.061 | 22.5 | 96.7 |
| Screening auf B57
| V.a. HSR | 11.3| 0.061 | 30.2 | 97.5 |
| Screening auf B57
| wahrscheinliche HSR | 7.6 | 0.061 | 41.7 | 97.5 |

Tabelle 14: Odds Ratio und Testgütekriterien eines HLA-Screenings vor Einsatz von ABC
Tabelle 15 gibt die Senkung der HSR-Inzidenz im Bonner Kollektiv wieder, wenn man den Patienten mit positivem HLA-B57- bzw. -B37-Status dem Zugang zu ABC verwehrt hätte.

Tabelle 15: Retrospektiv angenommene Senkung der Hypersensitivitätsrate durch vorhergehendes HLA-Screening sowie Rate der fälschlicherweise von der ABC-Therapie ausgeschlossenen Patienten

<table>
<thead>
<tr>
<th>Vor/Nachtest</th>
<th>HLA Screening</th>
<th>Vortest-Inzidenz (%)</th>
<th>Nachtest-Inzidenz (%)</th>
<th>fälschlich ausgeschlossen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. a. HSR</td>
<td>Screening auf B57</td>
<td>7,9</td>
<td>4,9</td>
<td>5,9</td>
</tr>
<tr>
<td>V. a. HSR</td>
<td>Screening auf B37</td>
<td>7,9</td>
<td>7,1</td>
<td>2,5</td>
</tr>
<tr>
<td>V. a. HSR</td>
<td>Screening auf B37 ⊃ B57</td>
<td>7,9</td>
<td>4,5</td>
<td>8,4</td>
</tr>
<tr>
<td>wahrscheinliche HSR</td>
<td>Screening auf B57</td>
<td>5,4</td>
<td>2,2</td>
<td>5,9</td>
</tr>
<tr>
<td>wahrscheinliche HSR</td>
<td>Screening auf B37</td>
<td>5,4</td>
<td>4,6</td>
<td>2,5</td>
</tr>
<tr>
<td>wahrscheinliche HSR</td>
<td>Screening auf B37 ⊃ B57</td>
<td>5,4</td>
<td>1,7</td>
<td>8,4</td>
</tr>
</tbody>
</table>

3.3 Symptomatik der Hypersensitivitätsreaktion

3.3.1 Klinische Symptomatik im Überblick

Wie bereits in der Einleitung dieser Arbeit dargestellt, wurden in der Vergangenheit über die in 2.1 aufgeführten, die ABC-HSR definierenden Symptome hinaus einige weitere klinische Symptome und Laborveränderungen im Rahmen einer Hypersensitivitätsreaktion beobachtet. Tabelle 16 gibt die klinische Symptomatik der Bonner Patienten mit Verdacht auf eine Abacavir-Hypersensitivitätsreaktion wieder (n = 17).

Am häufigsten traten konstitutionelle Symptome auf (ca. 70%), gefolgt von Exanthem, Fieber und gastrointestinalen Symptomen, die jeweils in knapp 60% der Fälle zu finden waren. Neurologische Symptome zeigten sich mit 47,1% überraschend oft; das häufigste Symptom in diesem Komplex waren jedoch Kopfschmerzen, die auch als konstitutionelles Symptom gewertet werden könnten. Respiratorische Symptome traten nur in einem knappen Drittel der Fälle auf.
Tabelle 16: Klinische Symptomatik der Bonner Patienten mit Verdacht auf eine Abacavir-Hypersensitivitätsreaktion; fragliche Symptomatik in Klammern

<table>
<thead>
<tr>
<th>Symptomkomplex</th>
<th>Anzahl</th>
<th>%</th>
<th>Einzelsymptom</th>
<th>Anzahl</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaphylaktische Reaktion</td>
<td>2</td>
<td>11,8</td>
<td>Tachykardie</td>
<td>1</td>
<td>stationäre Aufnahme nötig</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hypotension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exanthem</td>
<td>10</td>
<td>58,8</td>
<td></td>
<td>1</td>
<td>1x fraglich</td>
</tr>
<tr>
<td></td>
<td>(11)</td>
<td>(64,7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fieber</td>
<td>10</td>
<td>58,8</td>
<td></td>
<td></td>
<td>2x fraglich bei Vaginal-/Flankenabszess</td>
</tr>
<tr>
<td></td>
<td>(12)</td>
<td>(70,6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIT-Symptom</td>
<td>10</td>
<td>58,8</td>
<td>Übelkeit/Erbrechen</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diarrhoe</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oberbauchschmerzen</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Respiratorische Symptome</td>
<td>5</td>
<td>29,4</td>
<td>trockener</td>
<td>5</td>
<td>1x mit Tachypnoe</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>(41,2)</td>
<td>Husten/Hustenreiz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rhinitis</td>
<td>2</td>
<td>jedoch bei bekannter Pollinosis und chronischer Rhinitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Abgeschlagenheit</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Konstitutionelle Symptome</td>
<td>12</td>
<td>70,6</td>
<td>Arthralgien, Myalgien</td>
<td>7</td>
<td>1x Rhabdomyolyse bei Reexposition!</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Abgeschlagenheit</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Neurologische Symptome</td>
<td>8</td>
<td>47,1</td>
<td>Kopfschmerzen</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9)</td>
<td>(52,9)</td>
<td>Nackensteife</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Verschwommensehen</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hautkribbeln</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Konzentrations- und Koordinationsstörungen</td>
<td>1</td>
<td>eher EFV ursächlich</td>
</tr>
<tr>
<td>Stomatitis / Konjunktivitis</td>
<td>2</td>
<td>11,8</td>
<td>zervikal</td>
<td>2(3)</td>
<td>1x vorbestehend Soorösophagitis, 1x chronische Konjunktivitis</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(23,5)</td>
<td>abdominell</td>
<td>0(1)</td>
<td>1x vorbestehend</td>
</tr>
<tr>
<td>Ödem / Urtikaria</td>
<td>3</td>
<td>17,6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3.2 Klinische Symptomatik: wahrscheinliche und fragliche Fälle

Tabelle 17: Klinische Symptomatik der Bonner Patienten mit einer wahrscheinlichen Hypersensitivitätsreaktion; fragliche Symptomatik in Klammern

<table>
<thead>
<tr>
<th>Symptomkomplex</th>
<th>Anzahl</th>
<th>%</th>
<th>Einzelsymptom</th>
<th>Anzahl</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaphylaktische Reaktion</td>
<td>2</td>
<td>16,7</td>
<td>Tachykardie</td>
<td>1</td>
<td>stationäre Aufnahme nötig</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hypotension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exanthem</td>
<td>8</td>
<td>66,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fieber</td>
<td>8</td>
<td>66,7</td>
<td>Tachykardie</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9)</td>
<td>(75,0)</td>
<td>Hypotension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIT-Symptom</td>
<td>8</td>
<td>66,7</td>
<td>Übelkeit/Erbrechen</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diarrhoe</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oberbauchschmerzen</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Respiratorische Symptome</td>
<td>4</td>
<td>33,3</td>
<td>trockener Husten</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(41,7)</td>
<td>Hustenreiz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rhinitis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>jedoch bei bekannter Pollinosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konstitutionelle Symptome</td>
<td>10</td>
<td>83,3</td>
<td>Abgeschlagenheit</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arthralgien, Myalgien</td>
<td>6</td>
<td>1x Rhabdomyolyse bei Reexposition!</td>
</tr>
<tr>
<td>Neurologische Symptome</td>
<td>7</td>
<td>58,3</td>
<td>Kopfschmerzen</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(66,6)</td>
<td>Nackensteife</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Verschwommensehen</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hautkribbeln</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Konzentrations- und Koordinationsstörungen</td>
<td>1</td>
<td>eher EFV ursächlich</td>
</tr>
<tr>
<td>Stomatitis / Konjunktivitis</td>
<td>2</td>
<td>16,7</td>
<td>Stomatitis</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Lymphknotenschwellungen</td>
<td>2</td>
<td>16,7</td>
<td>Konjunktivitis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ödem / Urtikaria</td>
<td>3</td>
<td>25</td>
<td>Ödem</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Urtikaria</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Bei Betrachtung der wahrscheinlichen HSR-Fälle (n = 12) zeigt sich demnach eine ganz ähnliche Verteilung wie in der Gesamtgruppe der Patienten mit Verdacht auf HSR. Konstitutionelle

Tabelle 18: Klinische Symptomatik der Bonner Patienten mit einer fraglichen Hypersensitivitätsreaktion; fragliche Symptomatik in Klammern

