# Table of Contents

Abstract ........................................................................................................................................... ii
Kurzfassung ...................................................................................................................................... iv
Résumé ................................................................................................................................................ vi
Acknowledgements .......................................................................................................................... viii
Table of Contents ............................................................................................................................ ix
List of Figures ................................................................................................................................... xi
List of Tables .................................................................................................................................... xvi
List of Equations ............................................................................................................................. xviii
Annex (on CD) ................................................................................................................................. xix

Abbreviations ...................................................................................................................................... xx

1. Introduction ....................................................................................................................................... 1
   1.1 General overview ..................................................................................................................... 1
   1.2 Motivation and objective of the study ................................................................................ 3
   1.3 State of research on the fractured basement of Benin ....................................................... 4

2. Materials and methods ..................................................................................................................... 7
   2.1 Mapping and imagery ........................................................................................................... 7
      2.1.1 Geological and hydrogeological map ........................................................................ 7
      2.1.2 Digital elevation model and satellite images ............................................................ 8
   2.2 Borehole data base (Base des données intégrées – BDI) ................................................... 10
   2.3 Piezometry .......................................................................................................................... 11
   2.4 Sampling campaigns and sampling procedure .................................................................. 15
      2.4.1 Field campaigns .......................................................................................................... 15
      2.4.2 Physico-chemical parameters ...................................................................................... 17
      2.4.3 Hydrochemical parameters .......................................................................................... 17
   2.5 Environmental isotope analysis .......................................................................................... 19
      2.5.1 Deuterium and oxygen-18 .......................................................................................... 19
      2.5.2 Tritium .......................................................................................................................... 21
      2.5.3 Sampling and Analysis .................................................................................................. 22
   2.6 Regionalisation through geostatistical methods ................................................................. 23
   2.7 Groundwater flow model .................................................................................................... 24
      2.7.1 General concepts of numerical modelling ................................................................. 24
      2.7.2 Modelling standards of FEFLOW® ......................................................................... 26

3. Case study: The Upper Ouémé river catchment ........................................................................... 28
   3.1 Overall geography ................................................................................................................. 28
   3.2 Water policy ......................................................................................................................... 29
   3.3 Climate .................................................................................................................................... 30
   3.4 Geomorphology and hydrography ....................................................................................... 33
   3.5 Vegetation ............................................................................................................................. 38
   3.6 Geology ................................................................................................................................... 40
      3.6.1 Regional Geology ........................................................................................................ 40
      3.6.2 Geology of the study area ........................................................................................... 45
      3.6.3 Regolith formation ...................................................................................................... 47
   3.7 Hydrogeology ....................................................................................................................... 51
      3.7.1 Bedrock aquifer .......................................................................................................... 51
      3.7.2 Regolith aquifer .......................................................................................................... 55

4. Piezometry ....................................................................................................................................... 58
   4.1 Data logger time series ........................................................................................................... 58
   4.2 Regionalisation of piezometric data ..................................................................................... 68
# Table of Contents

5. **Hydrochemistry** ......................................................................................................................73
   5.1 Physico-chemical characteristics ......................................................................................73
   5.1.1 Temperature ..................................................................................................................73
   5.1.2 pH ................................................................................................................................73
   5.1.3 Electrical conductivity ..................................................................................................75
   5.1.4 Redox potential ............................................................................................................77
   5.1.5 Oxygen .........................................................................................................................79
   5.2 Hydrochemical parameters ...............................................................................................80
   5.2.1 Distinction of hydrochemical groups ...........................................................................80
   5.2.2 Hydrochemical characteristics of the groundwater in the HVO ..................................83
   5.2.3 Discussion of group 3 – the southern province ...............................................................87
   5.3 Seasonal variations ............................................................................................................91
   5.4 Groundwater quality .........................................................................................................98
   5.4.1 Physico-chemical quality ..............................................................................................98
   5.4.2 Fluoride .........................................................................................................................98
   5.4.2.1 Geological sources ..................................................................................................98
   5.4.2.2 Fluoride in the study area .......................................................................................99
   5.4.3 Nitrate and Nitrite .........................................................................................................100
   5.4.3.1 Nitrogen compounds in the environment ..............................................................100
   5.4.3.2 Nitrate in the study area .......................................................................................101
   5.4.4 Heavy metals ...............................................................................................................104
   5.4.5 Sodium adsorption ratio (SAR) ..................................................................................105

6. **Environmental isotopes** ......................................................................................................107
   6.1 Stable isotopes in precipitation and surface water ............................................................107
   6.2 Stable isotopes in Groundwater .......................................................................................108
   6.3 Tritium data from the HVO .............................................................................................110
   6.4 Tritium age determination of groundwater in the HVO ....................................................111

