Online-Überwachung der Granulateigenschaften Wassergehalt und Partikelgröße in der Wirbelschicht mit der NIR-VIS-Spektroskopie und Untersuchungen zur Porosität von Granulaten mit der Quecksilberporosimetrie

Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

von
Jörg Tonnellier
aus Saarbrücken

Bonn 2008
Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn
http://hss.ulb.uni-bonn.de/diss_online
elektronisch publiziert

Erscheinungsjahr 2008

Promotionskommission:

Prof. Dr. Klaus-Jürgen Steffens (Erstgutachter)
Priv. Doz. Dr. Hubert Rein (Zweitgutachter)
Prof. Dr. Harald Schweim
Prof. Dr. Benno Kunz

Tag des Promotionskolloquiums und der Disputation: 18. Februar 2008
A. EINLEITUNG .. 5

A.1. Teil 1: Online-Überwachung der Granulateigenschaften Wassergehalt und Partikelgröße mit der NIR-VIS-Spektroskopie in der Wirbelschicht .. 5
 A.1.1. Einleitung ... 5
 A.1.2. Stand der Technik .. 5
 A.1.3. Ziel ... 7

A.2. Teil 2: Untersuchungen zur Porosität von Granulaten ... 8
 A.2.1. Einleitung ... 8
 A.2.2. Stand der Technik .. 9
 A.2.3. Ziel ... 10

B. MATERIAL UND METHODEN ... 11

B.1. Verwendete Hilfsstoffe ... 11
 B.1.1. Laktose .. 11
 B.1.2. Mikrokristalline Cellulose ... 11
 B.1.3. Dicalciumphosphat Dihydrat .. 12
 B.1.4. Maisstärke .. 12
 B.1.5. Polyvinylpyrrolidon (PVP, Povidon) ... 12
 B.1.6. Glasgranulate .. 12

B.2. Verwendete Rezepturen ... 13
 B.2.1. Rezeptur 1 ... 13
 B.2.2. Rezeptur 3 ... 13

B.3. Wirbelschichtgranulation .. 14
 B.3.1. Einleitung ... 14
 B.3.2. Theorie ... 14
 B.3.3. Verwendetes Gerät .. 15
 B.3.4. Versuchsaufbau ... 16
 B.3.5. Durchführung der Wirbelschichtgranulation .. 17

B.4. Wassergehaltsbestimmung ... 17
 B.4.1. Einleitung ... 17
 B.4.2. Theorie ... 18
 B.4.3. Verwendetes Gerät .. 18
 B.4.4. Versuchsaufbau ... 18
 B.4.5. Durchführung der Wassergehaltsbestimmung ... 19

B.5. Partikelgrößenbestimmung ... 19
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.5.1.</td>
<td>Einleitung</td>
<td>19</td>
</tr>
<tr>
<td>B.5.2.</td>
<td>Theorie</td>
<td>19</td>
</tr>
<tr>
<td>B.5.3.</td>
<td>Verwendetes Gerät</td>
<td>19</td>
</tr>
<tr>
<td>B.5.4.</td>
<td>Versuchsanordnung</td>
<td>20</td>
</tr>
<tr>
<td>B.5.5.</td>
<td>Durchführung der Partikelgrößenbestimmung</td>
<td>20</td>
</tr>
<tr>
<td>B.6.</td>
<td>NIR-VIS-Spektroskopie</td>
<td>21</td>
</tr>
<tr>
<td>B.6.1.</td>
<td>Einleitung</td>
<td>21</td>
</tr>
<tr>
<td>B.6.2.</td>
<td>Theorie</td>
<td>21</td>
</tr>
<tr>
<td>B.6.3.</td>
<td>Verwendete Geräte</td>
<td>23</td>
</tr>
<tr>
<td>B.6.4.</td>
<td>Messanordnungen</td>
<td>24</td>
</tr>
<tr>
<td>B.6.5.</td>
<td>Durchführung der Spektrenaufnahme</td>
<td>28</td>
</tr>
<tr>
<td>B.7.</td>
<td>Normierung von NIR-Spektren</td>
<td>29</td>
</tr>
<tr>
<td>B.7.1.</td>
<td>Einleitung</td>
<td>29</td>
</tr>
<tr>
<td>B.7.2.</td>
<td>Theorie</td>
<td>29</td>
</tr>
<tr>
<td>B.7.3.</td>
<td>Durchführung der Spektrennormierung</td>
<td>30</td>
</tr>
<tr>
<td>B.8.</td>
<td>Regression von Spektrendaten und Referenzmesswerten</td>
<td>30</td>
</tr>
<tr>
<td>B.8.1.</td>
<td>Einleitung</td>
<td>30</td>
</tr>
<tr>
<td>B.8.2.</td>
<td>Theorie der Regressionsmethoden</td>
<td>31</td>
</tr>
<tr>
<td>B.8.3.</td>
<td>Durchführung der Regressionsmodellerstellung</td>
<td>32</td>
</tr>
<tr>
<td>B.9.</td>
<td>Validierung von Regressionsmodellen</td>
<td>33</td>
</tr>
<tr>
<td>B.9.1.</td>
<td>Einleitung</td>
<td>33</td>
</tr>
<tr>
<td>B.9.2.</td>
<td>Theorie</td>
<td>34</td>
</tr>
<tr>
<td>B.9.3.</td>
<td>Durchführung der Validierung von Regressionsmodellen</td>
<td>36</td>
</tr>
<tr>
<td>B.10.</td>
<td>Software Unscrambler Version 7.6 SP1</td>
<td>38</td>
</tr>
<tr>
<td>B.11.</td>
<td>Quecksilberporosimetrie</td>
<td>38</td>
</tr>
<tr>
<td>B.11.1.</td>
<td>Theorie</td>
<td>38</td>
</tr>
<tr>
<td>B.11.2.</td>
<td>Verwendetes Gerät</td>
<td>41</td>
</tr>
<tr>
<td>C.</td>
<td>ERGEBNISSE UND DISKUSSION</td>
<td>42</td>
</tr>
<tr>
<td>C.1.</td>
<td>Optimierung der NIR-VIS-Online-Messanordnung</td>
<td>42</td>
</tr>
<tr>
<td>C.1.1.</td>
<td>Einfluss der Stampfdichte</td>
<td>42</td>
</tr>
<tr>
<td>C.1.2.</td>
<td>Einfluss des Abstandes des NIR-Messkopfes zum Produkt</td>
<td>45</td>
</tr>
<tr>
<td>C.1.3.</td>
<td>Beurteilung der Spektrenreproduzierbarkeit bei Messanordnung (EBr)</td>
<td>46</td>
</tr>
<tr>
<td>C.1.4.</td>
<td>Vergleich der Spektrenreproduzierbarkeit bei den Messanordnungen (EBr, EBu, EZ)</td>
<td>48</td>
</tr>
<tr>
<td>C.1.5.</td>
<td>Vergleich der Spektrenreproduzierbarkeit bei den Messanordnungen (EZ, OMP, OOP)</td>
<td>49</td>
</tr>
</tbody>
</table>
C.2. Vorhersage des Wassergehaltes von Granulaten in der Wirbelschicht mit NIRS 51
 C.2.1. Auswahl des Wellenlängenbereichs für die Regressionsberechnungen 51
 C.2.2. Vorhersage bei Externer Messanordnung (EZ) ... 54
 C.2.3. Vorhersage bei der Online-Messanordnung (OMP) .. 67
 C.2.4. Vorhersage bei der Online-Messanordnung (OMP) .. 76
 C.2.5. Zusammenfassung: Vorhersage des Wassergehaltes .. 85

C.3. Vorhersage der Partikelgröße von Granulaten in der Wirbelschicht im
Wellenlängenbereich von 1000-1600 nm ... 87
 C.3.1. Auswahl des Wellenlängenbereichs für die Regressionsberechnungen 87
 C.3.2. Vorhersage der Partikelgröße mit der Externen-Messanordnung (EZ) 89
 C.3.3. Vorhersage der Partikelgröße bei der Online-Messanordnung (OMP) 94

C.4. Vorhersage der Partikelgröße von Granulaten in der Wirbelschicht im
Wellenlängenbereich von 400-1000 nm ... 98
 C.4.1. Auswahl des Wellenlängenbereichs für die Regressionsberechnungen 98
 C.4.2. Vorhersage der Partikelgröße im VIS bei Messanordnung (OMP) 100
 C.4.3. Vorhersage der Partikelgröße im VIS bei Messanordnung (OMP) 104
 C.4.4. Zusammenfassung: Vorhersage der Partikelgröße ... 108

C.5. Messung der Partikulären Porosität von Granulaten mit der Quecksilberporosimetrie 109
 C.5.1. Vermessung von porenfreien Glasgranulaten bei verschiedenen Partikelgrößen 109
 C.5.2. Bestimmung der Größe der Zwischenraumporen ... 113
 C.5.3. Trennung der Zwischenraumporosität von der Partikelporosität 115
 C.5.4. Zusammenfassung: Messung der partikulären Porosität von Granulaten 118

C.6. Herstellungseinflüsse auf die partikuläre Porosität von Granulaten 119
 C.6.1. Einfluss der zugegebenen Granulierflüssigkeitsmenge .. 119
 C.6.2. Einfluss der Nachgranulationszeit ... 120
 C.6.3. Einfluss der Zugabeart der Granulierflüssigkeit ... 122
 C.6.4. Einfluss der Partikelgröße .. 123
 C.6.5. Theoretische Überlegungen zum Einfluss der Partikelgröße auf die Partikelporosität 127
 C.6.6. Zusammenfassung: Herstellungseinflüsse auf die Partikelporosität von Granulaten ... 129

D. ZUSAMMENFASSUNG ... 130

D.1. Online-Überwachung der Granulateigenschaften Wassergehalt und Partikelgröße mit
der NIR-VIS-Spektroskopie in der Wirbelschicht ... 130

D.2. Untersuchungen zur Porosität von Granulaten ... 131
E. ANHANG	Abkürzungsverzeichnis	132
E.1.	Verwendete Substanzen	133
E.2.	Verwendete Geräte	134
E.3.	Abbildungsverzeichnis	136
E.4.	Tabellenverzeichnis	140
F. LITERATURVERZEICHNIS	142	
A. EINLEITUNG

A.1. TEIL 1: ONLINE-ÜBERWACHUNG DER GRANULATEIGENSCHAFTEN WASSERGEHALT UND PARTIKELGRÖßE MIT DER NIR-VIS-SPEKTROSKOPIE IN DER WIRBELSCHICHT

A.1.1. Einleitung

A.1.2. Stand der Technik

In den Wirbelschichtanlagen werden die Prozessparameter Zulufttemperatur, Ablufttemperatur, Zuluftmenge, Abluftfeuchte, Sprührate und Produkttemperatur schon heute online überwacht.
Die Produktparameter Feuchtigkeit und Partikelgröße wurden bis vor 10 Jahren fast ausschließlich durch Probenzug und externe Vermessung der Probe analysiert. Diese Vorgehensweise ist jedoch sehr umständlich und zeitintensiv.