<table>
<thead>
<tr>
<th>Symptomkomplex</th>
<th>Anzahl</th>
<th>%</th>
<th>Einzelsymptom</th>
<th>Anzahl</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaphylaktische Reaktion</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exanthem</td>
<td>2 (3)</td>
<td>40</td>
<td></td>
<td>1</td>
<td>1x fraglich, da sehr flüchtig</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1x nur Stirn</td>
</tr>
<tr>
<td>Fieber</td>
<td>2 (3)</td>
<td>40</td>
<td></td>
<td>1</td>
<td>1x fraglich bei Flankenabszess</td>
</tr>
<tr>
<td>GIT-Symptom</td>
<td>2</td>
<td>40</td>
<td>Diarrhoe</td>
<td>1</td>
<td>Übelkeit/Erbrechen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratorische Symptome</td>
<td>1 (2)</td>
<td>20</td>
<td>spastischer Husten,</td>
<td>1</td>
<td>retrospektiv fraglich (nach Abbruch fortbestehend)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Halsschmerzen,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rhinitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konstitutionelle Symptome</td>
<td>1 (2)</td>
<td>20</td>
<td>schwere Beine</td>
<td>1</td>
<td>bei Depression</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurologische Symptome</td>
<td>1</td>
<td>20</td>
<td>Kopfschmerzen</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Stomatitis / Konjunktivitis</td>
<td>0 (2)</td>
<td>0</td>
<td></td>
<td>1</td>
<td>1x vorbestehende Soorösophagitis, 1x chronische</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Konjunktivitis</td>
</tr>
<tr>
<td>Lymphknotenschwellungen</td>
<td>0 (2)</td>
<td>0</td>
<td>zervikal/ abdominell</td>
<td>1/1</td>
<td>vorbestehend</td>
</tr>
<tr>
<td>Ödem / Urtikaria</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In der Gruppe der Patienten mit einer (retrospektiv) fraglichen HSR (n = 5) sind alle Symptomgruppen in geringerem Prozentsatz vertreten. Des Weiteren fällt auf, dass konstitutionelle Symptome seltener und neu aufgetretene Lymphknotenschwellungen, Stomatitis, Konjunktivitis sowie Kreislaufreaktionen gar nicht auftraten.

Diese fünf „fraglichen“ Fälle sollen im Folgenden näher betrachtet werden:

2) Bei einem 23jährigen Patienten traten zwar in Form von Fieber und Diarrhoe ebenso Symptome aus zwei der zuvor aufgeführten Symptomenkomplexe auf, der Patient litt jedoch an einer vorbekannten somatoformen Störung. Außerdem befand sich der Patient nicht in der Stadt und berichtete telefonisch von zwei Hautpikeln, die sich deutlich verschlimmert hätten. Die Tatsache, dass sich die erhobenen Befunde nicht objektivieren ließen, lässt die Diagnose einer Hypersensitivitätsreaktion in der Zusammenschau mit der psychischen Vorerkrankung als fraglich erscheinen.

4) Ein 54jähriger Patient im Stadium C3 der Erkrankung entwickelte unter Abacavir Fieber und konstitutionelle Symptome in Form schwerer Beine. Der Patient litt jedoch außerdem an einer reaktiven Depression, die eine durchaus mögliche Alternativursache für die konstitutionellen Symptome darstellt und die Diagnose der ABC-HSR allein aufgrund des Fiebers fraglich macht.

5) Ein letzter 37jähriger Patient im Stadium C3 entwickelte gastrointestinale und konstitutionelle Symptome, des Weiteren zeigte sich ein auf die Stirn beschränktes Exanthem. Der Patient litt an einer vorbestehenden chronischen Rhinitis und chronischen Konjunktivitis. Ein derart beschränktes Exanthem ist nicht typisch für die ABC-HSR. Ferner könnten sich die neu aufgetretenen Symptome auch auf die gleichzeitige Toxoplasmosetherapie mit Pyrimethamin (GIT-Symptome), Folinsäure (GIT-Symptome, allergische Reaktionen, Schlafstörungen, Erregungszustände, Depression) und Cotrimoxazol (GIT-Symptome, Exanthem, Schwindel, Benommenheit, Stomatitis, Konjunktivitis) zurückführen lassen.
3.3.3 Klinische Symptomatik: die Reexpositionsreaktion

Tabelle 19 gibt die Symptomatik der drei definitiven Fälle bei der Erst- sowie bei der Reexposition wieder.

Tabelle 19: Klinische Symptomatik der Bonner Patienten mit einer ABC-HSR bei Reexposition

<table>
<thead>
<tr>
<th>Patient Nr.</th>
<th>Grund für Reexposition</th>
<th>Symptomkomplex</th>
<th>Erstexposition</th>
<th>Reexposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.1</td>
<td>limitierte Therapieoptionen</td>
<td>Anaphylaktische Reaktion:</td>
<td>nein</td>
<td>Tachykardie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exanthem:</td>
<td>nein</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fieber:</td>
<td>ja</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GIT-Symptome:</td>
<td>Diarrhoe</td>
<td>Abdominelle Beschwerden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Konstitutionelle Symptome:</td>
<td>nein</td>
<td>Rhabdomyolyse!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neurologische Symptome:</td>
<td>Kopfschmerzen</td>
<td>Kopfschmerzen</td>
</tr>
<tr>
<td>Patient</td>
<td>Grund für Reexposition</td>
<td>Symptomkomplex</td>
<td>Erstexposition</td>
<td>Reexposition</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Nr. 2</td>
<td>limitierte Therapieoptionen</td>
<td>Fieber: ja</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GIT-Symptome: nein</td>
<td>Übelkeit/Erbrechen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Konstitutionelle Symptome: Gliederschmerzen, Krankheitsgefühl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neurologische Symptome: Kopfschmerzen + Verschwommensehen, stärkste Kopfschmerzen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr. 3</td>
<td>während Erstexposition Infektion nach Zahnextraktion (+ Penicillin)</td>
<td>Exanthem: nein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fieber: ja</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GIT-Symptome: nein</td>
<td>Übelkeit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Konstitutionelle Symptome: Schüttelfrost, Gliederschmerzen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neurologische Symptome: nein</td>
<td>Kopfschmerzen + Hautkribbeln</td>
<td></td>
</tr>
</tbody>
</table>

3.3.4 Der Abbruchzeitpunkt

Alle Patienten mit Verdacht auf HSR brachen ihre ABC-Therapie zwischen dem 2. und 32. Therapietag ab, der mediane Abbruchzeitpunkt lag bei 14 Tagen.

Die Patienten mit wahrscheinlicher HSR brachen ihre Therapie zwischen dem 9. und 32. Tag ab, ihre mediane Behandlungsdauer lag bei 15,5 Tagen. Drei dieser Patienten waren reexponiert worden (definitive Fälle), daher lag der Median der ABC-Einnahme bis zum erstmaligen Abbruch bei 15 Tagen.
3.3.5 Laborveränderungen

Um der Frage nachzugehen, ob mit der Hypersensitivitätsreaktion auf Abacavir spezifische Laborwertveränderungen einhergehen, wurden die Werte verschiedener Laborparameter (s. 2.3.1.3.3 und 2.3.1.3.4) am Tag d0 mit den Werten an d-Abbruch mithilfe des Wilcoxon-Rangsummentests für verbundene Stichproben verglichen. Tabelle 20 gibt die Veränderung der untersuchten Laborwerte im Rahmen einer ABC-HSR wieder.

Tabelle 20: Vergleich der Mittelwerte einiger Laborwerte der Bonner Patienten mit Verdacht auf ABC-HSR zwischen Therapiebeginn und -abbruch sowie Signifikanz der Änderung

<table>
<thead>
<tr>
<th>Laborparameter</th>
<th>Mittelwert an d0</th>
<th>Mittelwert an d-Abbruch</th>
<th>Signifikanz der Änderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDH (U/l)</td>
<td>217,47</td>
<td>333,00</td>
<td>0,012</td>
</tr>
<tr>
<td>Kreatinin (mg/dl)</td>
<td>1,19</td>
<td>1,90</td>
<td>0,013</td>
</tr>
<tr>
<td>CRP (mg/l)</td>
<td>4,71</td>
<td>39,63</td>
<td>0,068</td>
</tr>
<tr>
<td>BSG (mm/1h)</td>
<td>17,09</td>
<td>21,17</td>
<td>0,093</td>
</tr>
<tr>
<td>BSG (mm/2h)</td>
<td>33,36</td>
<td>41,50</td>
<td>0,116</td>
</tr>
<tr>
<td>Thrombozyten (G/l)</td>
<td>203,35</td>
<td>186,92</td>
<td>0,100</td>
</tr>
<tr>
<td>Laktat (mmol/l)</td>
<td>1,55</td>
<td>1,93</td>
<td>0,109</td>
</tr>
<tr>
<td>CK (U/l)</td>
<td>43,20</td>
<td>107,36</td>
<td>0,168</td>
</tr>
<tr>
<td>AST/GOT (U/l)</td>
<td>28,13</td>
<td>69,38</td>
<td>0,307</td>
</tr>
<tr>
<td>ALT/GPT (U/l)</td>
<td>45,94</td>
<td>80,23</td>
<td>0,363</td>
</tr>
<tr>
<td>Hämoglobin (g/dl)</td>
<td>13,82</td>
<td>14,19</td>
<td>0,421</td>
</tr>
<tr>
<td>Lymphozyten (%)</td>
<td>29,13</td>
<td>30,98</td>
<td>0,515</td>
</tr>
<tr>
<td>Monozyten (%)</td>
<td>7,35</td>
<td>6,81</td>
<td>0,515</td>
</tr>
<tr>
<td>GGT (U/l)</td>
<td>95,71</td>
<td>112,92</td>
<td>0,594</td>
</tr>
<tr>
<td>Neutrophile (%)</td>
<td>57,19</td>
<td>56,73</td>
<td>0,594</td>
</tr>
<tr>
<td>Eosinophile (%)</td>
<td>3,02</td>
<td>3,31</td>
<td>0,594</td>
</tr>
<tr>
<td>Basophile (%)</td>
<td>0,77</td>
<td>0,74</td>
<td>0,635</td>
</tr>
<tr>
<td>Leukozyten (G/l)</td>
<td>5,49</td>
<td>5,59</td>
<td>0,889</td>
</tr>
<tr>
<td>Bilirubin (mg/dl)</td>
<td>0,93</td>
<td>0,80</td>
<td>0,906</td>
</tr>
</tbody>
</table>