7. **Conceptual hydrogeological model** ....................................................................................115

8. **Groundwater flow model** ....................................................................................................118
   8.1 Objectives of the model ....................................................................................................118
   8.2 Model geometry ...............................................................................................................118
   8.3 Boundary Conditions .......................................................................................................119
   8.4 Hydraulic parameters .......................................................................................................122
   8.5 Integration of scenario information ..................................................................................123
   8.5.1 Climate scenarios .......................................................................................................123
   8.5.2 Socio-economic scenarios .........................................................................................124
   8.5.3 Recharge .....................................................................................................................124
   8.5.4 Water use ....................................................................................................................126
   8.6 Stationary model .............................................................................................................129
   8.7 Transient models .............................................................................................................132
   8.7.1 Scenario model A1B ..................................................................................................132
   8.7.2 Scenario model B1 .....................................................................................................134
   8.7.3 Model comparison ......................................................................................................136
   8.8 Uncertainties and constraints .........................................................................................138

9. **Conclusions** .........................................................................................................................140

10. **Recommendations and outlook** ......................................................................................142

References ........................................................................................................................................143
List of Figures

Fig. 1.1:  Situation of the IMPETUS project areas in West Africa (modified from IMPETUS 2003; World geographical projection, WGS 84). Project area A: Ouémé river catchment; Project area B: Wadi Drâa. ............................................................... 1

Fig. 1.2:  Precipitation variability in West Africa for the period June – September 1950–2002 (from IMPETUS 2003). ................................................................................................................................. 2

Fig. 1.3:  Fields of investigation of the IMPETUS subprojects and their interaction (IMPETUS 2003). .................................................................................................................................................. 3

Fig. 2.1:  Distribution of all geological map sheets covering Benin (Projection: UTM, Zone 31P, WGS 84). For reference: Latin numbers represent the sheet's name. ................................. 7

Fig. 2.2:  Coverage of Benin by hydrogeological maps (Projection: UTM, Zone 31P, WGS 84). For reference: Latin numbers represent the sheet's name. ................................................................. 8

Fig. 2.3:  Coverage of Benin by Landsat imagery. The coverage of the HVO area demands a mosaic of Landsat scenes 192/53 and 192/54. (from JUDEX 2003). ................................. 9

Fig. 2.4:  Locations of the installed divers in and around the HVO (Projection: UTM, Zone 31P, WGS 84). ............................................................................................................................... 11

Fig. 2.5:  Installation of the automatic data loggers in observation wells (photo a) and footpumps (photo b) with authorisation by the villagers and in cooperation with the technical staff of the beninese water ministry. ....................................................................................................................... 12

Fig. 2.6:  Distribution of the sampling locations in the HVO (Projection: UTM, Zone 31P, WGS 84). For the corresponding abbreviations see Annex 1. ................................................................. 16

Fig. 2.7:  Examples of the relationship between $\delta^2$H and $\delta^{18}$O in meteoric water, evaporating water and water in interactions with rock (taken from COOK and HERCZEG 2000). ....... 20

Fig. 2.8:  Slope of the radioactive decay curve of Tritium (from KENDALL and MCDONNELL 1998). ................................................................................................................................................................. 21

Fig. 2.9:  Some types of elements, based on the finite difference concept and the finite element concept (from ANDERSON and WOESSNER 1994). ................................................................. 25

Fig. 2.10:  The typical triangular element e. Each node is labelled (i, j, m) counter-clockwise and has its own x, y-coordinates marked by the specific footnote (modified from WANG and ANDERSON 1982). ......................................................................................................... 25

Fig. 3.1:  Overview Benin – Extension of the Ouémé catchment and location of the Upper Ouémé catchment (modified from IMPETUS map pool; Projection: UTM, Zone 31P, WGS 84). ........................................................................................................ 29

Fig. 3.2:  Climate chart of Parakou. Data from 1961 to 2005 (with the permission of M. Gosset, IRD 2007). Long-term average amount of precipitation: 1147 mm. Average temperature: 27.1 °C. Black solid line = maximum temperatures; black dashed line = minimum temperatures.................................................................................................................. 31

Fig. 3.3:  1- During the boreal winter less intense solar rays reach West Africa. This causes a weak thermal contrast. While the ocean is heated by relatively hot currents humidifying the air above the ocean, the continent suffers under the dry Harmattan. 2- In June the sun heats up the continent while a cold ocean current hits the coast. The heated air above the continent mounts and draws in colder and humid air from the sea. This is the beginning of the monsoon. 3- One month later the condensation of the vapour, caused by the first rainfalls, liberates considerable amounts of energy. Thus the air gets heated up and rises. Meanwhile the soil is cooling. Storms occur and form squall lines of considerable length (modified from JUBELIN 2006). ............................................................................................................................................................... 31