A.1.3. Ziel
Um den Ambitionen der PAT Initiative der FDA gerecht zu werden, sollten weitere Untersuchungen zur Online-Überwachung der Granulateigenschaften Wasser gehalt und Partikelgröße in der Wirbelschicht durchgeführt werden.
Es wurden mehrere Messanordnungen (siehe Kapitel: B.6.4) miteinander verglichen. Für die Bestimmung der Partikelgröße (siehe Kapitel: B.5) wurde neben dem spektralen Bereich des NIR, auch der visuelle Wellenlängenbereich von 400-800 nm untersucht. In diesem Bereich zeigt Wasser keine Absorption und übt deshalb keinen Störe effekt auf die Spektren aus.
A.2. TEIL 2: UNTERSUCHUNGEN ZUR POROSITÄT VON GRANULATEN

A.2.1. Einleitung

Die Porosität ist definiert als prozentualer Anteil des Hohlraumvolumens einer Probe bezogen auf dessen Gesamtvolumen [7]. Damit ist die Porosität als ein Dichteparameter anzusehen.

Im Unterschied zur Dichtebestimmung an Tabletten, bei denen auf Grund der definierten geometrischen Form das Gesamtvolumen berechnet werden kann, bereitet die exakte Bestimmung des Gesamtvolumens von Schüttgütern (Granulaten) Schwierigkeiten. Der Grund liegt an den sich unterschiedlich ausbildenden Hohlräumen zwischen den Partikeln (Zwischenraumporosität, Inter-Porosität). Dieser Hohlraum wird durch Stampfungen des Granulates (Schüttvolumen, Stampfvolumen) verändert [7]. Damit ist die Zwischenraumporosität ein variabler Parameter. Ein reproduzierbarer Wert für den Zwischenraum könnte zwar durch Komprimierung des Schüttgutes bis zur maximal möglichen Verdichtung erreicht werden, scheitert aber an der Festigkeit der Granulate, die durch die mechanische Beanspruchung zerstört werden. In Abhängigkeit der Granulatmorphologie ergeben sich auch unterschiedliche Packungsichten.

Um eine sinnvolle Aussage über die Granulatporosität machen zu können, ist die Bestimmung der Hohlräume in den Partikeln von Bedeutung (Partikelporosität, Intra-Porosität). Dieser Hohlraum ist als konstante Größe zu betrachten, die sich im Gegensatz zur Zwischenraumporosität nicht durch Stampfungen verändern lässt. In der vorliegenden Arbeit wurden daher Untersuchungen zur Bestimmung der partikulären Porosität mit der Quecksilberporosimetrie durchgeführt.
Einleitung

A.2.2. Stand der Technik

Die Bestimmung der Porosität über die wahre und scheinbare Dichte (Gleichung A.2.2-1) ist nur bei geometrisch exakt definierten Festkörpern wie Tabletten oder einheitlich großen zylindrischen Pellets sinnvoll [10, 12, 17, 21].

\[
\text{Porosität(\%)} = \left(1 - \frac{\text{Scheinbare Dichte}}{\text{Wahre Dichte}}\right) \times 100\%
\]

Gleichung A.2.2-1 Berechnung der Porosität über die wahre Dichte

Da die Granulatporosität Einfluss auf die mechanische Härte von Tabletten besitzt [9], sollten die Auswirkungen unterschiedlicher Granulierungsparameter auf die partikuläre Porosität untersucht werden. Mattson und Nyström untersuchten den Einfluss der Bindemittelmenge auf die Porosität und den mittleren Porendurchmesser von Granulaten [10]. Demnach wird durch eine größere Menge an Bindemittel ein kleinerer mittlerer Porenradius und eine um 5 % verringerte Porosität erhalten werden. Berggren und Alderborn fanden heraus, dass mit Zunahme der Trocknungsrate von Cellulose-Pellets die Porosität um bis zu 5 % Porosität erhöht wird [9]. Um zu ermitteln, in welchem Ausmaß die Feuchtgranulation im Mischer Auswirkungen auf die Granulatporosität ausübt, wurden weitere Versuche im Mischgranulierer durchgeführt.

A.2.3. Ziel

B. MATERIAL UND METHODEN

B.1. VERWENDETE HILFSSTOFFE

B.1.1. Laktose
Laktose (Milchzucker) ist ein Disaccharid, das aus D-Glucose und D-Galactose aufgebaut ist. Sie wird aus Kuhmilch durch Kristallisation einer gesättigten Lösung gewonnen [24]. Dabei bestimmt die gewählte Kristallisationstemperatur, ob die Laktose in der wasserhaltigen α-Form oder in der wasserfreien β-Form auskristallisiert.

Laktose findet hauptsächlich als Füllstoff bei Granulaten, Tabletten und Kapseln, sowie als Trägersubstanz bei Pulverinhalatoren Verwendung.

In dieser Arbeit wurde gesiebte α-Laktose Monohydrat (Granulac 200®) der Firma Meggle GmbH aus Deutschland verwendet. Je nach Herstellungsart wird zwischen gesiebten, gemahlenen, granulierten und sprühgetrockneten Laktosen unterschieden. Die Zahlenbezeichnung im Handelsnamen gibt die Partikelgröße des Produktes in „mesh“ an [25].

B.1.2. Mikrokristalline Cellulose
Cellulose ist ein Polysaccharid, das aus β-1,4 verknüpften Glucoseeinheiten aufgebaut ist. Die Herstellung von mikrokristalliner Cellulose erfolgt durch saure Hydrolyse von Pflanzenfasern bzw. α-Cellulose [24]. Anschließend wird das Produkt durch Filtration gereinigt und sprühgetrocknet. Im Vergleich zum Rohstoff α-Cellulose besitzt die mikrokristalline Cellulose einen niedrigeren Polymerisationsgrad (160-300) und eine höhere Kristallinität. In der Pharmazie findet mikrokristalline Cellulose ihren Einsatz hauptsächlich als Trockenbindemittel bei der Granulation und der Tablettierung [7].

In dieser Arbeit wurde mikrokristalline Cellulose (Avicel® PH 101) der Firma FMC Biopolymer aus den USA verwendet.
B.1.3. Dicalciumphosphat Dihydrat

Dicalciumphosphat wird aus Phosphorsäure durch Zusatz von Calciumhydroxid gefällt. Wegen des günstigen Preises und seiner guten Fließ- und Kompressionseigenschaften ist es das in den USA am meisten verwendete Füllmittel bei der Tablettenherstellung [26].
In dieser Arbeit wurde das Calciumphosphat DICAFOS® der Firma Chemische Fabrik Budenheim verwendet.

B.1.4. Maisstärke

In dieser Arbeit wurde Maisstärke (C-PharmGeI®) der Firma Cerestar GmbH aus Deutschland verwendet.

B.1.5. Polyvinylpyrrolidon (PVP, Povidon)

In dieser Arbeit wurde das PVP (Kollidon 30) der Firma BASF AG aus Deutschland verwendet. Die 30 steht dabei indirekt für das mittlere Molekulargewicht und leitet sich aus dem K-Wert nach Fikentscher ab.

B.1.6. Glasgranulate

Als Modellsubstanz für Granulate ohne innere Porosität wurden in Kapitel C.5 Glasgranulate verwendet (siehe Abb Abb. B.1.6-1). Dabei wurden sphärische Glaskugelchen (Silibeads®) der Firma Sigmund Lindner GmbH aus Deutschland eingesetzt. Dagegen wurden durch Zertrümmerung von Glas nicht sphärische Partikel erzeugt.
B.2. VERWENDETE REZEPTUREN

B.2.1. Rezeptur 1

\(\alpha \)-Laktose x 1H\(_2\)O (Granulac 200®, Meggle GmbH, Deutschland) 30 %
Mikrokristalline Cellulose (Avicel® PH101, FMC, USA) 55 %
Maisstärke (C-PharmGel®, Cerestar GmbH, Deutschland) 10 %
PVP 30 (Kollidon® 30, BASF AG, Deutschland) 5 %

B.2.2. Rezeptur 3

Calciumphosphat (DICAFOS®, Budenheim KG, Deutschland) 38 %
Microkristalline Cellulose (Avicel® PH101, FMC, USA) 50 %
Maisstärke (C-PharmGel®, Cerestar GmbH, Deutschland) 8 %
PVP 30 (Kollidon® 30, BASF AG, Deutschland) 4 %
B.3. WIRBELSCHICHTGRANULATION

B.3.1. Einleitung

Die Wirbelschichtgranulation ist ein komplexes Verfahren mit zahlreichen Einflüssen auf das Endprodukt [4]. Sie kann durch folgende Parameter charakterisiert werden:

-Maschinenparameter:
Gerätegröße, Gerätegeometrie, Sprühdüse

-Prozessparameter:
Zulufttemperatur, Zuluftmenge, Zuluftfeuchte, Ablufttemperatur, Abluftfeuchte, Sprührate, Zerstäubungsluftdruck

-Produktparameter:
Produkttemperatur, mittlere Partikelgröße, Wassergehalt, Porosität.

B.3.2. Theorie

Die Wirbelschichtgranulation gliedert sich in die Bereiche: Anheizzeit, Mischzeit, Agglomerationszeit und Trocknungszeit. Als wichtigste Prozessparameter sind

B.3.3. Verwendetes Gerät

Es wurde ein Wirbelschichtgerät (Typ BFS 15) der Firma L.B. Bohle, Enningerloh, Deutschland, verwendet.
B.3.4. Versuchsaufbau

B.3.5. Durchführung der Wirbelschichtgranulation

Die Ansatzgröße der verwendeten Rezepturen 1 und 3 betrug 15 kg. Der Prozess wurde in 4 Schritten vollzogen. Dabei wurde die Zuluftmenge mit 300 m³/h und die Zulufttemperatur mit 60 °C bei allen 4 Phasen konstant gehalten:

Anheizphase: Das leere Gerät wurde mit 60 °C Zulufttemperatur 15 Minuten lang aufgeheizt.

Mischphase: Das Produkt wurde in die Anlage gegeben und 10 min gemischt.

Agglomerationsphase: Die Sprührate wurde zwischen 50-150 g/min variert. Mit einer Sprührate von 50 g/min konnte die Granulatfeuchte annähernd konstant gehalten werden, während ab einer Sprührate von 100 g/min ein Anstieg der Granulatfeuchte erzielt wurde. Der Wassergehalt der Probe wurde dabei auf maximal 10 %, bezogen auf das Trockengewicht der Probe, angehoben.

Trocknungsphase: Die Trocknung des Produktes erfolgte durch Unterbrechung des Sprühvorganges bei weiterer Zufuhr von Luft.

B.4. WASSERGEHALTSBESTIMMUNG

B.4.1. Einleitung

Für die Bestimmung des Wassergehaltes stehen mehrere Verfahren zur Verfügung. Als direkte Messmethoden findet aber meistens die Karl-Fischer Methode oder die thermogravimetrische Bestimmung des Wassergehaltes Anwendung. Dabei zeichnet sich die thermogravimetrische Bestimmung als schnelle, leicht durchführbare Methode aus. Dies war für die direkte Analyse der Granulatproben, die aus dem Wirbelschichtprozess gezogen wurden, unabdingbar. Für die Wassergehaltsbestimmung wurde daher die thermogravimetrische Analyse verwendet.
B.4.2. Theorie

Bei der Methode wird zuerst die Masse der feuchten Probe ermittelt. Anschließend wird die Probe mit Hilfe einer Heizeinheit getrocknet und das Gewicht der getrockneten Probe mit der integrierten Waage abgelesen. Aus der Differenz zwischen feuchter und getrockneter Probe ergibt sich die enthaltene Menge an Wasser in der Probe. Diese wurde nach Gleichung B.4.2-1 prozentual auf die Masse der feuchten Probe bezogen.

\[
H_2O(\%) = \frac{\text{Masse}_{\text{feuchte Probe}} - \text{Masse}_{\text{getrocknete Probe}}}{\text{Masse}_{\text{feuchte Probe}}} \cdot 100
\]

Gleichung B.4.2-1 Thermogravimetrische Wassergehaltsberechnung

B.4.3. Verwendetes Gerät

Für die thermogravimetrische Wassergehaltsbestimmung wurde der „HB43 Halogen Moisture Analyzer“ der Firma Mettler Toledo aus Deutschland verwendet.