Es zeigen sich sowohl für den Kreatininwert als auch für die LDH signifikante Steigerungen im Rahmen einer Hypersensitivitätsreaktion auf Abacavir. Die Änderungen sämtlicher anderer Parameter erreichen nicht das vorgegebene Signifikanzniveau von 95%. Bei Betrachtung der Mittelwerte ergibt sich ferner eine deutliche Steigerung der Transaminasen, der Kreatinkinase sowie der Entzündungsparameter. Der CRP-Anstieg erfüllt dabei ein auf 90% herabgesetztes Signifikanzniveau.
4 Diskussion

4.1 Zugrundeliegende Methodik und Limitationen dieser Studie

Ferner hätte die Durchführung von epikutanan Reiztests der Sicherung der klinischen Diagnose gedient und die Sensitivität des HLA-Screenings gesteigert. Dabei hätte die Sicherung der klinischen Diagnose besonders zur Bestätigung der Annahme beitragen können, dass der gleichzeitige Therapiebeginn mit einem NNRTI oder einem PI einen Risikofaktor für die Erhebung eines HSR-Verdachtes, nicht aber für das Auftreten einer HSR darstellt.

Erst vor Kurzem wurden die Ergebnisse des ersten prospektiven HLA-Screenings veröffentlicht, das die hohe Aussagekraft des Risikofaktors HLA-B*5701 bestätigt (Mallal et al., 2008). Aber auch in dieser Studie waren Rückschlüsse auf nicht-kaukasische Populationen aufgrund des hohen Kaukasieranteils erschwert.

4.2 Ursachen für das Absetzen

Von den 233 Bonner Patienten mit erstmaliger Abacavir-Medikation brachen 15% die Therapie innerhalb der ersten 12 Wochen ab, gut die Hälfte mit Verdacht auf ABC-HSR. Der Verdacht auf eine Hypersensitivitätsreaktion ist somit mit Abstand die häufigste Ursache für die Beendigung einer Abacavir-Therapie in den ersten Wochen. Dies spiegelt zum einen die Furcht vor der potenziell lebensbedrohlichen Reaktion wider; bei 34,3% der frühen Therapieabbrüche ist aber auch retrospektiv die Diagnose einer Hypersensitivitätsreaktion wahrscheinlich und unterstreicht die Wichtigkeit einer engmaschigen Betreuung während der ersten Wochen der Einnahme.

<table>
<thead>
<tr>
<th>Ursachen für Abbrüche</th>
<th>Abbruch ≤ 12 Wochen in Bonn in % (n = 35 ≙ 15% der Kohorte)</th>
<th>Abbruch ≤ 6 Monate in Montpellier in % (n = 113 ≙ 34.1% der Kohorte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.a. HSR</td>
<td>54,3</td>
<td>37,2</td>
</tr>
<tr>
<td>Wahrscheinliche HSR</td>
<td>34,3</td>
<td>keine Unterscheidung</td>
</tr>
<tr>
<td>Andere UEW</td>
<td>25,7</td>
<td>23,9</td>
</tr>
<tr>
<td>Non-Compliance</td>
<td>5,7</td>
<td>8,0</td>
</tr>
<tr>
<td>UEW/Non-Compliance</td>
<td>5,7</td>
<td>-</td>
</tr>
<tr>
<td>Virologisches Versagen</td>
<td>0</td>
<td>9,7</td>
</tr>
<tr>
<td>Drug Holiday</td>
<td>0</td>
<td>8,0</td>
</tr>
<tr>
<td>Tod</td>
<td>2,9</td>
<td>5,3</td>
</tr>
<tr>
<td>Andere</td>
<td>5,7</td>
<td>8,0</td>
</tr>
</tbody>
</table>

4.3 Risikofaktorenanalyse

Bereits in der ersten Risikofaktorenanalyse zu Hypersensitivitätsreaktionen auf Abacavir konnte herausgestellt werden, dass dunkelhäutige Patienten afrikanischer Abstammung ein geringeres Risiko für das Auftreten einer ABC-HSR aufweisen (Symonds et al., 2002). Diese retrospektive Untersuchung schloss verschiedene – randomisierte wie einarmige – Studien ein. 3,7% der insgesamt 5332 untersuchten Patienten hatten eine HSR entwickelt, jedoch variierte die ABC-HSR-Inzidenz je nach Studie zwischen 0 und 14%. Bei der zunächst durchgeführten univariaten Analyse (individueller prädiktiver Wert jedes Faktors) konnten einige demographische und klinische Charakteristika herausgearbeitet werden, die das Auftreten einer HSR zu beeinflussen schienen (Abweichung von OR = 1 mit p ≤ 0,1), so z. B. die ethnische Herkunft (kaukasische Abstammung = RF), das Geschlecht (weiblich = RF), die CDC-Klasse (CDC A + B = RF, geringeres Risiko bei CDC C), vorherige ART-Erfahrung (ART-naiv = RF) und die gleichzeitige Einnahme von NNRTIs (= RF). Diese Subpopulationen wiesen jedoch alle Hypersensitivitätsraten zwischen 3 und 6% auf (entsprechend der Schwankungsbreite zwischen den Studien), die Assoziationen erreichten keine statistische Signifikanz. In der multivariaten Analyse jedoch, in der der unabhängige prädiktive Wert jedes potenziellen Risikofaktors...

4.3.1 Kaukasische Abstammung

Die Frage, ob kaukasische Abstammung unabhängig von der höheren Prävalenz des 57.1-Urhaplotyps (s.u.) einen Risikofaktor für das Auftreten einer Hypersensitivitätsreaktion auf Abacavir darstellt, ist noch nicht endgültig geklärt – die ethnische Herkunft als prognostischer Faktor für das Auftreten einer HSR gilt jedoch als wahrscheinlich und wurde in mehreren Studien herausgearbeitet (Cutrell et al., 2004; Easterbrook et al., 2003; Symonds et al, 2002).

In unserer Analyse zeigt sich ebenfalls eine höhere Inzidenz der Hypersensitivitätsreaktion unter den Kaukasiern (8,1% versus 3,2%), der Zusammenhang erreicht jedoch nicht die hier geforderte
Signifikanz von 95%. Eine Ursache hierfür mag darin liegen, dass im Bonner Kollektiv der Anteil von Patienten afrikanischer Abstammung geringer ist als in den Populationen, die den anderen Risikofaktoranalysen zugrunde lagen (13,1% versus 85% Kaukasier). Weitere ethnische Gruppen wie z. B. Asiaten sind dabei gar nicht vertreten.

4.3.2 Alter
In keiner der bisher durchgeführten Analysen ebenso wenig wie im Bonner Kollektiv konnte ein statistisch signifikanter Zusammenhang zwischen dem Patientenalter und dem ABC-HSR-Risiko hergestellt werden.

4.3.3 Geschlecht
Während eine Analyse keinen Zusammenhang zwischen dem Geschlecht und der Hypersensitivitätsreaktion auf Abacavir aufzeigen konnte, war bei einer anderen Untersuchung ausschließlich im univariaten Vergleich eine Assoziation zu sehen (Easterbrook et al., 2003; Symonds et al., 2002). In einer weiteren Analyse schien aber weibliches Geschlecht eindeutig einen Risikofaktor für das Auftreten einer ABC-HSR darzustellen (Cutrell et al., 2004). Dabei lag das Signifikanzniveau in manchen Analysen bei 95%, in anderen hingegen nur bei 90%.

In unserer Analyse zeigte sich ebenfalls ein höherer Anteil an Hypersensitivitätsreaktionen beim weiblichen Geschlecht. Statistische Signifikanz erreicht dieser Zusammenhang jedoch nur dann, wenn alle Faktoren vorneweg in das Modell eingeschlossen (und somit Kreuzeffekte zugelassen) werden oder aber, wenn das Signifikanzniveau auf 90% reduziert wird. Des Weiteren muss bedacht werden, dass Frauen möglicherweise aufmerksamer bezüglich des Auftretens von Symptomen sind. In diesem Zusammenhang konnte gezeigt werden, dass die Einführung und Benutzung des standardisierten ABC-HSR-Falldokumentationsformulars, das die Aufmerksamkeit bezüglich möglicher Symptome steigert, einen starken prognostischen Faktor für die Dokumentation einer HSR darstellt (Cutrell et al., 2004).

4.3.4 Körpergewicht/BMI
In einer Risikofaktorenanalyse schienen im univariaten Vergleich ein geringeres Körpergewicht und ein geringerer BMI mit einem erhöhten Risiko für das Auftreten einer HSR assoziiert zu sein (Easterbrook et al., 2003). In der multivariaten Analyse zeigte sich in der Gruppe der
Hypersensitiven nur ein Trend zu geringerem Gewicht, ein geringerer BMI als Risikofaktor erreichte keinerlei statistische Signifikanz.