Fig. 3.4:  Rainfall distribution modelled for different decades. Yearly precipitation in the HVO varies from 1100 to 1300 mm/a. The North is in general slightly drier than the South (taken from M. Diederich, IMPETUS 2006). ........................................................................................................ 32
Fig. 3.5: Comparison of historical precipitation measurements with observations in 2006 for the two gauging stations (ASECNA) at Parakou and Djougou. The measured daily precipitation is accumulated over the year. Data ranges from 1950 to 2006 (with permission of M. Gosset, IRD 2007). .................................................................33

Fig. 3.6: Perspective view on the DEM of the HVO. Z-level is 20 times exaggerated (horizontal scale 1:10.000; vertical scale 1:500). The morphologic valleys contain seasonal rivers. (Projection: UTM, Zone 31P, WGS 84). Cross sections A-A’ and B-B’ are traced by black lines are represented in Fig. 3.7. .................................................................34

Fig. 3.7: Cross sections A-A’ and B-B’, as shown in Fig. 3.6. The z-level is 50 times exaggerated. .................................................................34

Fig. 3.8: Inselberg of Wari-Maro (620 m asl) at UTM 407864/1013209. .................................................................35

Fig. 3.9: Schematic transect of a bas-fond to show the distribution of dominant clay minerals. B.H. = Borehole (taken from McFarlane 1987a). .................................................................35

Fig. 3.10: Riverbed of the Ouémé in the northern half of the HVO during the dry season (UTM 407864/1013209). .................................................................36

Fig. 3.11: Hydrographic net of the rivers in the HVO catchment. The striking of the Kandi fault has a strong impact on the course of rivers in the East of the HVO. (Projection: UTM, Zone 31P, WGS 84). .................................................................37

Fig. 3.12: a) The water course is controlled by fractures (“en baionette”). b) Sinuosity depends on morphological features and not on fractures (from Cefigre 1990). .................................................................38

Fig. 3.13: NDVI of Landsat images for the HVO area (period: October 2000). White reflection signifies dense vegetation. .................................................................39

Fig. 3.14: A tamarinde tree in the Atacora mountain area. If a second tree is found, there might be high probability to track a fracture along the connecting between the two trees. .....40

Fig. 3.15: Generalised and simplified map of the main part of the eastern domain of the Pan African of West Africa. Younger igneous rocks are not shown (Geographic projection, WGS 1984; modified from Wright et al. 1985). .................................................................42

Fig. 3.16: Schematic cross section (not to scale) to illustrate a possible plate tectonic interpretation for the southern part of the eastern Pan African domain in West Africa (from Wright et al. 1985). .................................................................43

Fig. 3.17: Generalised map to show the extent of correlation between the Precambrian Tuareg shield of the Hoggar and the eastern Pan African domain in the southern part of West Africa (not to scale, from Wright et al. 1985). .................................................................44

Fig. 3.18: Kinematics of thrusting and wrench faulting in the Pan-African and Brazilian belts of Ghana, Togo and Benin and North eastern Brazil. Legend: 1 = Mesozoic-Cenozoic; 2 = West African craton covered by the Volta Basin; 3 = Pan-African and Brasiliano belts, 4 = external nappes (1), intermediate nappes (2), internal nappes (3); 5 = thermobarometric studies: sampling location in the external nappes (A, B), in the intermediate nappes (C, D) and in the internal nappes (E); 6 = thrust; 7 = dextral transcurrent shear zone; 8 = direction of nappe transport (modified from Brito Neves et al. 2001). .................................................................44

Fig. 3.19: Geological map of the Upper Ouémé catchment. Modified after Obemines 1984, 1990 and 1990a (Projection: UTM, Zone 31P, WGS 84). Settlements were chosen for reference. .................................................................46

Fig. 3.20: Conceptual hydrogeological model of the crystalline basement aquifers in Africa (modified from Chilton and Foster 1993). .................................................................47

Fig. 3.21: Weathering under different constellations of fractures (from Engaïenc 1978). .................48

Fig. 3.22: A saprolite profile outcropping at an eroded river valley next to the Okpara barrage. Sites A, B and C are less than 10 m distant from each another (East of Parakou; UTM 470614/1026203). .................................................................50
Table of Contents

Fig. 3.23: Pisolith at the Okpara dam. Pisolitic iron grains can be identified on the close-up on the right (East of Parakou; UTM 470614/1026203). .................................................................50