B.4.4. Versuchsaufbau

![Versuchsaufbau: Thermogravimetrische Wassergehaltsbestimmung](image)

Abb. B.4.4-1 Versuchsaufbau: Thermogravimetrische Wassergehaltsbestimmung
B.4.5. Durchführung der Wassergehaltsbestimmung

Für die Messungen wurden ca. 3 g Probe verwendet. Als Abschaltkriterium wurde die Stufe 4 eingestellt. Dabei gilt die Probe als trocken, wenn sich die Masse der Probe innerhalb von 90 s um nicht mehr als 1 mg verändert. Die Trocknungstemperatur wurde konstant auf 100 °C eingestellt.

B.5. PARTIKELGRÖßENBESTIMMUNG

B.5.1. Einleitung

B.5.2. Theorie

B.5.3. Verwendetes Gerät

B.5.4. Versuchsanordnung

![Diagramm der Versuchsanordnung](image)

Abb. B.5.4-1 Versuchsaufbau: Laserbeugung

Die zu vermessenden Partikel werden mittels des Druckluftdispersiersystems Rhodos® vereinzelnd und durch einen Laserstrahl geleitet. Der durch die Partikel abgelenkte Laserstrahl wird von einem der ringförmig angeordneten Detektorelemente registriert.

B.5.5. Durchführung der Partikelgrößenbestimmung

B.6. NIR-VIS-SPEKTROSKOPIE

B.6.1. Einleitung

B.6.2. Theorie

Abb. B.6.2-1 Messprinzip: NIR/VIS-Spektrometer
Material und Methoden

23

dieser Konstruktion der Vorteil in der schnelleren Aufnahme der Spektren (ca. 5 ms) und in der Robustheit der Geräte, da auf bewegliche Teile verzichtet werden kann. Zur Zeit müssen bei dieser Bauart allerdings noch geringere spektrale Auflösungen hingenommen werden.

Die NIR-VIS-Spektroskopie stellt eine indirekte Messmethode dar [70]. Für die Vorhersage bestimmter physikalischer oder chemischer Größen einer Probe müssen die Spektren mit Hilfe einer geeigneten Referenzmethode kalibriert und validiert werden (siehe: B.8, B.9).

B.6.3. Verwendete Geräte

- Corona, Zeiss AG, Deutschland
 Bei dem Gerät „Corona“ der Firma Zeiss AG aus Deutschland handelt es sich um ein Diodenarray Spektrometer. Dieses ist in der Lage in ca. 5 ms ein Spektrum aufzunehmen. Mit dem NIR-Modul wurden Spektren im Bereich von 1000-1600 nm, mit dem VIS-Modul die Spektren im Bereich von 400-1000 nm aufgenommen. Für beide spektralen Bereiche wurde der gleiche Lichtleiter und Messkopf verwendet. Die Größe des Messflecks beträgt ca. 12,5 cm². Die spektrale Auflösung wurde auf 2 nm eingestellt. Die Spektrenaufnahme erfolgt in diffuser Reflexion.

- Vektor 22/N, Bruker Optics GmbH, Deutschland
 Bei der Messanordnung (EBr) erfolgte die Spektrenaufnahme mit dem Gerät Vektor 22/N der Firma Bruker aus Deutschland. Es handelt sich dabei um ein FT-
Michelson Interferometer. Es ist in der Lage in ca. 1 s ein Spektrum aufzunehmen. Dabei können die Reflexionswerte im Wellenlängenbereich von 800-2500nm aufgenommen werden. Der verwendete Messkopf hat einen Messfleck von ca. 0,5 cm². Die Spektrenaufnahme erfolgt in diffuser Reflexion.

- NIRVIS, Buehler (heute: Buechi), Deutschland

Bei der Messanordnung (EBu) erfolgt die Spektrenaufnahme mit dem Gerät NIRVIS der Firma Buehler aus Deutschland. Es handelt sich dabei um ein FT-Polarisations Interferometer. Es ist in der Lage in ca. 3 s ein Spektrum aufzunehmen. Dabei können die Reflexionswerte im Wellenlängenbereich von 1000-2500nm aufgenommen werden. Der verwendete Messkopf hat einen Messfleck von ca. 1 cm². Die Spektrenaufnahme erfolgt in diffuser Reflexion.

B.6.4. Messanordnungen

B.6.4.1. Messanordnung (EZ): Extern, Zeiss Spektrometer

Abb. B.6.4-1 Messanordnung (EZ)
Bei Messanordnung (EZ) befindet sich die zu vermessende Probe in einer Petrischale. Diese wird durch einen Abstandshalter in 2 cm zum Messkopf der Corona Sonde des Zeiss Spektrometers positioniert.

B.6.4.2. Messanordnung (EBr): Extern, Bruker Spektrometer

![Diagramm der Messanordnung (EBr)](image)

Abb. B.6.4-2 Messanordnung (EBr)

Bei der Messanordnung (EBr) wurde die zu vermessende Probe 5-mal in einem Becherglas gestampft und ein planer NIR-Messkopf (Sonde) 2 cm in die Probe eingetaucht.
B.6.4.3. Messanordnung (EBu): Extern, Bühler Spektrometer

Bei der Messanordnung (EBu) wurde die zu vermessende Probe fünfmal in einem Becherglas gestampft und ein abgeschrägter NIR-Messkopf (Sonde) 2 cm in die Probe eingetaucht.
B.6.4.4. Messanordnung (OMP): Online mit Probenpräsenter, Zeiss Spektrometer

Bei der Messanordnung (OMP) werden die NIR-Spektren durch ein Messfenster aufgenommen, welches sich im konischen Teil der Wirbelschichtanlage BFS 15 (Firma LBBohle) befand. Der NIR-Messkopf befindet sich in 2 cm Abstand zum Messfenster, außerhalb des Wirbelschichtbehälters. Während der Wirbelschichtgranulation drückt der Probenpräsenter die Probe gegen das Messfenster. In dieser Position werden die Spektren aufgenommen. Nach der Spektrenaufnahme agierte der Probenpräsenter als eine Art Scheibenwischer, indem er sich seitwärts über das Messfenster bewegt und dieses dadurch reinigt. Gleichzeitig wird so die vermessene Probe wieder dem Prozess zugeführt.
B.6.4.5. Messanordnung (OOP) Online ohne Probenpräsenter, Zeiss Spektrometer

Die Online-Messanordnung (OOP) entspricht der Messanordnung (OMP) ohne Verwendung des Probenpräsentrers. Das zu vermessende Gut bewegte sich fortlaufend über das Messfenster.

B.6.5. Durchführung der Spektrenaufnahme

B.7. NORMIERUNG VON NIR-SPEKTREN

B.7.1. Einleitung

B.7.2. Theorie
In der Literatur findet sich eine Vielzahl von Beschreibungen der Normierungsmethoden [72, 74-76]. Deshalb wird nur auf wesentliche Aspekte eingegangen, die für das Verständnis in dieser Arbeit wichtig sind.

B.7.2.1. Ableitung nach Savitzky Golay
Die Ableitung einer mathematischen Funktion beschreibt die Steigung eines jeden Punktes dieser Funktion. Eine Basislinienverschiebung, die sich allein durch eine Änderung des y-Achsenabschnittes ausdrückt, kann deshalb durch die Bildung der 1. Ableitung nivelliert werden.
Da es sich bei Spektren nicht um mathematische Funktionen handelt, findet hier die Ableitungsmethode nach Savitzky Golay weit verbreitet Anwendung. Für die Berechnung der spektralen Steigungen wird durch eine wählbare Anzahl an Datenpunkten eine mathematische Ausgleichsfunktion (Ausgleichspolynom) gelegt, welche den Spektrenverlauf bestmöglich wiedergibt. Von der gebildeten Ausgleichsfunktion wird für den Mittelpunkt des gewählten Segmentes die Steigung bestimmt und der erhaltene Steigungswert als neuer Datenpunkt verwendet. Anschließend wird der Segmentbereich um einen Datenpunkt nach rechts verschoben und die Prozedur wird so lange wiederholt, bis von jedem spektralen Punkt die Steigung ermittelt wurde. Hierbei ist zu beachten, dass die ersten und

B.7.3. Durchführung der Spektrennormierung

B.8. REGRESSION VON SPEKTRENDATEN UND REFERENZMESSWERTEN

B.8.1. Einleitung

B.8.2. Theorie der Regressionsmethoden

Die mathematischen Grundlagen der Regressionsmethoden (MLR, PCA, PLS) werden umfassend in der Literatur beschrieben [76-81]. Deshalb wird in diesem Abschnitt nur auf die für das Verständnis in dieser Arbeit wesentlichen Aspekte eingegangen.

B.8.2.1. Multiple Lineare Regression (MLR)

Die MLR stellt die erste Entwicklungsstufe der multivariaten Datenanalyse dar. Sie ist eine Erweiterung der univariaten linearen Regression. Dabei wird versucht eine Variable (z.B. Wassergehalt) mit mehreren (multiplen) weiteren Variablen (z.B. mit mehreren Absorptionswerten bei verschiedenen Wellenlängen (Spektren)) zu beschreiben.

B.8.2.2. Hauptkomponentenanalyse (PCA)

Die PCA stellt ein Datenreduktionsverfahren dar. Dabei wird eine Datenmatrix (X-Matrix) aus y-Reihen und z-Spalten, in 2 kleinere Matrices zerlegt: in die Score Matrix (T-Matrix oder Hauptkomponentenmatrix) und die Loadings Matrix (P-Matrix oder Loadingsmatrix). Dabei besteht folgender Zusammenhang:

\[X = T \times P + R \]

Wird die Spalte der T-Matrix mit der Zeile der P-Matrix ergibt sich die wiederhergestellte Ursprungsmatrix (XX) bis auf eine Restvarianz (R). Die Hauptkomponentenanalyse läuft dann wie folgt ab:

Die Spalte mit der größten Varianz der Ursprungsmatrix wird zur ersten Spalte der Score Matrix (1. Hauptkomponente). Als Loading zur ersten Hauptkomponente wird eine Zeile in Länge der Ursprungsmatrix gewählt. Diese wird so ermittelt, dass das Restspektrum (Restvarianz), also die Differenz aus Ursprungsspektrum minus dem wiederhergestellten Spektrum (P * T), möglichst wenig Varianz zeigt. Mit dem erhaltenen Restspektrum wird der Vorgang wie unter (a) beschrieben solange wiederholt, bis sich keine Varianz bzw. nur noch Rauschen zeigt. Die folgenden Hauptkomponenten beinhalten demnach immer weniger Datenvarianz. Eine NIR-Spektrenmatrix mit 100 Spektren also 100 Zeilen und 500 Spalten kann auf diese Weise oft auf wenige Hauptkomponenten reduziert werden, ohne dabei Spektreninformation zu verlieren. Die PCA wurde daher lange Zeit als
Datenreduktionsverfahren eingesetzt. Die mit der PCA ermittelten Hauptkomponenten können aber auch in Kombination mit der MLR für Regressionsberechnungen verwendet werden (siehe PCR).