Aufgrund der breiten Streuung beider Parameter unter den Verdachtsfällen wurde in unsere Risikofaktorenanalyse weder das Körpergewicht noch der BMI einbezogen.

4.3.5 Erhöhte CD8+-Zellzahl bei Ansetzen von Abacavir

Wie bereits unter 1.6.3.3 dargelegt, wurde eine Beteiligung von CD8+-T-Zellen bei der Vermittlung der Hypersensitivitätsreaktion auf Abacavir vermutet, als man in Hautläsionen von Patienten mit einem ABC-assozierten Exanthem bzw. positivem Patch-Test (epikutane Reiztest) eine Infiltration von CD8+-T-Zellen fand (Phillips et al., 2002). Gestärkt wurde diese Vermutung durch einen in einer Studie nachgewiesenen Zusammenhang zwischen erhöhten CD8+-Zellzahlen vor Beginn der ABC-Therapie und dem Auftreten einer HSR (Easterbrook et al., 2003).

Des Weiteren zeigten sich erhöhte TNF-α und IFN-γ-Konzentrationen nach ABC-Stimulation von Kulturen mononukleärer Blutzellen aus hypersensitiven Individuen (Martin et al., 2004a). Diese sprechen zum einen für eine durch T1-Zellen vermittelte Immunantwort, zum anderen konnten die TNF-α und IFN-γ-Konzentrationen durch CD8+-T-Zelldepletion, nicht jedoch durch Depletion der CD4+-T-Zellen gesenkt werden und erhärteten somit den Verdacht einer Beteiligung der CD8+-T-Zellen bei der Vermittlung der ABC-HSR.

In einer späteren Untersuchung wurden ABC-hypersensitive Patienten ebenso wie Kontrollen epikutanaen Reiztests unterzogen und HLA-genotypisiert. In einem Proliferationsassay nach ABC-Stimulation mononukleärer Blutzellen zeigte sich bei der Mehrzahl der Reiztest-positiven Fälle eine CD8+-T-Zellproliferation, während sich die CD4+-T-Zahlen nicht unterschieden (Phillips et al., 2005).

Obwohl eine Beteiligung der CD8+-Zellpopulation an der Vermittlung der Hypersensitivitätsreaktion auf Abacavir und hier insbesondere am Exanthem als gesichert gilt, zeigt sich im Bonner Kollektiv kein signifikanter Zusammenhang zwischen der Zahl der CD8+-Zellen und dem Risiko für das Auftreten einer HSR; im Schnitt fanden sich jedoch bei den hypersensitiven Patienten vor Ansetzen von ABC eher niedrigere CD8+- sowie CD4+-Zellzahlen. Eine Ursache mag darin liegen, dass CD8+-Zellen als Reaktion auf eine Stimulation durch Abacavir proliferieren und besonders auf Hautniveau an der Ausbildung des Exanthems beteiligt sind, jedoch vor Abacavir-Exposition nicht in erhöhter Zahl in der Blutbahn zirkulieren. In diesem Zusammenhang wäre ein Vergleich der CD8+-Zellzahlen vor Ansetzen und zum Zeitpunkt des Therapieabbruchs von Interesse. Diese Betrachtung war jedoch anhand des Bonner
Kollektivs nicht möglich, da zum Zeitpunkt des Therapieabbruchs bei einem zu großen Teil der Fälle die Lymphozytenzahlen nicht innerhalb einer Woche bestimmt worden waren.

4.3.6 Erhöhte CD4+-Zellzahl bei Ansetzen von Abacavir

Im Gegensatz dazu erhöhen hohe CD4+-Zellzahlen bei Ansetzen von Nevirapin signifikant die Wahrscheinlichkeit des Auftretens einer Hypersensitivitätsreaktion (Stern et al., 2003). Im Gegensatz zur ABC-HSR scheint bei der NVP-HSR eher die MHC-Klasse-II vermittelte Aktivierung von CD4+-Zellen (T-Helferzellen) eine Rolle zu spielen (Martin et al., 2004b).

4.3.7 CDC-Klasse
Ein Zusammenhang zwischen ABC-HSR-Risiko und Krankheitsstadium ergab sich bisher insofern, als eine fortgeschrittene Erkrankung (CDC C) die Wahrscheinlichkeit für eine Hypersensitivitätsreaktion zu senken schien (Cutrell et al., 2004; Symonds et al., 2002). Dieser Zusammenhang zeigte sich jedoch lediglich in der univariaten Analyse, Kreuzeffekte zwischen CDC-Klasse und ART-Erfahrung sind nicht auszuschließen.

Auch innerhalb des Bonner Kollektivs hatten die Patienten im Stadium B bzw. C der Erkrankung im Vergleich weniger HSR-Fälle zu verzeichnen als die asymptomatischen Patienten, eine statistisch signifikante Risikosteigerung lässt sich für diese Patienten jedoch nicht nachweisen. Eine mögliche Erklärung für eine geringere HSR-Inzidenz in fortgeschrittenen Krankheitsstadien könnte darin bestehen, dass das Immunsystem im CDC-Stadium C bereits stark angegriffen und somit das Risiko einer immunvermittelten Hypersensitivitätsreaktion reduziert ist. Dagegen spricht jedoch, dass es sich bei der Hypersensitivitätsreaktion auf Abacavir
offensichtlich nicht um eine CD4+-T-Zell-vermittelte Reaktion handelt und die Zahl der CD8+-T-Zellen auch bei einer fortgeschrittenen HIV-Krankheit lange stabil bleibt.

4.3.8 ART-Naivität

Bisher konnte lediglich im Rahmen einer Risikofaktorenanalyse ein Zusammenhang zwischen ART-Naivität und einem erhöhten Risiko für das Auftreten einer Hypersensitivitätsreaktion auf Abacavir hergestellt werden (Symonds et al., 2002).

4.3.9 Gleichzeitige Einnahme von NNRTIs

4.4 Der HLA-Status als Risikofaktor

4.4.1 Der 57.1-Urhaplotyp

Die Suche

Folgende Beobachtungen führten zu der Annahme, dass genetische Faktoren das Auftreten einer Hypersensitivitätsreaktion auf Abacavir beeinflussen:

Zweitens zeigte sich eine höhere Inzidenz der ABC-HSR in Patienten kaukasischer Abstammung im Vergleich zu dunkelhäutigen Patienten afrikanischer Abstammung und es wurde über den Fall einer familiären Prädisposition berichtet (Peyrière et al., 2001; Symonds et al., 2002).

Auf der Suche nach einem Zusammenhang zwischen bestimmten MHC-Allelen und Hypersensitivität auf Abacavir konnte 2002 nahezu zeitgleich durch eine australische und eine amerikanische Arbeitsgruppe gezeigt werden, dass das Vorhandensein des HLA-B*5701-Allels mit einer genetischen Empfänglichkeit für das Auftreten der ABC-HSR assoziiert ist (Hetherington et al., 2002; Mallal et al., 2002).

In der ersten australischen Analyse von 200 Patienten, die auf Abacavir eingestellt wurden, war HLA-B57 in 78% (= Sensitivität) der ABC-hypersensitiven Patienten zu finden, jedoch nur in 3% der ABC-toleranten (Spezifität = 97%). Es ergab sich ein positiv prädiktiver Wert von 74% bei einem negativ prädiktiven Wert von 98% (OR=117) (Mallal et al., 2002).

Das HLA-B*5701-Allel gehört zum 57.1-Urhaplotyp und ist für diesen haplospezifisch. Im Gegensatz dazu findet sich das HLA-DR7-Allel sowohl beim 57.1- als auch beim 47.1 und 13.1-Haplotyp. In Kombination mit dem HLA-DQ3-Allel ist es jedoch spezifisch für den 57.1-
Urhaplotyp, sodass die Kombination dieser beiden Marker wiederum stark mit dem Auftreten einer ABC-HSR assoziiert ist. Die Kombination von HLA-B*5701, HLA-DR7 und HLA-DQ3 wies in der australischen Studie mit 100% den höchsten positiv prädiktiven Wert für das Auftreten einer ABC-HSR auf (negativ prädiktiver Wert 97%). Die Kombination dieser 3 Marker des 57.1-Urhaplotyps war in 72% der ABC-Hypersensitiven zu finden (Sensitivität), jedoch in keinem ABC-toleranten Patienten (Spezifität = 100%, OR = 822) (Mallal et al., 2002). Hätte man Abacavir denjenigen Patienten vorenthalten, die die Kombination dieser 3 Marker aufwiesen, so hätte dies die Inzidenz der ABC-HSR innerhalb der australischen Kohorte von 9 auf 2,5% gesenkt. Es entstand die Idee eines genetischen Screenings auf Abacavir-Hypersensitivität, das das Auftreten der Reaktion vermindern sollte.

Bereits in die zweite australische Analyse wurden 48 Patienten integriert, die prospektiv einer HLA-Typisierung unterzogen wurden (Martin et al., 2004a). Den HLA-B*5701-positiven Individuen wurde der Zugang zu Abacavir verwehrt. Die bereits eingeschlossenen Patienten wurden außerdem reevaluierat; dabei wurden alle Patienten, die die Kriterien einer Hypersensitivitätsreaktion nicht sicher erfüllten, einem Epikutantest unterzogen. Im Ergebnis stiegen Sensitivität und Spezifität des HLA-B*5701-Screenings auf 94% bzw. 98%, positiv und negativ prädiktiver Wert erreichten 81 bzw. 99%.