Fig. 3.24: Percentual distribution of the depth (in a 5 m interval) of encountered water inflow into borewells in the crystalline area of Benin (Data from SOGREAH and SCET 1999). .................................................................52

Fig. 3.25: Distribution of lognormal kf values in the bedrock aquifer and the limits of the kf zones achieved from the BDI data (Projection: UTM, Zone 31P, WGS 84). .................................53

Fig. 3.26: The theoretical relative distribution of recharge, interflow and runoff in the centre and the periphery of bas-fonds (dambos) and at the interfluves (from McFarlane 1987a). The occurrence of smectitic deposits is marked by the black layer. ..............................57

Fig. 4.1: Groundwater head time series of the HVO data loggers. The data sets are filtered. Only the measurements at 5 am are shown. ........................................................................59

Fig. 4.2: Groundwater head time series of the HVO data loggers (continued). The data sets are filtered. Only the measurements at 5 am are shown. ..............................................................60

Fig. 4.3: The enlarged view on the groundwater hydrograph of HVO-3 (unfiltered) for two different dates in 2004. The view at the top shows the daily fluctuations of the groundwater table in the dry season, the screenshot at the bottom respectively the rainy season. ........................................................................61

Fig. 4.4: Comparison of rainfall, runoff and groundwater levels at Bétérou (HVO-9) for the year 2004. The data set is filtered for 5:00 am measurements only. ........................................62

Fig. 4.5: Comparison of rainfall, runoff and groundwater levels at Tchétou (HVO-9 for the year 2004). The data set is filtered for 5:00 am measurements only........................................63

Fig. 4.6: Comparison of rainfall, runoff and groundwater levels at Dogué (HVO-12) for the year 2004. The data set is filtered for 5:00 am measurements only........................................63

Fig. 4.7: Average trend equation XT for the 6 data logger time series with an approved statistical relevance. ........................................................................................................67

Fig. 4.8: Regional distribution of all manual and automatic piezometric measurements realised in the vicinity of the study area (Projection: UTM, Zone 31P, WGS 84). ............................69

Fig. 4.9: The groundwater levels during the rainy season are generally higher as in the dry season 2004 (Projection: UTM, Zone 31P, WGS 84). ..............................................................70

Fig. 4.10: Distribution of the groundwater differences in 2005 (Projection: UTM, Zone 31P, WGS 84). ..........................................................................................................................70

Fig. 4.11: Exemplary interpolation of manually made groundwater measurements. The data was interpolated and then subtracted from the DEM ........................................................................71

Fig. 4.12: Difference between the two dry seasons of the years 2004 and 2005 (Projection: UTM, Zone 31P, WGS 84). ........................................................................................................72

Fig. 5.1: Determination of correlation between air and water temperature. .................................................................73

Fig. 5.2: pH data of boreholes (a) and dug wells (b) presented respectively in histograms. ............................74

Fig. 5.3: Plot of pH and bicarbonate from all sample campaigns. Curves show the pH-bicarbonate relationship for partial pressures of CO₂ in the atmosphere (10⁻³.₅) and for the soil zone (2 examples: 10⁻¹.₅ and 10⁻².₀). ......................................................................75

Fig. 5.4: EC data of boreholes (a) and dug wells (b) presented respectively in histograms. .............................75

Fig. 5.5: Regionalised EC data for the (a) bedrock aquifer and for the (b) regolith aquifer (Projection: UTM, Zone 31P, WGS 84). ........................................................................................................76

Fig. 5.6: Kriging of EC measurements made on borewells after completion of the drilling phase (Source: BDI) (Projection: UTM, Zone 31P, WGS 84). ..............................................................77

Fig. 5.7: The oxygen content plotted against the redox potential. ............................................................................78

Fig. 5.8: Redox potential and pe range encountered in natural systems at near-neutral pH (modified from SIGG 1999). ........................................................................................................78

Fig. 5.9: Rang distribution in percent of all electric conductivity measurements for dug wells and borewells made in the field during the period of 2004 to 2006. ........................................80
Table of Contents