B.8.2.3. Hauptkomponentenregression (PCR)

Die PCR ist eine Kombination aus PCA und MLR. Dabei kann mit Hilfe der Hauptkomponentenanalyse der Informationsgehalt der Messdaten (Spektrendaten) auf wenige Hauptkomponenten (PC’s = Principle Components) reduziert werden. Die erhaltenen Hauptkomponenten werden dann mit Hilfe der MLR mit den Referenzdaten korreliert. Bei der PCR wird die Hauptkomponentenanalyse nur auf die Messdaten (Spektrendaten) angewendet. Somit beschreibt die erste Hauptkomponente die größte Varianz innerhalb der Messdaten (Spektrendaten), ohne Bezug auf die Referenzdaten zu nehmen. Die folgenden Hauptkomponenten beschreiben dann solange die verbleibende Restvarianz der Messdaten (Spektrendaten), bis in den Spektren keine Varianz mehr vorhanden ist.

B.8.2.4. Partial Least Squares Regression (PLS)

Für die Beschreibung einer einzelnen Y–Variablen mit mehreren X–Variablen wird der PLS 1 Algorithmus verwendet. Wenn mehrere Y–Variablen mit mehreren X–Variablen simultan beschrieben werden sollen, gibt es die Möglichkeit den PLS 2 Algorithmus zu verwenden [77].

B.8.3. Durchführung der Regressionsmodellerstellung

Die Regressionsmodelle wurden mit der Software Unscrambler (Version 7.6 SP1) der Firma Camo, Norwegen erstellt.
Für die Regressionsmodellerstellung in der Wirbelschicht wurden alle 10 Minuten Spektren aufgenommen. Gleichzeitig wurde mit Hilfe des implementierten Probenziehers Produkt aus dem Wirbelschichtprozess entnommen. Die gezogenen Proben wurden entweder für die thermogravimetrische Wassergehaltsbestimmung verwendet oder sie wurden bei ca. 50°C im Trockenschrank getrocknet und die Partikelgröße mittels Laserbeugung zu einem späteren Zeitpunkt bestimmt. Die so erhaltenen Daten wurden anschließend in die Software Unscrambler importiert. Es ergab sich eine Datenmatrix (X) mit y-Reihen (1 Reihe = Reflexionswerte einer Probe bei verschiedenen Wellenlängen = Spektrum) und z-Spalten (1 Spalte = Reflexionswerte aller Proben bei einer bestimmten Wellenlänge). Jedem Spektrum (jeder Zeile) wurde der entsprechende Referenzwert zugeordnet, so dass eine weitere Spalte in der Datenmatrix entstand. Mit dieser konnten dann die Regressionsberechnungen durchgeführt werden.

B.9. VALIDIERUNG VON REGRESSIONSMODELLEN

B.9.1. Einleitung
B.9.2. Theorie

B.9.2.1. Validierungsmethoden

In Abhängigkeit der Aufteilung der Proben in den Regressionsdatensatz oder den Validierungsdatensatz wird die interne oder die externe Validierung unterschieden. Bei der internen Validierung erfolgt die Überprüfung des Modells mit Proben, die auch für die Regressionsberechnungen verwendet werden. Die externe Validierung überprüft das Modells mit Proben, die unabhängig von den Regressionsproben sind. Hierunter fällt die Testset Validierung sowie die Cross Validierung:

TESTSET VALIDIERUNG:

CROSS VALIDIERUNG (Leave one out Methode [80]):
Bei dieser Methode wird dem Datensatz der aus n Proben besteht, eine Probe (x) entnommen. Mit den n-1 Proben findet die Regression statt, während die Probe (x) zur Validierung des Regressionsmodells dient. Anschließend wird die entwendete Probe (x) dem Datensatz wieder zugeführt und der Vorgang für alle restlichen Proben wiederholt. Durch diese Methode wird der vorhandene Datensatz maximal genutzt. Sie eignet sich dadurch auch zur Auswertung kleinerer Datensätze.

B.9.2.2. Beurteilungsparameter von Regressionsmodellen

SEP (Standard Error of Prediction, Standardfehler der Vorhersage):

\[
SEP = \sqrt{\frac{\sum (X_{i\text{Vorhersagewert}} - X_{i\text{Referenzwert}})^2}{n}} \quad \text{Gleichung B.9.2-1 SEP}
\]

SEE (Standard Error of Estimation, geschätzter Standardfehler):

\[
SEE = \sqrt{\frac{\sum (X_{(i)}\text{Vorhersagewert} - X_{(i)}\text{Referenzwert})^2}{n}} \quad \text{Gleichung B.9.2-2 SEE}
\]

Der SEE berechnet sich analog zum SEP mit der Ausnahme, dass die Vorhersageproben den Regressionsproben entsprechen. Dadurch ist der SEE nur ein geschätzter Wert des SEP und fällt in aller Regel kleiner aus als der SEP. Für die Beurteilung des Vorhersagefehlers ist der SEP damit besser.

Diagramm: Vorhersage gegen Referenz

Slope (Steigung der Regressionsgerade im Diagramm Vorhersage gegen Referenz):

Die Steigung beträgt bei einem optimalen Zusammenhang 1. Als gut werden Werte von 0,9 bis 1,1 angesehen.

Offset (y-Achsenschnittpunkt der Regressionsgerade im Diagramm Vorhersage gegen Referenz):

Der Offset beträgt bei einem optimalen Zusammenhang 0. Als gut werden Werte kleiner als der SEP angesehen.
Diagramm: Zeitlicher Verlauf von Vorhersage und Referenz
Der zeitliche Verlauf wird bei diesem Diagramm durch die Probennummer festgelegt. Der Probenzug erfolgte ungefähr alle 10 min. Dadurch erhält man eine zeitliche Darstellung der Ergebnisse der Vorhersagewerte gegenüber den Referenzwerten. Die einzelnen Abweichungen zwischen Vorhersage und Referenz können mit dem im folgenden beschriebenen Residuenplot analysiert werden.

Diagramm: Residuenplot
Bei diesem Diagramm werden die Differenzen zwischen gemessenen Referenzwerten und den Vorhersagewerten aufgetragen. Das Ausmaß eines jeden Vorhersagefehlers wird dadurch übersichtlich dargestellt und kann neben dem SEP zur Beurteilung des Messfehlers betrachtet werden.

Korrelationskoeffizient:

Bias (systematischer Fehler):

\[
Bias = \left(\frac{\sum (x_{(i)}\,\text{Vorhersagewert} - x_{(i)}\,\text{Referenzwert})}{n} \right)
\]

Gleichung B.9.2-3 Bias

Der Bias ist der systematische Fehler. Er gibt an, um welchen gemittelten Wert die Vorhersageproben über- oder unterschätzt werden. Der Bias hat somit die gleiche Einheit wie die Werte der Referenzmethode.

B.9.3. Durchführung der Validierung von Regressionsmodellen
Die Validierung der Regressionsmodelle wurde mit der Software Unscrambler (Version 7.6 SP1) der Firma Camo, Norwegen durchgeführt.
Als Validierungsmethode wurde die Cross-Validierung sowie die Testset-Validierung verwendet. Bei der Testset Methode erfolgt die Zuordnung der Messwerte in das Regressionsset oder das Validierungsset manuell. Die Cross-Validierung wird so durchgeführt, dass Spektren, denen der gleiche Referenzwert zugeordnet wird, gemeinsam aus dem Datensatz entnommen werden.

Ermittlung der Hauptkomponentenanzahl:
Eine sinnvolle Anzahl an Hauptkomponenten des für insgesamt 10 Hauptkomponenten berechneten Regressionsmodells, wurde mit dem SEP und SEE ermittelt. Dabei wurde festgelegt, dass die Hauptkomponentenanzahl nur so lange erhöht wird wie:

a) sich der SEP um mindestens 0,1 % Wassergehalt bzw. 1 µm Partikelgröße im Vergleich zum Modell mit n-1 Hauptkomponenten verringert.

b) sich SEP und SEE nur zufällig voneinander unterscheiden (F-Test, P= 99 %).

Dadurch sollte einem Überfüllen mit Faktoren entgegengewirkt werden [82, 83].

Beurteilung der Regressionsmodelle:
B.10. SOFTWARE UNSCRAMBLER VERSION 7.6 SP1

B.11. QUECKSILBERPOROSIMETRIE

B.11.1. Theorie

Die Porosität gibt den prozentualen Anteil des Hohlraumvolumens einer Probe bezogen auf dessen Gesamtvolumen wieder [7]. Damit ist die Porosität als ein Dichteparameter anzusehen.

\[
\text{Porosität (\%)} = \frac{\text{Hohlraumvolumen}}{\text{Pr obenvolumen}} \times 100
\]

Gleichung B.11.1-1 Gesamtporosität (%)

Da bei der Vermessung von Schüttgütern zum einen Poren zwischen den Partikeln vermessen werden können und zum anderen die Poren in den Partikeln, wird zwischen den Porositätstypen der partikulären Porosität (Intra-Porosität) und der Zwischenraumporosität (Inter-Porosität) (siehe Abb. B.11.1-1) unterschieden.

\[
\text{Porosität}_{\text{zwischenraum}}(\%) = \frac{V_{\text{Zwischenhohlraum}}}{V_{\text{Probe,Gesamt}}} \times 100
\]

Gleichung B.11.1-2 Berechnung der Zwischenraumporosität

\[
\text{Porosität}_{\text{partikulär}}(\%) = \frac{V_{\text{Partikelsraum}}}{V_{\text{Partikel Pr ob}}} \times 100
\]

Gleichung B.11.1-3 Berechnung der partikulären Porosität

Bei der Porosimetrie wird das Hohlraumvolumen über die Intrusion einer Flüssigkeit in die Hohlräume der zu vermessenden Probe bestimmt (siehe Abb. B.11.1-2).
Hierbei eignet sich besonders Quecksilber, da es wegen seiner großen Oberflächenspannung (456 mN/m) bei einem Druck von 0,1 bar nicht in Poren < 100 µm Durchmesser eindringen kann. Diese Abhängigkeit der Intrusion einer Flüssigkeit in zylindrische Poren vom angewendeten Druck beschreibt Washburn schon 1921 [84] und wird bei der Quecksilberintrusion verwendet, um von der zu vermessenden Probe ein Porengrößenverteilungsdiagramm zu erstellen.

\[
r = \frac{2 \sigma \cdot \cos \theta}{\rho}
\]

Gleichung B.11.1-4 Washburn Gleichung, \(\rho \) = angewendeter Druck, \(\sigma \) = Oberflächenspannung der Flüssigkeit, \(\theta \) = Benetzungswinkel, \(r \) = Porenradius

Für die Messung wird die zu vermessende Probe in ein Analysengefäß (Dilatometer) gegeben (siehe Abb. B.11.1-2). Anschließend wird ein Vakuum gezogen (0,1 bar) und das Dilatometer mit der darin befindlichen Probe mit Quecksilber befüllt. Durch einen steigenden Druck kann das Quecksilber nun in die Poren der Probe fließen. Das intrudierte Volumen (Hohlraumvolumen der Probe) ist durch die Differenz des Quecksilberpegels in der Glaskapillare messbar. Das Probenvolumen kann dagegen über das Quecksilberdifferenzgewicht ermittelt werden. Dafür wird zuerst das Dilatometer ohne Probe mit Quecksilber befüllt und das Gewicht ermittelt. Anschließend wird das Dilatometer mit der Probe noch einmal mit Quecksilber befüllt.
und erneut das Gewicht ermittelt. Das Probenvolumen ergibt sich dann nach (Gleichung B.11.1-5):

\[
V_{\text{Schütt Probe}} \left[\frac{mm^3}{g} \right] = \frac{m_{\text{Dilatometer + Hg}} - (m_{\text{Dilatometer + Hg - Probe}} - m_{\text{Probe}})}{\rho_{\text{Hg}}}
\]

Gleichung B.11.1-5 Berechnung des Schüttvolumens pro Gramm Probe bei der Quecksilberporosimetrie

B.11.2. Verwendetes Gerät

Verwendet wurden die Quecksilberporosimeter Pascal 140 und Pascal 440 der Firma Porotec GmbH aus Deutschland. Mit den beiden Geräten kann das Quecksilber im Druckbereich von 0,1 bis 4000 bar in die Probe intrudiert werden. Damit können nach Washburn [84] zylindrische Porendurchmesser von ca. 100 µm bis 2 nm Porendurchmesser erfasst werden.