Statistik

In dem amerikanischen Kollektiv betrug hingegen die Sensitivität sowohl für HLA-B57 als auch für HLA-B*5701 nur 46% bei Betrachtung aller Fälle und 55% bei alleiniger Betrachtung der Kaukasier (Hetherington et al., 2002). Die Spezifität erreichte bezüglich HLA-B57 96,5% bei Betrachtung des Gesamtkollektivs und 97% unter den Kaukasier, bezüglich HLA-B*5701 betrug sie in beiden Fällen 99%.

Die Ursachen für die deutlichen Unterschiede zwischen dem australischen und dem amerikanischen Kollektiv bezüglich der Testgütekriterien sind u. a. im Studiendesign zu suchen: Die Patienten der australischen Kohorte stammten aus nur einem Zentrum, die Kohorte war mit nahezu 90% Kaukasiern ethnisch sehr homogen und aufgrund des Studiendesigns war der Anteil der hypersensitiven Patienten deutlich geringer (9% Prävalenz in der Gesamtpopulation). Außerdem wurden die eingeschlossenen Patienten nach Studieneinschluss regelmäßig standardisiert befragt und untersucht. In den ergänzenden Arbeiten mit Integration erster prospektiver HLA-Typisierungen wurden des Weiteren unklare Fälle einem epikutanten Reiztest unterzogen und so die Anzahl falsch-positiver Fälle gesenkt (Martin et al., 2004a; Rauch et al., 2006).
Das amerikanische Kollektiv umfasste nordamerikanische Patienten, die aus der GSK-Datenbasis für klinische Studien als Fall-Kontroll-Studie zusammengestellt wurden. Kaukasier stellten 74% der Patienten, 14% waren Amerikaner afrikanischer Abstammung und 11% Hispanoamerikaner, 42% des Gesamtkollektivs bestand aus ABC-hypersensitiven Patienten.

In der vor Kurzem veröffentlichten, ersten doppelblind randomisierten Mehrzentrumsstudie (PREDICT-1) ergab sich in der Kontrollgruppe (retrospektives Screening) für eine klinisch diagnostizierte ABC-HSR wiederum nur eine Sensitivität von 45,5%, während die Sensitivität des HLA-Screenings für eine klinisch diagnostizierte und dann immunologisch per Reiztest gesicherte HSR 100% betrug (Mallal et al., 2008). Entsprechend betrug die klinische HSR-Rate im prospektiven Screeningarm nur 3,4% im Vergleich zu 7,8% im Kontrollarm. Es wird angenommen, dass es sich bei den übrigen, nicht immunologisch bestätigten Fällen (3,4%) um falsch-positive Diagnosen handelt, somit der negativ prädiktive Wert des prospektiven Screenings 100% beträgt. Unterstützt wird diese Annahme durch Doppelblindstudien, in denen auch unter den nicht mit Abacavir behandelten Patienten in 2-7% der Fälle eine HSR dokumentiert wurde (DeJesus et al., 2004; Gulick et al., 2006; Staszewski et al., 2001).

Innerhalb des Bonner Kollektivs hätte ein HLA-Screening eine Sensitivität von 43,8% und eine Spezifität von 93,6% gezeigt. Bei einer Vortestinzenz von 8% hätten positiv bzw. negativ prädiktiver Wert 37,2% bzw. 95,0% betragen und die Inzidenz der HSR wäre von 7,9% auf 4,9% reduziert worden. Betrachtet man nun nur diejenigen Fälle, in denen die Kriterien für eine HSR erfüllt wurden, so beträgt die Sensitivität des HLA-B57-Screenings innerhalb des Bonner Kollektivs 63,6% und die HSR-Rate wäre durch den Test im Bonner Kollektiv von 5,4% auf 2,2% gesenkt worden. Im Vergleich zur ersten australischen Studie zeigt sich auch im Bonner Kollektiv eine geringere Sensitivität des HLA-B57-Markers. Die Sensitivität für einen HSR-Verdacht stimmt jedoch nahezu mit der Sensitivität im Kontrollarm der PREDICT-1-Studie überein, in dem eine HSR klinisch, ohne Zuhilfenahme festgelegter Kriterien diagnostiziert wurde und das HLA-Screening retrospektiv erfolgte (Mallal et al., 2008).

Eine Hauptursache für die beobachteten Sensitivitätsunterschiede zeigt sich bereits anhand unserer statistischen Daten: Je nachdem, wie die Definition einer HSR erfolgt – ob man die Ersteinschätzung des behandelnden Arztes (oder sogar des Patienten, der ABC in Eigenregie abgesetzt hat) zugrunde legt (Verdacht auf HSR) oder festgelegte Kriterien (wahrscheinliche HSR) – bewegt sich die Sensitivität des Screenings im Bonner Beispiel zwischen 43,8 und 63,6%! Weitere Ursachen sind im Studiendesign und möglicherweise auch in echten genetischen Populationsunterschieden zu suchen. Der Einfluss des Studiendesigns erfolgt dabei nicht nur über die pro- oder retrospektive Betrachtung, über die ethnische Diversität, über die Vollständigkeit der Datensätze und die Definitionsunterschiede sondern auch über die „Verblindung“: Für die geringe
Sensitivität des HLA-Screenings bezüglich einer klinisch diagnostizierten HSR wurde in der PREDICT-1-Studie (s.o.) der aufgrund des doppelblinden Studiendesigns relativ hohe Anteil falsch-positiver HSR-Diagnosen unter den HLA-B*57-Negativen verantwortlich gemacht (Mallal et al., 2008). Dementsprechend scheint der Einfluss der Populationsschiede eher in der unterschiedlichen HLA-B*5701-Prävalenz zu bestehen als darin, dass HLA-B*5701 in manchen Populationen nicht an der Vermittlung der ABC-HSR beteiligt ist. Die „wahre“ Sensitivität des HLA-B57-Screenings für das Auftreten einer „sicheren“, immunologisch bestätigten ABC-HSR wird demnach bei 100% angenommen. Die Spezifität des Markers erreicht hingegen aufgrund des in jeder Kohorte vorhandenen Anteils HLA-B57-positiver, aber ABC-toleranter Menschen nie 100%. Dabei dient die klinische Diagnose als bester Schätzer für die Spezifität, sie ist der immunologischen Diagnose bei der Identifikation der ABC-toleranten Patienten überlegen (Mallal et al., 2008).

Das Vorhandensein von HLA-B*5701 scheint somit zumindest unter Kaukasiern eine notwendige, jedoch keine hinreichende Bedingung für das Auftreten einer ABC-HSR zu sein.

Abhängigkeit von der ethnischen Herkunft

Bereits im Rahmen der ersten Analyse der australischen Kohorte fiel auf, dass alle HSR-Fälle bei Patienten kaukasischer Abstammung aufgetreten waren. Auch fanden sich die Marker HLA-B*5701 und/oder HLA-DR7 nur bei Kaukasiern (Mallal et al., 2002). Die überwiegende Mehrzahl der untersuchten Patienten war jedoch kaukasischer Abstammung, sodass der Zusammenhang ebenso wie bei der vorliegenden Untersuchung des Bonner Patientenkollektivs statistisch nicht verwertbar war. Andere Untersuchungen haben sich bereits der Verteilung der MHC-Allele in verschiedenen Bevölkerungsgruppen gewidmet (Balakrishnan et al., 1996; Cao et al., 2001; Nolan et al., 2003a; Williams et al., 2001): Der 57.1 Urhaplotyp findet sich zwar in den meisten Populationen, bei Kaukasiern ist er jedoch mit 5-8% durchschnittlich am häufigsten vertreten. Die Häufigkeit variiert zwischen <1% bei Japanern, Chinesen und in Subsahara-Afrika, und bis zu 15% in manchen indischen Subpopulationen kaukasischer Abstammung. Dies bietet eine Erklärung für die regional unterschiedlichen HSR-Raten im Rahmen der ABC-Therapie.

In einer zweiten Analyse des amerikanischen Kollektivs wurden GSK-Daten zusammengefasst, die auf verschiedenen klinischen Studien mit dem Ziel der Identifikation potenzieller genetischer Marker der ABC-HSR beruhten (Hughes et al., 2004a). Auch hier zeigte sich im Vergleich zur australischen Kohorte eine geringere und breit gestreute Sensitivität von 48-60% unter den Kaukasiern und 20-22% unter den Hispanoamerikanern. 5 der 8 Marker aus der HLA-B-Region, die sich in einer ersten Studie als ABC-HSR-assoziert erwiesen hatten, konnten für die kaukasische Subpopulation bestätigt werden. In der hispanischen Subpopulation konnte neben

Die jüngsten Ergebnisse der PREDICT-1-Studie und einer retrospektiven amerikanischen Fall-Kontroll-Studie widersprechen dieser Annahme (Mallal et al., 2008; Saag et al, 2008). In der Fall-Kontroll-Studie erreichte die Sensitivität des Screenings für eine immunologisch gesicherte HSR unter Kaukasiern ebenso wie unter den Patienten afrikanischer Abstammung 100%, während die Sensitivität für eine klinisch diagnostizierte HSR nur 44% bzw. 14% betrug (Saag et al, 2008). Die geringere Sensitivität des Markers in Populationen geringer HLA-B*5701-Prävalenz beruht demnach auf einem noch höheren Anteil falsch-positiver klinischer Diagnosen.