Fig. 5.10: The distribution of all hydrochemical groups in the study area (Projection: UTM, Zone 31P, WGS 84). .................................................................81
Fig. 5.11: Whisker-Box-Plot for the electric conductivity measured from dug wells and borewells..................................................................................83
Fig. 5.12: Piper plot of all three hydrochemical groups in the HVO.................................................................84
Fig. 5.13: Schoeller diagram of the median group composition. ..............................................................................85
Fig. 5.14: Change of the aluminium concentration in relation to pH with increasing depth (with the kind permission of Luc Séguis, IRD 2007) at Nalohou test site (UTM 347124/1077311). Site description: 3 boreholes with different filter depths at 2 m, 10 m and 20 m. ..............................................................................85
Fig. 5.15: a) Plot of silicon against chloride and b) plot of silicon against calcium .........................................................86
Fig. 5.16: Scatter diagrams of sodium against chloride (a) and against calcium (b). ...................................................87
Fig. 5.17: Interpolation of regolith thickness from BDI data (Projection: UTM, Zone 31P, WGS 84). Kriging was done with an exponential variogram. .....................................................88
Fig. 5.18: The stability diagram for albite and its weathering products kaolinite and Na-Montmorillonite. .................................89
Fig. 5.19: Changes in the kaolinite-montmorillonite reaction quotient for the hydrochemical groundwater groups in the HVO (modified after GARRELS 1967). ....................................................90
Fig. 5.20: Correlation diagram of sulphate against chloride. The dashed line represents a 1:1 relationship for both constituents .....................................................................................90
Fig. 5.21: Plot of all groundwater samples (grey and black crosses) in Gibb’s diagram. Samples discussed in the text are marked with black crosses. Arrows show the relative position of different samples from the same location. Circles embrace samples of the same sampling point or equal habits. The wells with strong precipitation signature are found in Tab. 5.8. ..................................................................................91
Fig. 5.22: Hydrochemical facies of different points in the HVO represented in Schoeller diagrams. The diagrams combine the seasonal samples from all points within the vicinity of a village (with exception of the village of Dogué, because of visibility). The villages are in alphabetical order. ..................................................................................94
Fig. 5.23: (continued) Hydrochemical facies of different points in the HVO represented in Schoeller diagrams. The diagrams combine the seasonal samples from all points within the vicinity of a village (with exception of the village of Dogué, because of visibility). The villages are in alphabetical order. .................................................................95
Fig. 5.24: (continued) Hydrochemical facies of different points in the HVO represented in Schoeller diagrams. The diagrams combine the seasonal samples from all points within the vicinity of a village (with exception of the village of Dogué, because of visibility). The villages are in alphabetical order. ..................................................................................96
Fig. 5.25: (continued) Hydrochemical facies of different points in the HVO represented in Schoeller diagrams. The diagrams combine the seasonal samples from all points within the vicinity of a village (with exception of the village of Dogué, because of visibility). The villages are in alphabetical order. ..................................................................................97
Fig. 5.26: Stability phases of nitrogen compounds in a pe/pH diagram (N-O-H system). The samples are plotted for each season respectively. .................................................................101
Fig. 5.27: Correlation of chloride against nitrate (after BARRETT et al. 2000). .................................................................102
Fig. 5.28: Nitrogen and oxygen isotopes of nitrate in groundwater samples from the Collines department in Benin, rainy season 2003 (taken from CRANE 2006). The source composition is from ROCK and MAYER (2002). The trend line has a slope of ~0.5, indicative of behaviour consistent with denitrification. All 11 samples were taken from open dug wells. ..................................................................................102
Fig. 5.29: Evolution of nitrate concentrations in groundwater from W-BDOG-1 and W-BDOG-2 in Dogué from 2001 – 2006. Data from 2001 to 2002 was collected by FASS (2004). No field campaign in 2003 .................................................................103

Fig. 5.30: Groundwater classification for the HVO for all sampled seasons. Grey triangles = dug wells; black crosses = borewells. .................................................................106

Fig. 6.1: a) Comparison of GNIP data (Kano-Nigeria = light grey x / Niamey-Niger = grey +) with the HVO rainfall data (black rhombus). The global meteoric water line (GMWL as gray dashed line) is calculated by Craig’s notation (Eq. 6.1). b) Groundwater analyses (grey +) are shown in relation to the GMWL. Analyses from surface waters (grey x) are grouped around an evaporation line (light gray dashed line)......107

Fig. 6.2: left) Dry season 2004: Isotope relationships for groundwater samples from wells (circles=regolith) and pumps (triangles=bedrock). right) Rainy season 2004: Isotope relationships for groundwater samples from wells (circles=regolith) and pumps (triangles=bedrock). The letters (a) to (h) signify a choice of samples from the same locations. .......................................................................................................................108

Fig. 6.3: left) Comparison of groundwater samples from the dry season 2002 (black x, FASS 2004) and from the dry season 2004 (grey +). right) Comparison of groundwater samples from the rainy season 2002 (black x, FASS 2004) and from the rainy season 2004 (grey +) .................................................................109

