Hinweis zum Urheberrecht | Allgemeine Informationen | FAQ
Beim Zitieren dieses Dokumentes beziehen Sie sich bitte immer auf folgende URN: urn:nbn:de:hbz:5N-15711

Mathematisch-Naturwissenschaftliche Fakultät - Jahrgang 2008

 

Titel

Algorithmic Analysis of Complex Audio Scenes

Autor

Rolf Bardeli

Publikationsform

Dissertation

Zusammenfassung

In dieser Arbeit untersuchen wir das Problem der Analyse komplexer Audioszenen mit besonderem Augenmerk auf natürliche Audioszenen. Eine der treibenden Zielsetzungen hinter dieser Arbeit ist es Werkzeuge zu entwickeln, die es erlauben ein auf Lautäußerungen basierendes Monitoring von Tierarten in Zielregionen durchzuführen. Diese Aufgabenstellung, die häufig in der Evaluation von Naturschutzmaßnahmen auftritt, führt zu einer Anzahl von Unterproblemen innerhalb der Audioszenen-Analyse. Eine wichtige Voraussetzung um Mustererkennungs-Algorithmen für Tierstimmen entwickeln zu können, ist die Verfügbarkeit großer Sammlungen von Aufnahmen von Tierstimmen. Eine solche Sammlung aufzubauen liegt jenseits der Möglichkeiten eines einzelnen Forschers und wir verwenden daher Daten des Tierstimmenarchivs der Humboldt Universität Berlin. Obwohl eine große Anzahl gut annotierter Aufnahmen in diesem Archiv in digitaler Form vorlagen, gab es nur wenig unterstützende Infrastruktur um diese Daten durchsuchen und verteilen zu können. Wir beschreiben eine verteilte Infrastruktur, mit deren Hilfe es möglich ist Tierstimmen-Sammlungen zu durchsuchen, sowie gemeinsam zu verwenden und zu annotieren, die wir in diesem Kontext entwickelt haben. weiter...

Abstract

In this thesis, we examine the problem of algorithmic analysis of complex audio scenes with a special emphasis on natural audio scenes. One of the driving goals behind this work is to develop tools for monitoring the presence of animals in areas of interest based on their vocalisations. This task, which often occurs in the evaluation of nature conservation measures, leads to a number of subproblems in audio scene analysis.
In order to develop and evaluate pattern recognition algorithms for animal sounds, a representative collection of such sounds is necessary. Building such a collection is beyond the scope of a single researcher and we therefore use data from the Animal Sound Archive of the Humboldt University of Berlin. Although a large portion of well annotated recordings from this archive has been available in digital form, little infrastructure for searching and sharing this data has been available. We describe a distributed infrastructure for searching, sharing and annotating animal sound collections collaboratively, which we have developed in this context. more...

Komplette Version

Hier können Sie den Adobe Acrobat Reader downloaden pdf-Dokument (3,5 MB)

© Universitäts- und Landesbibliothek Bonn | Veröffentlicht: 2008