B.11.2.1. Durchführung:

Für die Messungen wurden ca. 450 mg Probe im Trockenschrank getrocknet und anschließend in das Dilatometer gegeben. Das Quecksilber wurde über einen Druckbereich von 0,1 bis 4000 bar in die Probe intrudiert. Dadurch wurden nach Washburn [84] zylindrische Porendurchmesser von ca. 100 µm bis 2 nm Porendurchmesser erfasst. Die Methode zur Messung der partikulären Porosität wird im Ergebnisteil vorgestellt.
C. ERGEBNISSE UND DISKUSSION

C.1. OPTIMIERUNG DER NIR-VIS-ONLINE-MESSANORDNUNG

C.1.1. Einfluss der Stampfdichte

C.1.1.1. Ergebnis

Nach Abb. C.1.1-1 zeigt Spektrum „100 Stampfungen“ mit 44 % Reflexion bei 1000 nm einen um 10 % geringeren Wert als das Spektrum „0 Stampfungen“. Zwischen diesen Spektren ordnet sich mit 50 % Reflexion das Spektrum „25 Stampfungen“ ein.

Bei 2200 nm beträgt der Unterschied der Reflexionswerte der Spektren nur ca. 5 %.

C.1.1.2. Diskussion: Einfluss der Stampfdichte

Für die Entwicklung einer gegenüber Basislinienverschiebungen unempfindlichen Online-Messanordnung in der Wirbelschicht, muss daher die Variation der Schütttdichte des zu vermessenden Produktes minimiert werden. Für die Online-Messanordnung (OMP) wurde dies mit Hilfe eines Probenpräsenters erreicht, der das zu vermessende Produkt mit einem definierten Anpressdruck an das Messfenster drückt (siehe Kapitel: B.6.4).
C.1.2. Einfluss des Abstandes des NIR-Messkopfes zum Produkt

C.1.2.1. Ergebnis

Um herauszufinden, ob der Abstand des NIR-Messkopfes zum Produkt einen Einfluss auf die NIR-Spektren ausübt, wurde der NIR-Messkopf des Gerätes Vektor 22N der Firma Bruker in Abständen von 0,1 cm, 0,25 cm und 0,5 cm zum Produkt positioniert und in jeder Messposition 10 Spektren aufgenommen, die anschließend gemittelt wurden (siehe Abb. C.1.2-1).

Nach Abb. C.1.2-1 zeigt das Spektrum „0,5 cm Abstand“ bei 1000 nm mit 55 % Reflexionswert einen um 30 % geringeren Wert als Spektrum „0,25 cm Abstand“ und einen um 40 % geringeren Wert als das Spektrum „0,1 cm Abstand“.
C.1.2.2. Diskussion: Einfluss des Abstandes des NIR-Messkopfes zum Produkt

Da sich nach Abb. C.1.2-1 mit zunehmendem Abstand des NIR-Messkopfes vom Produkt geringere Reflexionswerte ergeben, muss für eine reproduzierbare Spektrenaufnahme hinsichtlich der Basislinie ein konstanter Abstand zwischen Sonde und Produkt gewährleistet sein. Für die Online-Messanordnungen (OMP) und (OOP) wurden die Spektren deshalb durch ein Messfenster aufgenommen, welches sich in 2 cm Abstand zum NIR-Messkopf befand.

C.1.3. Beurteilung der Spektrenreproduzierbarkeit bei Messanordnung (EBr)

C.1.3.1. Ergebnis

Um die Spektrenreproduzierbarkeit hinsichtlich der Basislinienverschiebung bei der externen Messanordnung (EBr) zu untersuchen, erfolgte die Aufnahme von 10 NIR-Spektren. Verglichen wurden 10 Spektrenaufnahmen bei konstanter Position des NIR-Messkopfes im Laktosepulver (Granulac 200) mit 10 weiteren Spektren, die unter jeweiliger Neupositionierung des NIR-Messkopfes in der Laktose vor jeder Messung erfolgte.

Abb. C.1.3-1 Reproduzierbarkeit von 10 Reflexionsspektren bei einmaliger Messkopfpositionierung, Messanordnung (EBr)
In Abb. C.1.3-1 sind bei 1000 nm keine Unterschiede in den 10 Reflexionsspektren zu erkennen. Der Verlauf der Spektren ist deckungsgleich. In Abb. C.1.3-2 zeigen sich Unterschiede von 8 % in den Reflexionswerten bei 1000 nm.

C.1.3.2. Diskussion der Beurteilung der Spektrumreproduzierbarkeit bei Messanordnung (EBr)

Die wiederholte Aufnahme von Reflexionsspektren bei konstanter Position der Messsonde zeigt keinen Einfluss auf die Lage der Basislinie der Spektren, während eine Neuanordnung der Sonde eine Variabilität von bis zu 8% hervorruft (siehe: Abb. C.1.3-1 und Abb. C.1.3-2). Insofern ist es für die Beurteilung der Spektrumreproduzierbarkeit erforderlich, die Messanordnung zwischen NIR-Messkopf und Probe jeweils neu herzustellen, um die Variabilität der Spektren zu erfassen. Die Güte der Messanordnung (EBr) wird somit erst durch die Spektrenaufnahmen bei jeweils neuer Positionierung des NIR-Messkopfes im Produkt wiedergegeben.

Bei den folgenden Reproduzierbarkeitsversuchen wurde daher darauf geachtet, dass die Messanordnung zwischen NIR-Messkopf und Produkt vor jeder Messung neu hergestellt wurde.
C.1.4. Vergleich der Spektrenreproduzierbarkeit bei den Messanordnungen (EBr, EBu, EZ)

C.1.4.1. Ergebnis
Um einen Standard für eine gute Spektrenreproduzierbarkeit zu definieren, wurden zunächst die externen Messanordnungen (EBu, EBr, EZ) miteinander verglichen. Der Vergleich der 3 Messanordnungen erfolgte durch die Aufnahme von jeweils 10 Spektren. Das Ausmaß der Streuung der Reflexionswerte wurde mit der relativen Standardabweichung beurteilt. Die Messanordnung mit kleinerer relativer Standardabweichung der Reflexionswerte wurde als Standard einer guten Messanordnung definiert.

![Diagramm Vergleich der Spektrenreproduzierbarkeit der Messanordnungen (EBr, EBu, EZ)](image)

Nach Abb. C.1.4-1 sind die Spektrenreproduzierbarkeiten von Messanordnung (EZ) und (EBu) über den gesamten Spektrenbereich signifikant besser als von Messanordnung (EBr). Messanordnung (EZ) und (EBu) ergeben mit relativen Standardabweichungen unter 1 % die geringsten Werte. Messanordnung (EBr) zeigt mit Werten über 2,5 % relativ Standardabweichung die höchsten Werte.
C.1.4.2. Diskussion: Vergleich der Spektrenreproduzierbarkeit bei den Messanordnungen (EBr, EBu, EZ)

Da nach Abb. C.1.4-1 Messanordnung (EBu) und (EZ) die geringsten rel. Standardabweichungen zeigen, wurden diese Messanordnungen als Standard für eine gute Spektrenreproduzierbarkeit hinsichtlich der Basislinienverschiebung gesetzt. Demnach wurde eine rel. Standardabweichung unter 1 % als gut definiert.

C.1.5. Vergleich der Spektrenreproduzierbarkeit bei den Messanordnungen (EZ, OMP, OOP)

C.1.5.1. Ergebnis

Um die Messanordnungen (EZ, OMP, OOP) hinsichtlich ihrer Spektrenreproduzierbarkeit vergleichen zu können, wurden je Messanordnung 10 Spektren aufgenommen und von diesen die relative Standardabweichung der Reflexionswerte berechnet.

Nach Abb. C.1.5-1 zeigt Messanordnung (OMP) über den gesamten untersuchten Bereich signifikant geringere Werte der relativen Standardabweichungen als
Messanordnung (OOP). Die Messanordnung (EZ) unterscheidet sich dabei nicht signifikant von Messanordnung (OMP).

C.1.5.2. Diskussion: Vergleich der Spektrenreproduzierbarkeit bei den Messanordnungen (EZ, OMP, OOP)

Da nach Abb. C.1.5-1 die Online-Messanordnung (OMP) und die externe Messanordnung (EZ) annähernd gleiche relative Standardabweichungen der Reflexionswerte der Spektren aufweisen, sind beide Messanordnungen bezüglich ihrer Reproduzierbarkeit vergleichbar. Die erzielten Vorhersageergebnisse der Messanordnungen (EZ, OMP, OOP) werden in den folgenden Kapiteln beschrieben.
C.2. VORHERSAGE DES WASSERGEHALTES VON GRANULATEN IN DER WIRBELSCHICHT MIT NIRS

C.2.1. Auswahl des Wellenlängenbereichs für die Regressionsberechnungen

Da sich während der Wirbelschichtgranulation neben dem Wassergehalt auch der PVP-Gehalt ändert, wurde auch das PVP-Spektrum in Messanordnung (EZ) aufgenommen (Abb. C.2.1-2), um Störeinflüsse erkennen zu können. Dafür wurde das PVP zuvor 1 Std. bei 95°C im Trockenschrank getrocknet, um es wasserfrei zu vermessen.
C.2.1.1. Ergebnisse:

Abb. C.2.1-1 Wasser Spektrum 1000-1600 nm

Das Spektrum von Wasser (Abb. C.2.1-1) zeigt bei 1 mm Schichtdicke im Bereich von 1000-1600 nm Reflexionswerte kleiner als 90 %. Im Bereich von 1400-1500 nm nehmen die Reflexionswerte weiter ab und erreichen bei 1450 nm ihren Minimalwert mit 10 % Reflexion. Bei 0,1 mm Schichtdicke des Wassers werden von 1000 nm bis 1300 nm annähernd konstante Reflexionswerte von 90 % erhalten. Dagegen sinken die Reflexionswerte von 1400 nm bis 1500 nm auf Werte kleiner als 80 %.
Das PVP Spektrum (Abb. C.2.1-2) besitzt bei 1180 nm mit 80 % den kleinsten Reflexionswert. Bei 1000-1100 nm beträgt die Reflexion über 97 %, im Bereich von 1400-1500 nm liegen die Werte oberhalb 90 %.

C.2.1.2. Diskussion

Da für Wasser nach Abb. C.2.1-1 im Bereich von 1400-1500 nm die geringsten Reflexionswerte gemessen werden, zeigt sich hier die größte Absorption. Aus diesem Grund wurden in Kapitel C.2.2.3 im Wellenlängenbereich von 1400-1500 nm eigene Regressionsberechnungen durchgeführt. Da Wasser über den gesamten spektralen Bereich von 1000-1600 nm Absorptionen zeigt, werden in Kapitel C.2.2.3 auch Regressionsberechnungen bei 1200-1300 nm durchgeführt und mit den Ergebnissen der Wasserbande bei 1400-1500 nm verglichen.