Fig. 6.4: D-excess measured from precipitation samples at the village of Dogué in the years 2002 and 2004. In 2003 no sampling took place. Horizontal lines = dry season; vertical lines = rainy season. ....................................................................................................................109

Fig. 6.5: Seasonal fluctuations of TU in precipitation measured at different stations of the GNIP database (IAEA/WMO 2001) with an enlarged view for the years 1970 to 2000..............................................................................................................................110

Fig. 6.6: a) Distribution of tritium in relation to the sample depth. b) Drawdown of the groundwater level in fractures causes seepage from the regolith aquifer above and thus mixture of younger with older water............................................................112

Fig. 7.1: Conceptual model of the regional hydrogeology (modified from DANIEL et al. 1997; not scaled; vertically exaggerated). Effective recharge takes place at tophill – discharge downhill. The groundwater table (blue) is set in the regolith. Groundwater in the saturated zone flows towards local morphological depressions. Flow in the bedrock is limited to the fracture zones.................................................................115

Fig. 7.2: Nalohou test site, Ara catchment (UTM 347124/1077311): Measurements from three boreholes of different filter depths (upper screen depth: 2 m, 10 m and 20 m; screen length: 1 m respectively). Boreholes positioned on the crest, the slope and the valley. Left – Observation of the groundwater table. Right – Measurements of the electric conductivity. Raw data received with the kind permission of L. Séguis, IRD (2007). ..........................................................................................................................116

Fig. 8.1: Presentation of the model area in a 3D sketch. Three layers, with a plane surface but a dip from the North to the South, represent the regional geology. .................119

Fig. 8.2: Distribution of the boundary conditions in the model area for the 3rd layer (bedrock). For the regolith layer the distribution is the same, but without the well boundaries (Projection: UTM, Zone 31P, WGS 84). .................................................................120

Fig. 8.3: Case A - Accordance of the hydrological and hydrogeological watershed. Case B – Shift of the hydrogeological watershed due to fracture connectivity. .................................121

Fig. 8.4: The placement of the well conditions at the bottom of the third model layer is based on the assumed filter position in drill holes. Extracted water leaves the model without any redistribution. Therefore the mesh nodes of concern in the 1st and 2nd layer are described as well conditions with 0 m³/d extraction. The nodes set
vertically above one to another will act numerically as a connected tube. Extracted water will be equilibrated by inflow from the other layers. .................................................. 121

Fig. 8.5: Average yearly recharge (unweighted) from all HRUs for each scenario A1B and B1 with trend (dashed lines) and trend equation (original recharge data from GIERTZ 2004)............................................................................................................................. 124

Fig. 8.6: Effective recharge towards the groundwater table; calculated input data for the model scenarios A1B and B1. Recharge is limited to the months of the rainy season. The model starts in the beginning of the year 2002 in the middle of the dry season. Scenario A1B shows constant recharge while B1 is characterised by a decreasing recharge. .................................................................................................... 125

Fig. 8.7: Projection of the demographic development in the HVO until 2025 for the three IMPETUS scenarios (data from U. SINGER, IMPETUS subproject A5). .................... 126

Fig. 8.8: Position of the remaining 66 villages after aggregation of the census data set from INSAE (2003). Each village presents a well condition in the model mesh (Projection: UTM, Zone 31P, WGS 84). .......................................................................................................................... 127

Fig. 8.9: Groundwater contours of the HVO model area from the stationary model with 44 mm/a recharge. Groundwater flow heads generally towards the closely lying river system. Black circles show joints of rivers with a strong drawdown motivated by numerical reasons (see text). ........................................................................................................ 129

Fig. 8.10: Standard deviation of model solutions for different recharge cases. The area between the 22 and 55 mm/a represents equally reasonable model solutions. ........ 132

Fig. 8.11: Groundwater contours of the HVO model area from the from the final time step of the A1B scenario model. Groundwater flow heads generally towards the closely lying river system. Especially around the village of Tourou (see arrow) groundwater drawdown can be observed........................................................................................................ 133

Fig. 8.12: Groundwater table differences between the final time step of model A1B and the initial conditions from the stationary model. Positive values indicate the drawdown of the groundwater table in the A1B model in relation to the initial conditions. .............................. 134

Fig. 8.13: Groundwater contours of the HVO model area from the from the final time step of the B1 scenario model. Groundwater flow heads generally towards the closely lying river system. Especially around the village of Tourou (see arrow) groundwater drawdown can be observed........................................................................................................ 135

Fig. 8.14: Groundwater table differences between the final time step of model B1 and the initial conditions from the stationary model. Positive values indicate the drawdown of the groundwater table in the B1 model in relation to the initial conditions. ............... 136