In unserer Untersuchung der Bonner Patienten wurde keine weitere Differenzierung des HLA-B57-Markers in HLA-B*5701, -B*5702 und -B*5703 durchgeführt. Dies war insofern möglich, als die Kohorte zu 85% kaukasischer Abstammung war. Es konnte daher bei den HLA-B57-positiven Patienten angenommen werden, dass es sich um HLA-B*5701 handelte. Auch hier zeigte sich die bereits erwähnte unterschiedliche Verteilung des MHC-Allels in verschiedenen Bevölkerungsgruppen: 3,8% der Bonner Patienten afrikanischer Abstammung waren HLA-B*5701-positiv im Gegensatz zu 10,3% der Patienten kaukasischer Abstammung (9,4% der Gesamtpopulation). Im Gegensatz zur amerikanischen Analyse kann jedoch nicht der Schluss gezogen werden, dass das HLA-B*5701-Allel in der afrikanischen Subpopulation nicht mit dem Auftreten einer ABC-HSR assoziiert ist: Von 26 typisierten Patienten afrikanischer Abstammung war eine Patientin HLA-B*5701-positiv; diese entwickelte als einzige eine HSR. Da diese Patientin ebenso gut HLA-B*5702 oder -B*5703-positiv sein könnte, lassen unsere Daten keine Aussage zur Assoziation zwischen dem Auftreten von HLA-B*5701 und Hypersensitivitätsreaktionen bei Afrikanern zu.
Der Test – Screening: ob und wenn ja, wie?
Ein genetischer Test auf HLA-B*5701 vor Einsatz von Abacavir ist zumindest in der kaukasischen Subpopulation sinnvoll:

1. hat sich HLA-B*5701 als Marker mit hohen positiv und negativ prädiktiven Werten gezeigt,
2. sind relativ große Patientenzahlen betroffen,
3. ist die ABC-HSR mit einer erheblichen Morbidität und sogar Mortalität verbunden und

In einer Analyse der australischen Kohorte wurde allein aufgrund des retrospektiven Ausschlusses HLA-B*5701-positiver Patienten eine Senkung der ABC-HSR-Inzidenz von 7,3 auf 0,4% angenommen - bei 1,6% Patienten, die fälschlicherweise kein Abacavir einnehmen durften (Nolan et al., 2003a). Der protektive Effekt des genetischen Screenings wurde für diese Kohorte anschließend in einer prospektiven Studie bestätigt: Die Inzidenz der ABC-HSR konnte von 8% auf 2% aller Patienten und auf 0% der HLA-B*5701-negativen Patienten gesenkt werden (Rauch et al., 2006). Ferner sank durch Einführung des prospektiven Screenings auch die Zahl der Therapieabbrüche aufgrund von Symptomen, die den Kriterien einer ABC-HSR nicht genügten, von 8,5 auf 4%. Dies offenbart den psychologischen Sicherheitsfaktor, den ein solches Screening mit sich bringt. Der Wert dieses Tests wurde in größerem Rahmen durch die bereits vorgestellte PREDICT-1-Studie belegt (Mallal et al., 2008).

Wie bereits angesprochen wäre die Inzidenz im Bonner Kollektiv entsprechend der retrospektiven Berechnung durch das HLA-Screening von 7,9 auf 4,9% bzw. von 5,4 auf 2,2% gesenkt worden. Die geringere Absenkung der Inzidenz in der Bonner Kohorte liegt teilweise in dem retrospektiven Studiendesign begründet: Unklare Fälle konnten nicht reevaluiert werden, es herrschte Unwissenheit um den HLA-Status. Auch wurden die fraglichen Fälle im Bonner Kollektiv nicht einem epikutantem Reiztest unterzogen.

Kritik an einem Test auf HLA-B*5701 zielt neben der in manchen Populationen geringen Sensitivität des Markers vor allem auf dessen Kosten und die Durchführbarkeit ab. Das HLA-B*5701-Gen musste bisher mit genetischen Methoden nachgewiesen werden, da serologische Methoden lediglich den Nachweis von HLA-B17 und die Unterscheidung dieses Markers in seine Subtypen HLA-B57 und HLA-B58 erlauben – nicht jedoch die weitere Differenzierung des HLA-B57-Allels (Nolan et al., 2003a). Dieses kann nur aufgrund DNA-basierter Methoden weiter in HLA-B*5701, HLA-B*5702 und HLA-B*5703 differenziert werden. Dabei ist lediglich HLA-B*5701 mit dem Auftreten einer ABC-HSR assoziiert, während die anderen Allele zu falsch-positiven Ergebnissen führen könnten. Auf der anderen Seite sind HLA-B*5702 und HLA-B*5703 insbesondere bei den Zulu (2% bzw. 4%) zu finden, während beide Marker so gut wie gar nicht in Populationen kaukasischer Abstammung vertreten sind. Einer weiten Verbreitung des Screenings stand bisher entgegen, dass die HLA-Typisierung nur in bestimmten Laboren durchgeführt werden kann und relativ kostenintensiv ist. Es wurde daher ein alternatives Protokoll erfunden, welches diese Bedenken aus dem Weg räumt (Martin et al., 2006b): Mithilfe monoklonaler B17-Antikörper wurde per Durchflusszytometrie die HLA-B57/58-Subpopulation detektiert. Bei HLA-B57/58-positiven Patienten wurde anschließend eine HLA-Typisierung durchgeführt. Dabei wurde die kostenintensive Sequenzierung durch eine PCR-Typisierung mit sequenzspezifischen Primern ersetzt (Martin et al., 2005). Die Methode kann in die normalen Arbeitsgänge eines Labors, das auch zytometrisch T-Helfer-Zellzahlen bestimmt, integriert werden und ist sehr kosteneffizient. HLA-Typisierungen müssten in einer kaukasischen Kohorte dann nur noch in rund 10% der Fälle erfolgen und in Populationen afrikanischer Abstammung ist ein noch geringerer Anteil HLA-B57/58-positiver Patienten zu erwarten.

Unabhängig von diesen Bemühungen konnte eine britische Studie die Kosteneffektivität des prospektiven HLA-B*5701-Screenings belegen (Hughes et al, 2004b).

zeigte jedoch sowohl das HLA-B*5701- als auch das Hsp70-Hom M493T-Allel und stützt somit die Vorstellung, dass ein positiver HLA-B*5701-Status keine hinreichende Bedingung für das Auftreten einer ABC-HSR ist. Auch unter den Kaukasiern müssen weitere immunologische und/oder metabolische Faktoren an der Entstehung einer Hypersensitivitätsreaktion auf Abacavir beteiligt sein.

Wie könnte die Hypersensitivitätsreaktion auf Abacavir vermittelt werden?

Bereits in der ersten australischen Kohortenstudie wurde die Region, die mit der genetischen Empfänglichkeit für eine ABC-HSR assoziiert ist, weiter eingeengt. Dazu wurde die Ausdehnung des nicht rekombinanten Haplotyps in ABC-Hypersensitiven und Kontrollen mithilfe verschiedener zentraler MHC-Marker des 57.1-Urhaplotyps untersucht (Mallal et al., 2002). Alle ABC-hypersensitiven Patienten besaßen den 57.1-Urhaplotyp zwischen den Markern C4A6 und HLA-Cw6. Diese Region schließt neben HLA-B*5701 als möglichen Vermittler der MHC-Klasse I vermittelten Antigenpräsentation eine Familie von Hitzeschockproteinen ein, die an der Antigenfaltung oder auch direkt immunstimulatorisch beteiligt sein könnten, sowie einen möglicherweise die Schwere des Hypersensitivitätssyndroms beeinflussenden Polymorphismus der TNF-α-Promotorregion (TNF-α-238A) (Hetherington et al., 2002; Mallal et al., 2002; Martin et al., 2004a). Die Kooperation von zwei oder mehr Genprodukten dieser Region bei der ABC-spezifischen Antigenerkennung durch das Immunsystem wurde postuliert. Dabei ist zu beachten, dass sich die verschiedenen HLA-B17-Subtypen, d. h. HLA-B*5701-5709 sowie HLA-B58 nur in wenigen Aminosäureresten im Bereich der C- und F-Tasche unterscheiden, die ihr unterschiedliches Peptidbindungsreservoir determinieren.

Es wurde eine Hypothese entwickelt, nach der ABC oder seine Metabolite an der Haptenisierung endogener Peptide beteiligt sind und die Präsentation dieses „veränderten Selbst“ durch HLA-B*5701 zu einer starken CD8+-T-Zell-Reaktion führt. Ein Modell postuliert eine Interaktion der Genprodukte beider Loci, indem die Hsp70-Variante die HLA-B*5701-gebundene Präsentation ABC-spezifischer Immunogene erleichtert, möglicherweise durch eine direkte Rolle in der Beladung von HLA-B*5701 mit einem haptenisierten Peptidsubstrat (Martin et al., 2004a; Martin et al., 2007). Neuere Untersuchungen zur Funktion der zu den genetischen Suszeptibilitätsloci gehörigen Proteine zeigten eine ABC-stimulierte, über die Signaltransduktionskaskaden des TLR2- und CD14-Rezeptors vermittelte subzelluläre Umverteilung von Hsp70 (Martin et al., 2007). Es wird postuliert, dass Umverteilung und Freisetzung von Hsp70 über eine positive Rückkopplungsschleife mit einer Immunstimulation und Reifung der Antigen-präsentierenden Zellen einhergeht. Diese präsentieren anschließend den CD8+-T-Zellen ABC-spezifische, HLA-B*5701-gebundene Liganden. Die Rolle von Hsp70 könnte dabei sowohl in der Kreuzpräsentation als auch in der Vermittlung eines Gefahrsignals bestehen.