Nach Abb. C.2.1-2 zeigt das Reflexionsspektren von PVP ebenfalls Absorptionen im Bereich von 1400-1500 nm. Dies könnte die Wassergehaltsbestimmung
beeinflussen. In der untersuchten Rezeptur lag ein PVP-Gehalt von lediglich 4 % (m/m) vor, während das in Abb. C.2.1-2 gezeigte Spektrum von reinem PVP-Pulver aufgenommen wurde. Folglich kann der Einfluss der PVP-Absorption auf die Bestimmung des Wassergehaltes vernachlässigt werden.

C.2.2. Vorhersage bei Externer Messanordnung (EZ):

Der für die Vorhersage von Wasser relevante Wellenlängenbereich wurde in Kapitel C.2.1.2 ermittelt. Im folgenden soll überprüft werden, wie sich der Wassergehalt bei externer Messanordnung (EZ) vorhersagen lässt.

C.2.2.1. Ergebnisse Spektren

Abb. C.2.2-1 Reflexionsspektren, Rezeptur 3, Messanordnung (EZ)
Die Reflexionsspektren der Rezeptur 3 zeigen im Bereich von 1400-1600 nm Varianzen von bis zu 15 % Reflexion. Im Bereich von 1000-1300 nm liegen die Unterschiede bei 5 % Reflexion.

Abb. C.2.2-2 Vorbehandelte Reflexionsspektren, MSC, Rezeptur 3, Messanordnung (EZ)

Die mit der MSC (B.7.3) vorbehandelten Spektren zeigen im Bereich von 1380 bis 1480 nm Unterschiede von bis zu 5 % Reflexion. Bei den Wellenlängen von 1000 bis 1380 nm beträgt der Unterschied maximal 1% Reflexion.

Abb. C.2.2-3 Vorbehandelte Reflexionsspektren, 2. Ableitung, Rezeptur 3, Messanordnung (EZ)
Die 2. Ableitung der Spektren zeigt bei 1400 nm Varianzen von 0,02. Die Bande bei 1130 nm dagegen einen Unterschied im Bereich von 0,005.

C.2.2.2. Diskussion Spektren

C.2.2.3. Ergebnisse: Regressionsberechnungen (Modelle)

Für die Regression zwischen den aus den Spektren gewonnenen Daten und den Referenzmesswerten wurden 12 verschiedene Modelle mittels Regressionsberechnungen erstellt.

Verwendung von Reflexionsspektren gegenüber Absorptionsspektren untersucht werden.
Ergebnisse und Diskussion

Messgröße: Wassergehalt
Messenordnung: Extern, Petrischale
Spektrometer: Corona, Zeiss, NIR
Wassergehalt: 2-8%
Rezeptur: 3
Spektrenanzahl: 180
Spektren pro Referenz: 5
Validierung: Cross

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Spektrum (nm)</th>
<th>Spektrenart</th>
<th>Vorbehandl.</th>
<th>PCs</th>
<th>SEP</th>
<th>r</th>
<th>Slope</th>
<th>Offset</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1000-1600</td>
<td>Refl.</td>
<td>keine</td>
<td>3</td>
<td>0,57</td>
<td>0,943</td>
<td>0,90</td>
<td>0,53</td>
<td>0,008</td>
</tr>
<tr>
<td>A2</td>
<td>1000-1600</td>
<td>Refl.</td>
<td>2. Abl.</td>
<td>1</td>
<td>0,49</td>
<td>0,958</td>
<td>0,91</td>
<td>0,46</td>
<td>0,004</td>
</tr>
<tr>
<td>A3</td>
<td>1000-1600</td>
<td>Refl.</td>
<td>MSC</td>
<td>2</td>
<td>0,55</td>
<td>0,947</td>
<td>0,90</td>
<td>0,52</td>
<td>0,004</td>
</tr>
<tr>
<td>A4</td>
<td>1000-1600</td>
<td>Abs.</td>
<td>Keine</td>
<td>2</td>
<td>0,64</td>
<td>0,926</td>
<td>0,86</td>
<td>0,71</td>
<td>-0,003</td>
</tr>
<tr>
<td>A5</td>
<td>1000-1600</td>
<td>Abs.</td>
<td>2. Abl.</td>
<td>1</td>
<td>0,53</td>
<td>0,949</td>
<td>0,89</td>
<td>0,57</td>
<td>0,009</td>
</tr>
<tr>
<td>A6</td>
<td>1000-1600</td>
<td>Abs.</td>
<td>MSC</td>
<td>2</td>
<td>0,52</td>
<td>0,95</td>
<td>0,91</td>
<td>0,47</td>
<td>0,004</td>
</tr>
<tr>
<td>A7</td>
<td>1400-1500</td>
<td>Refl.</td>
<td>keine</td>
<td>4</td>
<td>0,47</td>
<td>0,949</td>
<td>0,91</td>
<td>0,47</td>
<td>0,009</td>
</tr>
<tr>
<td>A8</td>
<td>1400-1500</td>
<td>Refl.</td>
<td>2. Abl.</td>
<td>1</td>
<td>0,51</td>
<td>0,954</td>
<td>0,91</td>
<td>0,48</td>
<td>0,002</td>
</tr>
<tr>
<td>A9</td>
<td>1400-1500</td>
<td>Refl.</td>
<td>MSC</td>
<td>2</td>
<td>0,51</td>
<td>0,954</td>
<td>0,91</td>
<td>0,48</td>
<td>0,006</td>
</tr>
<tr>
<td>A10</td>
<td>1200-1300</td>
<td>Refl.</td>
<td>2. Abl.</td>
<td>4</td>
<td>0,54</td>
<td>0,948</td>
<td>0,90</td>
<td>0,51</td>
<td>0,013</td>
</tr>
<tr>
<td>A-LR1</td>
<td>1410</td>
<td>Refl.</td>
<td>keine</td>
<td>L.Reg.</td>
<td>0,95</td>
<td>0,828</td>
<td>0,69</td>
<td>1,59</td>
<td>0,002</td>
</tr>
<tr>
<td>A-LR2</td>
<td>1410</td>
<td>Refl.</td>
<td>2.Abl</td>
<td>L.Reg.</td>
<td>0,50</td>
<td>0,956</td>
<td>0,91</td>
<td>0,44</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Tabelle C.2.2-1 Regressionsmodelle, Messanordnung (EZ)

SEP (Standardfehler der Vorhersage):
Der SEP liegt für die Modelle aus Tabelle C.2.2-1 im Bereich von 0,47 % bis 0,95 % Wassergehalt. Bei Modell A4 und A-LR1 ist der SEP mit 0,64 % und 0,95 % signifikant größer als bei den restlichen SEP Werten (F-Test, p = 95 %), die sich mit ca. 0,5 % nicht voneinander unterscheiden.
Korrelationskoeffizient:
Bei Modell A-LR1 liegt der Korrelationskoeffizient unter 0,9 und wird als mangelhaft interpretiert. Die übrigen Modelle zeigen einen Wert über 0,9 und werden daher als gut angesehen.

Slope (Steigung der Regressionsgerade (Diagramm: Vorhersage gegen Referenz)):
Der Slope der Modelle A4, A5 und A-LR1 liegt außerhalb der als gut geltenden Grenze von 0,9. Die restlichen Modelle behaupten sich knapp über diesem Wert.

Offset (y-Achsenabschnitt der Regressionsgerade (Diagramm: Vorhersage gegen Referenz)):

Bias (systematischer Fehler):
Der Bias ist bei allen Modellen mit Werten unter 0,02 sehr klein. Die Modelle werden bezüglich des Bias als brauchbar angesehen.

PC´s (Hauptkomponentenanzahl):

C.2.2.4. Diskussion: Regressionsberechnungen (Modelle)

Auswahl des optimalen Modells:
Nach Tabelle C.2.2-1 zeigen die Modelle A4 und A-LR1 signifikant schlechtere SEP Werte als die restlichen Berechnungen und werden daher für die Auswahl nicht weiter berücksichtigt (F-Test, p = 95 %). Wegen dem Slope und Offset werden hingegen Modell A4, A5 und A-LR1 bei der Auswahl nicht berücksichtigt. Bei den übrigen Modellen zeigen sich bezüglich der Beurteilungsparameter (r, Slope, Offset, Bias) keine wesentlichen Unterschiede. Der SEP ist mit Werten von 0,47 % bis 0,57 % ebenfalls keine maßgeblichen Unterschiede. Die Ermittlung des optimalen Modells muss demnach über die Robustheit erfolgen. Dabei gilt ein Modell als besonders robust, wenn ihm eine einfache Regressionsberechnung zugrunde liegt, es mit geringer Hauptkomponentenanzahl berechnet werden kann und ein kleiner Wellenlängenbereich für die Regression ausreicht (siehe: B.9.3). Für die PLS-

Einfluss von Absorptionsspektren gegenüber Reflexionsspektren:

Vergleich der Vorbehandlungsmethoden 2. Ableitung mit MSC:

Einfluss der Wellenlängenselektion:
Vergleicht man Modell A2, A8 und A10 (Tabelle C.2.2-1), so zeigen sich bis auf die benötigte Hauptkomponentenanzahl in den Beurteilungsparametern keine auffallenden Unterschiede. Die 3 Modelle sagen den Wassergehalt mit einem SEP

C.2.2.5. Ergebnisse: Vergleichs der PLS Regression mit der linearen Regression bei Messanordnung (EZ)

Ergebnisse und Diskussion

Diagramme: Vorhersage gegen Referenz:

Abb. C.2.2-4: Modell A8: Vorhersage gegen Referenz

Abb. C.2.2-5: Modell A-LR2: Vorhersage gegen Referenz
Betrachtet man in Abb. C.2.2-4 und Abb. C.2.2-5 die Positionen der Einzelwerte, so sind keine wesentlichen Unterschiede zu beobachten. Demnach zeigen auch die Parameter der Steigung (Slope) und des Y-Achsenabschnitts der Regressionsgeraden (Offset) keine nennenswerten Unterschiede.
Zeitlicher Verlauf von Vorhersage und Referenz:

Abb. C.2.2-6 Modell A8: Zeitlicher Verlauf von Vorhersage und Referenz: Charge 1 von Probennummer 1 bis 7, Charge 2 von Probennummer 8 bis 36

Abb. C.2.2-7 Modell A-LR2: Zeitlicher Verlauf von Vorhersage und Referenz: Charge 1 von Probennummer 1 bis 7, Charge 2 von Probennummer 8 bis 36
Die in Abb. C.2.2-6 und Abb. C.2.2-7 gezeigten Verläufe der Vorhersage wurden durch Mittelwertbildung der 5 Einzelmessungen erstellt und zeigen keine nennenswerten Unterschiede. Die Differenzen zwischen Vorhersage und Referenz können mit den folgenden Residuenplots genauer analysiert werden (siehe: B.9.2.2).

Residuenplots:

![Residuenplot Modell A8](image1)

Abb. C.2.2-8 Modell A8: Residuenplot (Vorhersage – Referenz)

![Residuenplot Modell A-LR2](image2)

Abb. C.2.2-9 Modell A-LR2: Residuenplot (Vorhersage – Referenz)

C.2.2.6. Diskussion: Vergleich der PLS Regression mit der linearen Regression

Dies kann dadurch erklärt werden, dass bei der PLS Regression die erste Hauptkomponente entlang der Wellenlänge mit der größten Korrelation mit den Referenzwerten gelegt wird. Demnach ist die beste Korrelation bei 1410 nm zu finden.