Fig. 8.15: Groundwater level differences between the final time steps of model A1B and model B1. Positive values indicate the drawdown of the groundwater table in the A1B model in relation to the initial conditions. .......................................................... 137

Fig. 8.16: Drawdown at the pumping well of Tourou (black line) and the consumption by its population (blue line). The seasonal fluctuations of water consumption can be traced by the behaviour of the modelled groundwater table. ........................................ 138

List of Tables

Tab. 2.1: Locations and status of the barometers. The barometers were not installed in the boreholes for reasons of space and prevention of disturbing influences. 12

Tab. 2.2: Locations and status of the data loggers. .......................................................... 14

Tab. 2.3: Electrode types used with the WTW data logger on-site during the field campaigns in the Upper Ouémé area. ................................................................. 17

Tab. 2.4: Sample methods and materials in an overview. .............................................. 18

Tab. 2.5: Detection limits of analysed constituents. ....................................................... 18
Table of Contents

Tab. 3.1: Typical flow net pattern in West Africa taken from CEFIGRE (1990). .......................................................... 38
Tab. 3.2: Frequency of final borehole depths for different rock types in the Upper Ouémé catchment [%]. Values of maximum percentage are drawn on grey background. (Data source: BDI). ................................................... 51
Tab. 3.3: Mean values for transmissivity and storativity in the Collines. Average calculated from 5 pumping test interpretations (taken from BOUKARI et al. 1985). ................................................... 53
Tab. 3.4: General hydrogeologic characteristics of the geological units of the Upper Ouémé catchment area (modified, from DANIEL et al. 1997). ................................................................. 54
Tab. 3.5: Thickness of the regolith in relation to the mother rock. Data is taken from the BDI. ........................................... 56
Tab. 3.6: Hydraulic conductivities of regolith aquifers. ................................................... 56
Tab. 3.7: Area of influence for pumping tests in the regolith zone (ENGALENC 1978). ........................................ 57
Tab. 4.1: Trend analyses of piezometric time series data. ................................................................. 65
Tab. 4.2: Critical values of r for the HVO divers. ................................................................. 66
Tab. 4.3: Coordinates of the IRD piezometers in the Donga catchment. ................................................... 67
Tab. 4.4: Number of manual piezometric measurements on wells realised in and around the study area during different seasons from 2004 to 2006. ................................................................. 69
Tab. 4.5: Results from the grid based recharge calculation. The volume is calculated by subtracting the grids of the interpolated manual field measurements. ................................................... 72
Tab. 5.1: Population statistics of temperature measurements. ................................................... 73
Tab. 5.2: Population statistics of redox measurements in the study area for boreholes (a+c) and wells (b+d) for the dry seasons and for the rainy seasons. ................................................... 79
Tab. 5.3: Population statistics of oxygen measurements of boreholes (left) and wells (right). ................................................... 79
Tab. 5.4: Assignment of aquifers to sample groups. ................................................................. 81
Tab. 5.5: Samples excluded from group 3 because of too high grades of contamination. ................................................... 82
Tab. 5.6: Samples excluded from group 2. ................................................................. 82
Tab. 5.7: Population statistics of the hydrochemical parameters for each group (see Annex 1). ................................................... 83
Tab. 5.8: Names of samples under strong precipitation influence. ................................................................. 92
Tab. 5.9: Impact of fluoride in drinking water on health (DISSANAYAKE 1991). ................................................... 99
Tab. 5.10: Borewells contaminated by fluoride in Benin (oral comm. L. DOVONON, DGEAU, March 2005). ................................................................. 99
Tab. 5.11: Fluoride concentrations observed at three well during the seasons from 2004 to 2006. ................................................... 100
Tab. 5.12: Limits for nitrate in drinking water in international use. It should be noted that some countries may chose other limits following their own policies. ................................................... 100
Tab. 5.13: Average mineralisation of the two regularly sampled dug wells in Dogué. ................................................... 104
Tab. 5.14: Sample locations with high salinity hazard. ................................................................. 106
Tab. 6.1: Comparison of the seasonal differences of TU-contents of groundwater samples from different sites and depths in the HVO-area. ................................................................. 111
Tab. 6.2: Mixing ratio of recently recharged water to groundwater from the regolith and the bedrock aquifer. Results from Eq. 6.2. ................................................................. 113
Tab. 6.3: Entry parameters into the user interface of the Boxmodel V2-3® (by IHW, ETH- Zurich, ZOEGLMANN et al. 2001). ................................................................. 114
Tab. 8.1: Number of nodes and elements in the model after the final refinement. ................................................... 119
Tab. 8.2: Hydraulic parameters as applied to the model layers. ................................................................. 122
Tab. 8.3: Mean values of the water consumption in l/d per capita in different types of townships in the HVO as measured from 2002 to 2003 (SCHOPP 2004). ................................................... 126
Tab. 8.4: Distributed use of the different water sources used to satisfy the general water demand based on the observations of SCHOPP (2004). ................................................................. 127
Tab. 8.5: Groundwater volume in the aquifers of the HVO. Minimum water content for both aquifers is assumed (low saturation level for one year). Recharge is ignored.
Table of Contents