Es bleibt zu klären, ob und inwiefern ein Zusammenhang zwischen der Funktion von HLA-B57 bei der Vermittlung der ABC-HSR und der bei HLA-B57-positiven Patienten verlangsamen Krankheitsprogression bestehen könnte (Altfeld et al., 2003 und 2006). Letztere beruht ebenfalls auf einer starken CD8+-Zellantwort, die im Rahmen der primären HIV1-Infektion einen niedrigeren viralen Setpoint zur Folge hat.

4.4.2 HLA-B37 und kombiniertes HLA-B57/B37-Screening

Ein Zusammenhang zwischen dem HLA-Marker B37 und dem Auftreten einer ABC-HSR war bislang nicht bekannt, das Allel ist jedoch bekanntermaßen mit einer erhöhten Psoriasiswahrscheinlichkeit assoziiert.

Zusammenfassend muss man sagen, dass ein Screening auf HLA-B37 nicht die finanziellen Mittel rechtfertigt, die man bei einer kompletten HLA-B-Typisierung im Vergleich zu der oben ausgeführten Durchflusszytometrie auf HLA-B57/58 aufwenden muss. Durch Ergänzung des Screenings um den Marker HLA-B37 wird die Sensitivität erhöht. Ferner steigt der negativ prädiktive Wert des Screenings und die Inzidenz der HSR wird bei Ausschluss der HLA-B57 sowie der HLA-B37-positiven Patienten von der ABC-Therapie weiter gesenkt. Eine Mitbetrachtung von HLA-B37 bringt somit mehr Sicherheit in der Vermeidung von Hypersensitivitätsreaktionen, jedoch sinken Spezifität und positiv prädiktiver Vorhersagewert merklich und der Prozentsatz der Patienten, denen Abacavir fälschlicherweise vorenthalten wird, steigt weiter an. Andererseits liegt die Prävalenz von HLA-B37 in manchen indischen...
Subpopulationen bei nahezu 15% im Vergleich zu rund 2% unter Kaukasiern und beispielweise 3,4% im Bonner Kollektiv (Cao et al., 2001; Crawford et al, 2001). Ein (zusätzliches) Screening auf HLA-B37 könnte daher in Populationen anderer ethnischer Zusammensetzung durch Steigerung der Sensitivität im Vergleich zum (alleinigen) HLA-B57-Screening einen wesentlich größeren Vorteil mit sich bringen.

4.5 Symptomatik der Hypersensitivitätsreaktion

4.5.1 Klinische Symptomatik

Trotz dieser Einschränkung und der sehr viel kleineren Fallzahl zeigt sich überraschenderweise eine sehr ähnliche Symptomverteilung, die die Aussagekraft kleiner Kohortenstudien untermauert.
Tabelle 22: Gegenüberstellung der klinischen Symptomatik der Bonner ABC-hypersensitiven Patienten mit dem GlaxoSmithKline Kollektiv

<table>
<thead>
<tr>
<th>Symptom komplex</th>
<th>V.a. HSR Bonn (n = 17) (%)</th>
<th>Wahrscheinliche HSR Bonn (n = 12) (%)</th>
<th>GSK- Kollektiv (n = 1803) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotonie / Tachykardie</td>
<td>11,8</td>
<td>16,7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(nur Hypotonie)</td>
</tr>
<tr>
<td>Exanthem</td>
<td>58,8</td>
<td>66,7</td>
<td>66</td>
</tr>
<tr>
<td>Fieber</td>
<td>58,8</td>
<td>66,7</td>
<td>78</td>
</tr>
<tr>
<td>GIT-Symptom</td>
<td>58,8</td>
<td>66,7</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(mit 46% Übelkeit/Erbrechen, 22% Diarrhoe, 13% Bauchschmerzen)</td>
</tr>
<tr>
<td>Respiratorische Symptome</td>
<td>29,4</td>
<td>33,3</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(mit 10% Husten, 12% Dyspnoe, 6% Pharyngitis)</td>
</tr>
<tr>
<td>Konstitutionelle Symptome</td>
<td>70,6</td>
<td>83,3</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(mit 46% Unwohlsein/Abgeschlagenheit, 27% Myalgie/Arthralgie)</td>
</tr>
<tr>
<td>Neurologische Symptome</td>
<td>47,1</td>
<td>58,3</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(nur Kopfschmerzen)</td>
</tr>
<tr>
<td>Stomatitis / Konjunktivitis</td>
<td>11,8</td>
<td>16,7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(nur Stomatitis)</td>
</tr>
<tr>
<td>Lymphknotenschwellungen</td>
<td>11,8</td>
<td>16,7</td>
<td>nicht aufgeführt</td>
</tr>
<tr>
<td>Ödem / Urtikaria</td>
<td>17,6</td>
<td>25</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(nur Ödem)</td>
</tr>
</tbody>
</table>

Die Symptomatik einer HSR bei Reexposition war wie erwartet im Vergleich zur Erstexposition stärker ausgeprägt und trat innerhalb kurzer Zeit nach der ersten Gabe auf. Diese Beobachtung untermauert die Annahme, dass es sich bei der ABC-HSR um eine verzögerte Immunreaktion auf zellulärer Basis handelt und entsprechend geprimte Zellen für das rasche Wiederauftreten von Symptomen bei Reexposition sorgen.

Bemerkenswert ist, dass in der amerikanischen Kohorte ca. 5% der Fälle noch nach 12 Wochen auftraten, im Bonner Kollektiv trat hingegen der letzte HSR-Verdacht nach 32 Tagen auf.

4.5.2 Laborveränderungen

5 Zusammenfassung

Die im Rahmen der Reexpositionsreaktion rasch wieder auftretende Symptomatik untermauert die Annahme einer zellulär vermittelten verzögerten Immunreaktion.

Im Rahmen der Risikofaktorenanalyse der Verdachtsfälle erreicht im Bonner Kollektiv nur HLA-B57 das geforderte Signifikanzniveau von 95%. Ein positiver HLA-B57-Status erhöht hier das Risiko für das Auftreten einer Hypersensitivitätsreaktion um das 14,1fache. Weitere Faktoren, die tendenziell das Risiko einer HSR steigern, sind HLA-B37, weibliches Geschlecht sowie kaukasischer Abstammung. Dass diese Faktoren nicht das geforderte Signifikanzniveau erreichen, mag teilweise an dem hohen Anteil kaukasischer Männer im Bonner Kollektiv liegen.

Bei Betrachtung der wahrscheinlichen Hypersensitivitätsfälle führt das Vorhandensein von HLA-B57 zu einer Risikosteigerung um das 31,7fache, auch HLA-B37 erhöht innerhalb dieser Gruppe signifikant das Risiko (7,4fach). Weibliches Geschlecht und kaukatische Herkunft erreichen bei Ausblenden von Kreuzeffekten wiederum nicht ganz die geforderte Signifikanz, tendenziell ist das Risiko für das Auftreten einer HSR bei Frauen jedoch um das 5-10 fache erhöht.

Entgegen manchen bisherigen Untersuchungen zeigt sich im Bonner Kollektiv kein Einfluss der CD4+- oder CD-8-Zellzahlen auf das Auftreten einer HSR. Ebenso wie in vorhergehenden Analysen kann kein Zusammenhang zu Viruslast oder Patientenalter festgestellt werden. ART-Erfahrung und ein noch weitgehend intaktes Immunsystem scheinen das HSR-Risiko tendenziell zu erhöhen, das Signifikanzniveau liegt jedoch deutlich unter dem geforderten Wert.

Bei 203 Patienten des Bonner Gesamtkollektivs wurde der HLA-B-Status erhoben. Die Prävalenz von HLA-B57 liegt mit 9,4% des Gesamtkollektivs (und 10,3% der Bonner kaukasischer Abstammung) noch über der durchschnittlichen HLA-B57-Prävalenz unter Kaukasiern (5-8%).