Bezüglich der Vorhersage des Wassergehaltes bei Messanordnung (EZ) ermöglichen sowohl die lineare Regression nach 2. Ableitung (Modell A-LR2) als auch die Methode der PLS Regression (Modell A8) vergleichbare Ergebnisse.
C.2.3. Vorhersage bei der Online-Messanordnung (OMP)

Die Vorhersage des Wassergehaltes bei Externer-Messanordnung (EZ) ist mit einem Vorhersagefehler (SEP) von 0,5 % möglich (siehe Modell A-LR2, Kapitel C.2.2.). Im folgenden ist zu überprüfen, ob sich der Wassergehalt bei der Online-Messanordnung (OMP) genauso gut vorhersagen lässt.

Da die Spektren mit bloßem Auge nicht auswertbar sind, ist eine Regressionsberechnung notwendig, um einen möglichen funktionalen Zusammenhang zwischen Spektrendaten und gemessenen Referenzmesswerten erkennen zu können.

C.2.3.1. Ergebnisse: Regressionsberechnungen

Ergebnisse und Diskussion

<table>
<thead>
<tr>
<th>Messgröße:</th>
<th>Wassergehalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messanordnung:</td>
<td>OMP, Online mit Probenpräsenter</td>
</tr>
<tr>
<td>Spektrometer:</td>
<td>Corona, Zeiss, NIR</td>
</tr>
<tr>
<td>Wassergehalt</td>
<td>2-10%</td>
</tr>
<tr>
<td>Rezeptur:</td>
<td>3</td>
</tr>
<tr>
<td>Spektren-anzahl:</td>
<td>165</td>
</tr>
<tr>
<td>Spektren pro Referenz:</td>
<td>5</td>
</tr>
<tr>
<td>Regression</td>
<td>PLS1 und Lineare Regression</td>
</tr>
<tr>
<td>Validierung</td>
<td>FullCross</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Spektrum (nm)</th>
<th>Spektrrenart</th>
<th>Vorbehandlung</th>
<th>PCs</th>
<th>SEP</th>
<th>r</th>
<th>Slope</th>
<th>Offset</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>1400-1500</td>
<td>Refl.</td>
<td>2. Abl.</td>
<td>2</td>
<td>1,10</td>
<td>0,883</td>
<td>0,79</td>
<td>1,16</td>
<td>-0,001</td>
</tr>
<tr>
<td>B2</td>
<td>1000-1600</td>
<td>Refl.</td>
<td>2. Abl.</td>
<td>2</td>
<td>1,08</td>
<td>0,866</td>
<td>0,75</td>
<td>1,37</td>
<td>0,06</td>
</tr>
<tr>
<td>B-LR</td>
<td>1410</td>
<td>Refl.</td>
<td>2. Abl.</td>
<td>L. Regress.</td>
<td>1,29</td>
<td>0,826</td>
<td>0,69</td>
<td>1,70</td>
<td>0,002</td>
</tr>
</tbody>
</table>

Tabelle C.2.3-1 Regressionsmodelle, Messanordnung (OMP)

SEP (Standardfehler der Vorhersage):
Der SEP unterscheidet sich nicht signifikant. Modell B-LR ist mit einem SEP von 1,29 % jedoch etwas ungenauer als bei den Modellen B1 und B2 mit 1,1 %.

Korrelationskoeffizient:
Die Korrelationskoeffizienten liegen bei allen Modellen außerhalb des als gut definierten Schwellenwertes von 0,9.

Slope (Steigung der Regressionsgerade (Diagramm: Vorhersage gegen Referenz)):
Bei allen Modellen wird der als gut definierte Schwellenwert von 0,9 nicht erreicht.
Der Slope beträgt bei Modell B1 0,75 %, bei Modell B2 0,79 % und liegt über dem Wert von Modell B-LR (0,69 %).

Offset: (y-Achsschnittspunkt der Regressionsgerade (Diagramm: Vorhersage gegen Referenz)):
Der Offset ist bei allen Modellen größer als der SEP und wird mangelhaft bewertet.

Bias (systematischer Fehler):
Der Bias ist bei beiden Modellen mit Werten von -0,001 und 0,06 sehr klein. Bezüglich des Bias sind die Modelle daher als brauchbar anzusehen.

Hauptkomponentenanzahl:
Für Modell B1 und B2 werden jeweils 2 Hauptkomponenten benötigt.

C.2.3.2. Diskussion: Regressionsberechnungen
Hinsichtlich des SEP sind die Modelle B1 und B2 gleichwertig (F-Test, P = 95 %). Der SEP von Modell B-LR ist mit 1,29 % signifikant größer als bei den Modellen B1 und B2 mit 1,1 % (F-Test, p = 0,95). Demnach sind die Modelle B1 und B2 zu bevorzugen. Bezüglich der Robustheit werden bei gleichem SEP Modelle mit geringerer Hauptkomponentenanzahl und kleineren Wellenlängenbereichen bevorzugt (siehe:B.9.3). Modell B1 ist folglich von den drei untersuchten das Beste. Um Unterschiede genauer darzustellen wird es im folgenden Kapitel mit der Vorhersage bei linearer Regression verglichen.

C.2.3.3. Ergebnis: Vergleich der PLS-Regression mit der linearen Regression bei Messanordnung (OMP)
Um die Ergebnisse der Vorhersagen der PLS Regression mit der linearen Regression genauer vergleichen zu können, werden die Ergebnisse von Modell B1 und B-LR grafisch gegenübergestellt. Dargestellt sind die Diagramme „Vorhersage gegen Referenz“, „zeitlicher Verlauf der Vorhersage“ und die „Residuenplots."
Diagramme: Vorhersage gegen Referenz:

Abb. C.2.3-1 Modell B1: Vorhersage gegen Referenz:

Abb. C.2.3-2 Modell B-LR: Vorhersage gegen Referenz:
Bei Modell B1 (Abb. C.2.3-1) weist die Regressionsgerade mit einem Slope von 0,79 und einem Offset von 1,2 bessere Werte als bei Modell B-LR (Abb. C.2.3-2) auf.
Diagramme: Zeitlicher Verlauf von Vorhersage und Referenz:

Abb. C.2.3-3 Modell B1: Verlauf von Vorhersage und Referenz: Charge 1 von Probennummer 1 bis 18, Charge 2 von Probennummer 19 bis 33

Abb. C.2.3-4: Modell B-LR: Verlauf von Vorhersage gegen Referenz: Charge 1 von Probennummer 1 bis 18, Charge 2 von Probennummer 19 bis 33
Die in Abb. C.2.3-3 und Abb. C.2.3-4 gezeigten Verläufe der Vorhersage wurden durch Mittelwertbildung der 5 Einzelmessungen erstellt. Beide Modelle zeigen keine 100%ige Deckung mit den Referenzwerten. Um die Abweichungen zwischen Vorhersage und Referenz genauer zu betrachten, wurden Residuenplots erstellt (siehe: B.9.2.2).

Residuenplots:

![Residuenplot Modell B1](#)

Abb. C.2.3-5 Modell B1: Residuenplot (Vorhersage – Referenz)

![Residuenplot Modell B-LR](#)

Abb. C.2.3-6 Modell B-LR: Residuenplot (Vorhersage – Referenz)
Modell B1 (Abb. C.2.3-5) zeigt bei Probennummer 9, Modell B-LR (Abb. C.2.3-6) bei den Probennummer 1, 9, 12, 26, 27 eine Differenz von über 2 % zwischen den Vorhersagen und den Referenzwerten.

C.2.3.4. Diskussion: Vergleich der PLS Regression mit der linearen Regression bei Messanordnung (OMP)
Da Modell (B1) im Vergleich zu Modell (B-LR) bei den Diagrammen „Vorhersage gegen Referenz“ bessere Werte für Slope und Offset liefern, ist Modell (B1) welches mit der PLS Regression erstellt wurde, besser als Modell (B-LR), welches mit der linearen Regression erstellt wurde. Dies wird auch bei den Diagrammen des „zeitlichen Verlaufs der Vorhersage“ und den „Residuenplots“ von Modell (B1) und (B-LR1) deutlich. So zeigt Modell (B1) nur bei einer Probennummer eine Abweichung von über 2 %, während bei Modell (B-LR) fünf Proben Abweichungen von mehr als 2 % vom Referenzwert zeigen. Das mit zwei Hauptkomponenten berechnete PLS-Modell (B1), verbessert den SEP auf 1,1 % im Vergleich zu 1,27 % bei der linearen Regression, die demnach für die Vorhersage des Wassergehaltes bei der Messanordnung (OMP) nicht so gut geeignet ist. Für Modell (B1) werden zwei Hauptkomponenten, im Vergleich zu 1 Hauptkomponente bei Messanordnung (EZ) ermittelt. Dieser Unterschied ist durch die Online-Messanordnung (OMP) zu erklären, da hier die Temperatur ebenfalls einen Einfluß auf die Spektren besitzt und damit die Regressionsberechnungen beeinflusst.

C.2.3.5. Vergleich der Ergebnisse der Vorhersage des Wassergehaltes mit der Test Set Validierung bei Modell B1
Um das Ergebnis der Regressionsberechnungen von Modell B1 auch mit der Test Set Validierung zu überprüfen, wurde ebenfalls eine Regression mit der Test Set Validierung durchgeführt. Dafür wurden 75 Spektren (15 Proben) für die Kalibrierung und 90 Spektren (18 Proben) für die Validierung verwendet.
<table>
<thead>
<tr>
<th>Modell</th>
<th>Validierungstyp</th>
<th>PC´s</th>
<th>SEP</th>
<th>r</th>
<th>Slope</th>
<th>Offset</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Cross</td>
<td>2</td>
<td>1,1</td>
<td>0,883</td>
<td>0,79</td>
<td>1,1</td>
<td>-0,001</td>
</tr>
<tr>
<td>B1</td>
<td>Test Set</td>
<td>2</td>
<td>1,1</td>
<td>0,906</td>
<td>0,92</td>
<td>0,2</td>
<td>-0,21</td>
</tr>
</tbody>
</table>

Tabelle C.2.3-2 Vorhersage des Wassergehaltes bei Messanordnung (OMP) mit Modell B1 mit der Test Set Validierung

In Tabelle C.2.3-2 unterscheiden sich die Vorhersagefehler (SEP) nicht signifikant voneinander (F-Test, p = 95 %). Der Korrelationskoeffizient, Slope und Offset sind bei der Test Set Validierung geringfügig besser als bei der Cross Validierung. Der Bias ist hingegen bei der Cross Validierung geringer.

Die Vorhersagefehler (SEP´s) der Cross Validierung und der Test Set Validierung sind in etwa gleich. Beide Validierungsmethoden führen zum gleichen Vorhersagefehler. Die Unterschiede in den Beurteilungsparametern (r, Slope, Offset) sind dadurch zu erklären, daß bei der Test Set Validierung weniger Proben für die Validierung zur Verfügung stehen als bei der Cross Validierung.
C.2.4. Vorhersage bei der Online-Messanordnung (OOP)

Die Vorhersage des Wassergehaltes bei Messanordnung (OMP) gelingt mit einem SEP von 1,1 %. Im folgenden ist zu überprüfen, ob sich der Wassergehalt mit der Online-Messanordnung (OOP) besser vorhersagen lässt.