Maximum water extraction from a population as projected for the year 2025 is added (Scenario B2). ................................................................. 128
Tab. 8.6: Calculation of the discharge (in mm/a) caused by pumping in the HVO area for the comparison with the regional recharge.......................................................... 128
Tab. 8.7: Total water balance of the stationary model. The well flux occurs at the 3rd layer only. ................................................................................................. 130
Tab. 8.8: Comparison of discharge and recharge in the HVO model related to their share of the HVO surface. ................................................................. 130
Tab. 8.9: Stepwise variation of recharge as input for the stationary model. For each case the error on the hydraulic heads was controlled. Minimum limit for successful computing is 1E-03 in less than 12 iteration steps (FEFLOW® default conditions, DIERSCHE 2005). .................................................................................................................. 131

List of Equations

Eq. 2.1 ............................................................................................................................. 9
Eq. 2.2 ............................................................................................................................. 18
Eq. 2.3 ............................................................................................................................. 19
Eq. 2.4 ............................................................................................................................. 19
Eq. 2.5 ............................................................................................................................. 19
Eq. 2.6 ............................................................................................................................. 19
Eq. 2.7 ............................................................................................................................. 21
Eq. 2.8 ............................................................................................................................. 24
Eq. 2.9 ............................................................................................................................. 24
Eq. 4.1 ............................................................................................................................. 64
Eq. 4.2 ............................................................................................................................. 64
Eq. 4.3 ............................................................................................................................. 64
Eq. 4.4 ............................................................................................................................. 64
Eq. 4.5 ............................................................................................................................. 64
Eq. 4.6 ............................................................................................................................. 64
Eq. 4.7 ............................................................................................................................. 64
Eq. 4.8 ............................................................................................................................. 66
Eq. 5.1 ............................................................................................................................. 74
Eq. 5.2 ............................................................................................................................. 77
Eq. 5.3 ............................................................................................................................. 78
Eq. 5.4 ............................................................................................................................. 86
Eq. 5.5 ............................................................................................................................. 87
Eq. 5.6 ............................................................................................................................. 105
Eq. 6.1 ............................................................................................................................. 107
Eq. 6.2 ............................................................................................................................. 113

Annex (on CD)

Annex 1: Hydrochemistry
A-1.1_Hydrochemistry_Dry_2004.xls ........................................................................ file
A-1.2_Hydrochemistry_Rainy_2004.xls ................................................................. file
A-1.3_Hydrochemistry_Dry_2005.xls ........................................................................ file
A-1.4_Hydrochemistry_Rainy_2005.xls ........................................................................ file
A-1.5_Hydrochemistry_Dry_2006.xls ........................................................................ file
A-1.6_Heavymetals_Rainy_2004.doc ................................................................. file
A-1.7_Heavymetals_Dry_2005.doc ........................................................................ file
A-1.8_Hydrochemistry_Surfacewater.xls ................................................................ file
Annex 2: Isotopes
A-2.1_Stable_isotopes...........................................................................................................folder
A-2.2_Tritium..........................................................................................................................folder
A-2.3_GNIP-data....................................................................................................................folder

Annex 3: Piezometry
A-3.1_5am_data_and_statistics.............................................................................................folder
A-3.2_Barometer_Data..........................................................................................................folder
A-3.3_Original_Diver_Data....................................................................................................folder

Annex 4: Borehole database
A-4.1_BDI_Original_Year_2005.mdb......................................................................................... file
A-4.2_BDI_Contents.xls............................................................................................................. file
A-4.3_BDI_official_dictionary.doc.............................................................................................. file

Annex 5: Groundwater flow model
A-5.1_Model_Data ................................................................................................................folder
A-5.2_Stationary_Models ......................................................................................................folder
A-5.3_A1B_Scenario_Model .................................................................................................folder
A-5.4_B1_Scenario_Model ...................................................................................................folder

Annex 5 contains for each folder readme.txt-files with instructions about the use of the data files in the numerical model.

Notation:

- Please mind that within this study on hand decimals are separated by ".". The separation of thousands is written with a ",".
- Symbols used in equations are explained where they appear.