Bei Betrachtung aller Patienten waren 41,2% der Verdachtsfälle und 58,3% der wahrscheinlichen Hypersensitivitätsfälle HLA-B57-positiv. Die Sensitivität eines Screenings hätte 43,8% bzw. 63,6% betragen, die Spezifität hätte 93,6% bzw. 93,8% erreicht. Die Inzidenz der ABC-HSR wäre durch ein HLA-Screening vor Medikamenteneinsatz von 7,9% auf 4,9% bzw. von 5,4% auf 2,2% gesenkt worden. Dabei wäre 5,9% der Patienten die Abacavir-Therapie fälschlicherweise verwehrt worden. Trotz der im Vergleich zu manchen vorhergehenden Veröffentlichungen geringeren Sensitivität des Screenings im Bonner Kollektiv hätte es das Auftreten von Hypersensitivitätsreaktionen halbiert. In Anbetracht der potenziell lebensbedrohlichen Symptomatik ist der Benefit eines Screenings vor Einsatz von Abacavir in Populationen mit einem signifikanten Anteil HLA-B57-positiver Patienten nicht zu bestreiten. Dies wird durch die Entwicklung kostengünstiger und weit zu verbreitender Screeningverfahren unterstützt.
Abacavir-associated drug hypersensitivity is strongly associated with the human leukocyte antigen B-57 allele

N Tesch, M Vogel, JC Wasmuth, M Schulz, E Althausen, JK Rockstroh
Department of Medicine I, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany

Introduction
Abacavir (ABC) is a potent nucleoside analogue reverse transcriptase inhibitor of HIV-1 replication.
In approximately 8% of recipients abacavir therapy is associated with significant drug hypersensitivity. The hypersensitivity reaction (HSR) usually occurs within the first 6 weeks after initiation and is characterized by a systemic reaction. Symptoms tend to increase with each successive dose and the potentially life-threatening ABC-HSR recurs rapidly on rechallenge.
Genetic factors such as the HLA-B-57 allele are believed to confer susceptibility by influencing the immune response to the drug.

Objectives
In a retrospective study we tried to assess the association between the HLA-B-57 allele and the emergence of a hypersensitivity reaction (HSR) under abacavir treatment in the Bonn HIV-cohort.

Methods
• All patients in the Bonn HIV-cohort who received ABC were assessed with regard to treatment outcomes and adverse event development under newly initiated ABC therapy.
• A distinction had to be made between HSR initially documented as possible termination reason and probable HSR defined by the following clinical criteria:
 1) an anaphylactic reaction or b) ≥ 2 symptoms from the following groups: rash, fever, constitutional symptoms, gastrointestinal symptoms, or respiratory symptoms
 2) occurrence within the first 6 weeks of treatment
 3) no symptom resolution on continued therapy
 4) resolution within 72 hours after treatment discontinuation
 5) no diagnosis of an alternative cause
 6) no negative rechallenge
• In addition, HLA-B-57 status was determined, no further distinction between HLA-B-5701, 5702 or 5703 was made. As a limitation, skin patch testing to confirm ABC-HSR was not available in this retrospective analysis.

Results
6.4% (n=267) of ABC treated patients had a possible HSR

54.5% of the HLA-B57 typed patients with a possible HSR were HLA-B-57 (+)

• 267 patients received an episode of abacavir treatment. 132 were HLA-typed.
• Treatment termination occurred in 20 (7.5%) patients within the first 6 weeks.
• 17 (6.4%) were documented as possible HSR with 11 being typed. 6 of 11 (54.5%) had presence of HLA-B-57.
• Within the group of patients with a diagnosis of possible HSR, 12 (4.5%) including all 6 HLA-B-57 positive patients were fulfilling the criteria for probable HSR.
• Five of 17 (29.4%) patients with documented possible HSR had a negative HLA-B-57. Although HSR was documented as the termination reason, HSR criteria were not met in 3 patients. Therefore HSR appears unlikely to have occurred in these patients.
• No HSR under ABC was noted in 5 HLA-B-57 positive patients (1.9% of the ABC treated patients).

Conclusions
• Overall we found a striking association between the presence of HLA-B-57 and the occurrence of ABC-related HSR.
• The lower sensitivity of HLA-B-57 for predicting hypersensitivity in the Bonn cohort in comparison to previous studies may partly be explained by differences in study design, such as the smaller typed sample number in our study and its retrospective nature. It may also represent true population differences and external factors influencing the occurrence of a HSR.
• The definition of HSR still remains a clinical challenge. However, prospective screening of HLA-B-57 may be helpful to reduce the number of ABC-associated HSRs.

Acknowledgements
We would like to thank Melanie Neuhaus and Anit Muller from the immunology ambulance, GlaxoSmithKline for supporting the poster presentation and all our patients for their cooperation.

Poster, wie es auf dem 8th International Congress on Drug Therapy in HIV Infection in Glasgow 2006 präsentiert wurde
Literaturverzeichnis

Anderson JA, Adkinson NF Jr. Allergic reactions to drugs and biologic agents. JAMA 1987; 258: 2891-2899

Brinkman K, Smeitink JA, Romijn JA, Reiss P. Mitochondrial toxicity induced by nucleoside-analogue reverse-transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral-therapy-related lipodystrophy. Lancet 1999; 354: 1112-1115

Cao K, Hollenbach J, Shi X, Shi W, Chopek M, Fernández-Viña MA. Analysis of the frequencies of HLA-A, B, and C alleles and haplotypes in the five major ethnic groups of the United States reveals high levels of diversity in these loci and contrasting distribution patterns in these populations. Hum Immunol 2001; 62: 1009-1030

Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 1984; 312: 763-767

deShazo RD, Kemp SF. Allergic reactions to drugs and biologic agents. JAMA 1997; 278: 1895-1906

Deutsch-Österreichische Leitlinien zur antiretroviralen Therapie der HIV-Infektion. (Stand Juni 2005).
http://www.rki.de/cln_048/nn_196070/DE/Content/InfAZ/H/HIVAIDS/Therapie/Leitlinien/D__A__antiretroviral__06__05.html

El Sahly HM. Development of abacavir hypersensitivity reaction after rechallenge in a previously asymptomatic patient. AIDS 2004; 18: 359-360

Escaut L, Liotier JY, Albengres E, Cheminot N, Vittecoq D. Abacavir rechallenge has to be avoided in case of hypersensitivity reaction. AIDS 1999; 13: 1419-1420

Hetherington S. Understanding drug hypersensitivity: what to look for when prescribing abacavir. AIDS Read 2001b; 11: 620-622

Hughes AR, Mosteller M, Bansal AT, Davies K, Haneline SA, Lai EH, Nangle K, Scott T, Spreen WR, Warren LL, Roses AD; CNA30027 Study Team; CNA30032 Study Team. Association of genetic variations in HLA-B region with hypersensitivity to abacavir in some, but not all, populations. Pharmacogenomics 2004a; 5: 203-211

Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir. Antimicrob Agents Chemother 1997; 41: 654-660

cell helper function and reduced cytolytic activity in human immunodeficiency virus type 1 infection. J Exp Med 1994; 180: 489-495

Martin AM, Nolan D, Mallal S. HLA-B*5701 typing by sequence-specific amplification: validation and comparison with sequence-based typing. Tissue Antigens 2005; 65: 571-574

Martin A, Nolan D, Almeida CA, Rauch A, Mallal S. Predicting and diagnosing abacavir and nevirapine drug hypersensitivity: from bedside to bench and back again. Pharmacogenomics 2006a; 7: 15-23

Moyle G. The emerging roles of non-nucleoside reverse transcriptase inhibitors in antiretroviral therapy. Drugs 2001; 61: 19-26

Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 1987; 155: 335-350

Nolan D, Gaudieri S, Mallal S. Pharmacogenetics: a practical role in predicting antiretroviral drug toxicity? J HIV Ther 2003a; 8: 36-41

Nolan D. Metabolic complications associated with HIV protease inhibitor therapy. Drugs 2003b; 63: 2555-2574

Park BK, Naisbitt DJ, Gordon SF, Kitteringham NR, Pirmohamed M. Metabolic activation in drug allergies. Toxicology 2001; 158: 11-23

Pirmohamed M, Naisbitt DJ, Gordon F, Park BK. The danger hypothesis--potential role in idiosyncratic drug reactions. Toxicology 2002; 181-182: 55-63

Ravitch JR, Bryant BJ, Reese MJ, Boehlert CC, Walsh JS, McDowell JP, Sadler BM. In vivo and in vitro studies of the potential for drug interactions involving the anti-retroviral 1592 in humans. 5th Conference on Retroviruses and Opportunistic Infections 1998; Abstract 634: P 199

Sankatsing SU, Prins JM. Agranulocytosis and fever seven weeks after starting abacavir. AIDS 2001; 15: 2464-2465

Schuitemaker H, Koot M, Kootstra NA, Derksen MW, de Goede RE, van Steenwijk RP, Lange JM, Schattenkerk JK, Miedema F, Tersmette M. Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of

Vittinghoff E, Douglas J, Judson F, McKirnan D, MacQueen K, Buchbinder SP. Per-contact risk of human immunodeficiency virus transmission between male sexual partners. Am J Epidemiol 1999; 150: 306-311

Danksagung

Ganz herzlich danken möchte ich

- Prof. Jürgen Rockstroh für die Überlassung des Themas, für die konstruktive Kritik bei der Planung, der Durchführung und der Korrektur dieser Arbeit und nicht zuletzt für die Ermöglichung des Kongressbesuches in Glasgow
- allen MitarbeiterInnen der Immunologischen Ambulanz für ihre ausgesprochene Freundlichkeit und Hilfsbereitschaft
- insbesondere Monika Schulz für die HLA-Typisierungen sowie Arite Eicker und Melanie Neuhaus für ihre Hilfe beim Aktensuchen, für Kaffee und Kuchen und die stets aufmunternden Worte
- Christian Höppner für zahlreiche hilfreiche Anregungen und die Unterstützung im Kampf mit der Software
- meinen Eltern für die langjährige Unterstützung, insbesondere meiner Mutter für das unermüdliche Korrekturlesen