Da die Spektren mit bloßem Auge nicht auswertbar sind, ist eine Regressionsberechnung notwendig, um einen möglichen funktionalen Zusammenhang zwischen Spektrendaten und gemessenen Referenzmesswerten erkennen zu können.

C.2.4.1. Ergebnisse: Regressionsberechnungen

Messgröße: Wassergehalt
Messenordnung: ONLINE, ohne Probenpräsenter
Spektrometer: Corona, Zeiss, NIR
Wassergehalt: 2-10%
Rezeptur: 3
Spektren-anzahl: 165
Spektren pro Referenz: 5
Regression: PLS1 und Lineare Regression
Validierung: FullCross

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Spektrum (nm)</th>
<th>Spektrenart</th>
<th>Vorbehandlung</th>
<th>PCs</th>
<th>SEP</th>
<th>r</th>
<th>Slope</th>
<th>Offset</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1400-1500</td>
<td>Refl.</td>
<td>2. Abl.</td>
<td>2</td>
<td>0,89</td>
<td>0,923</td>
<td>0,87</td>
<td>0,71</td>
<td>-0,016</td>
</tr>
<tr>
<td>C2</td>
<td>1000-1600</td>
<td>Refl.</td>
<td>2. Abl.</td>
<td>2</td>
<td>0,91</td>
<td>0,920</td>
<td>0,86</td>
<td>0,75</td>
<td>-0,015</td>
</tr>
<tr>
<td>C-LR</td>
<td>1410</td>
<td>Refl.</td>
<td>2. Abl.</td>
<td>L.Regr.</td>
<td>1,43</td>
<td>0,780</td>
<td>0,62</td>
<td>2,09</td>
<td>-0,005</td>
</tr>
</tbody>
</table>

Tabelle C.2.4-1 Regressionsmodelle, Messanordnung (OOP)

SEP (Standardfehler der Vorhersage):
In Tabelle C.2.4-1 liegt der SEP im Bereich von 0,89 bis 1,43 %. Bei Modell C1 und C2 ist der SEP mit ca. 0,9 % signifikant kleiner als bei Modell C-LR (1,43 %).

Korrelationskoeffizient:
Die Korrelationskoeffizienten liegen nur bei Modell C-LR außerhalb des als gut definierten Schwellenwertes von 0,9.

Slope (Steigung der Regressionsgerade (Diagramm: Vorhersage gegen Referenz)):
Bei keinem Modell wird der als gut definierte Schwellenwert von 0,9 erreicht. Mit Werten von 0,87 und 0,86 sind die Modelle C1 und C2 deutlich besser als das Modell C-LR mit einem Slope von 0,62.

Offset (y-Achsenschnittpunkt der Regressionsgerade (Diagramm: Vorhersage gegen Referenz)):
Der Offset liegt nur bei Modell C-LR über dem SEP und ist ein weiteres Kriterium für die schlechte Güte des Modells C-LR.
Bias (systematischer Fehler):
Der Bias ist bei allen Modellen mit Werten von -0,015 bis 0,005 sehr klein. Die Modelle werden daher als brauchbar angesehen.

Hauptkomponentenanzahl:
Für die Modelle C1 und C2 wird die Hauptkomponentenanzahl von 2 ermittelt.

C.2.4.2. Diskussion: Regressionsberechnungen
Hinsichtlich des SEP sind die Modelle C1 und C2 als gleichwertig (F-Test, P = 95 %). Der SEP von Modell B-LR ist mit 1,43 % signifikant über dem Wert 0,89 % des Modell C1 (F-Test, p = 0,95). Demnach sind die Modelle C1 und C2 zu bevorzugen. Bezüglich der Robustheit gelten bei gleichem SEP Modelle mit geringer Hauptkomponentenanzahl und kleinen Wellenlängenbereichen als besser (siehe: B.9.3). Modell C1 ist folglich von den hier untersuchten das beste. Um Unterschiede genauer darzustellen wird es im folgenden Kapitel mit der Vorhersage bei linearer Regression verglichen.

C.2.4.3. Vergleich der PLS-Regression mit der linearen Regression bei Messanordnung (OOP)
Um die Ergebnisse der Vorhersagen der PLS-Regression mit der linearen Regression genauer vergleichen zu können, werden für die Modelle C1 und C-LR die Diagrammen „Vorhersage gegen Referenz“, „zeitlicher Verlauf der Vorhersage“ und die „Residuenplots“ graphisch gegenübergestellt.
Diagramme: Vorhersage gegen Referenz:

Abb. C.2.4-1 Modell C1: Vorhersage gegen Referenz:

\[y = 0.8688x + 0.7092 \]

Abb. C.2.4-2 Modell C-LR: Vorhersage gegen Referenz:

\[y = 0.6207x + 2.0901 \]
Für Modell C1 (Abb. C.2.4-1) zeigt die Regressionsgerade mit einem Slope von 0,87 und einem Offset von 0,7 bessere Werte als Modell C-LR (Abb. C.2.4-2).
Zeitlicher Verlauf von Vorhersage und Referenz:

Abb. C.2.4-3 Modell C1: Verlauf von Vorhersage und Referenz: Charge 1 von Probennummer 1 bis 18, Charge 2 von Probennummer 19 bis 33

Abb. C.2.4-4 Modell C-LR: Verlauf von Vorhersage und Referenz: Charge 1 von Probennummer 1 bis 18, Charge 2 von Probennummer 19 bis 33
Die in Abb. C.2.4-3 und Abb. C.2.4-4 gezeigten Verläufe der Vorhersage wurden durch Mittelwertbildung der 5 Einzelmessungen erstellt. Beide Modelle zeigen bei ihren Vorhersagewerten keine 100%ige Deckung mit den Referenzwerten. Um die Abweichungen zwischen Vorhersage und Referenz genauer zu betrachten, wurden folgende Residuenplots erstellt.

Residuenplots:

Abb. C.2.4-5 Modell C1: Residuenplot (Vorhersage – Referenz)

Abb. C.2.4-6 Modell C-LR: Residuenplot (Vorhersage – Referenz)
Ergebnisse und Diskussion

Modell C1 (Abb. C.2.4-5) zeigt bei keiner Probe eine Differenz von über 2 % zwischen Vorhersage und Referenzwert. Für Modell C-LR (Abb. C.2.4-6) zeigen sich dagegen bei den Proben 1, 8, 9, 16, 24, und 27 Differenzen von über 2 % Wassergehalt.

C.2.4.4. Diskussion des Vergleichs der PLS Regression mit der linearen Regression bei Messanordnung (OOP) anhand der Modelle C1 und C-LR1

Da Modell (C1) im Vergleich zu Modell (C-LR) für die „Vorhersage gegen Referenz“ bessere Daten für den Slope und den Offset liefert, ist Modell (C1) welches mit der PLS-Regression erstellt wurde, besser als das mit linearer Regression erstellte Modell (C-LR). Dieses Ergebnis wird auch bei den Diagrammen des „zeitlichen Verlaufs der Vorhersage“ und der „Residuenplots“ von Modell (B1) und (B-LR) deutlich. So weist bei Modell (C1) keine Probe Abweichungen von mehr als 2 % auf, während bei Modell (C-LR) 6 Proben um mehr als 2 % vom Referenzwert abweichen. Das PLS-Modell (C1) (Berechnung mit mit zwei Hauptkomponenten), verbessert den SEP auf 0,9 % im Vergleich zu 1,4 % bei der linearen Regression. Die lineare Regression ist demnach für die Vorhersage des Wassergehaltes, bei der Messanordnung (OOP), weniger gut geeignet wie das mit der PLS Regression erstellte Modell (C1). Für Modell (C1) werden zwei Hauptkomponenten, im Vergleich zu 1 Hauptkomponente bei Messanordnung (EZ), ermittelt. Dieser Unterschied ist durch die Online-Messanordnung (OOP) zu erklären, da hier die Temperatur ebenfalls einen Einfluß auf die Spektren besitzt und damit die Regressionsberechnungen beeinflusst.

C.2.4.5. Vergleich der Ergebnisse der Vorhersage des Wassergehaltes mit der Test Set Validierung bei Modell C1

Um das Ergebnis der Regressionsberechnungen von Modell B1 auch mit der Test Set Validierung zu überprüfen, wurde für Modell C1 eine Regression mit der Test Set Validierung durchgeführt. Dabei wurden 75 Spektren (15 Proben) für die Kalibrierung und 90 Spektren (18 Proben) für die Validierung verwendet.
Ergebnisse und Diskussion

<table>
<thead>
<tr>
<th>Modell</th>
<th>Validierungstyp</th>
<th>PC´s</th>
<th>SEP</th>
<th>r</th>
<th>Slope</th>
<th>Offset</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Cross</td>
<td>2</td>
<td>0,89</td>
<td>0,923</td>
<td>0,87</td>
<td>0,71</td>
<td>-0,016</td>
</tr>
<tr>
<td>C1TS</td>
<td>Test Set</td>
<td>2</td>
<td>0,82</td>
<td>0,951</td>
<td>0,85</td>
<td>0,93</td>
<td>0,009</td>
</tr>
</tbody>
</table>

Tabelle C.2.4-2 Vorhersage des Wassergehaltes bei Messanordnung (OOP) mit Modell C1 mit der Test Set Validierung

Wie aus Tabelle C.2.4-2 ersichtlich, sind die Vorhersagefehler (SEP’s) für die Cross Validierung und die Test Set Validierung als gleich anzusehen (F-Test, $P=95\%$). Der Korrelationskoeffizient ist mit 0,95 bei der Test Set Methode besser als bei der Cross Methode mit 0,92. Slope, Offset und Bias werden bei beiden Methoden als gut angesehen.

C.2.5. Zusammenfassung: Vorhersage des Wassergehaltes

In Tabelle C.2.5-1 sind die verschiedenen Vorhersagemodelle und Messanordnungen (EZ, OMP, OOP (siehe: B.6.4)) gegenübergestellt. Die grau unterlegten Modelle sind die nach Kapitel B.9 ermittelten optimalen Ergebnisse. Zusätzlich wird für den Vergleich zwischen PLS Regression und linearer Regression das entsprechende Pendant dargestellt. Der Fehler der Vorhersage wird als SEP angegeben (siehe Kapitel: B.9.2.2).

<table>
<thead>
<tr>
<th>Modell Nr.</th>
<th>Messanordnung</th>
<th>Regression</th>
<th>SEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8</td>
<td>EZ</td>
<td>PLS1</td>
<td>0,51</td>
</tr>
<tr>
<td>A-LR2</td>
<td>EZ</td>
<td>LR</td>
<td>0,50</td>
</tr>
<tr>
<td>B-LR</td>
<td>OMP</td>
<td>LR</td>
<td>1,29</td>
</tr>
<tr>
<td>B1</td>
<td>OMP</td>
<td>PLS1</td>
<td>1,10</td>
</tr>
<tr>
<td>C-LR</td>
<td>OOP</td>
<td>LR</td>
<td>1,43</td>
</tr>
<tr>
<td>C1</td>
<td>OOP</td>
<td>PLS1</td>
<td>0,89</td>
</tr>
</tbody>
</table>

Tabelle C.2.5-1 Zusammenfassung der Vorhersage des Wassergehaltes

Einfluss der Regressionsmethode:

Die Vorhersage des Wassergehaltes bei der Externen-Messanordnung (EZ) ergibt mit einem SEP von 0,5 % sowohl für die lineare als auch für die PLS-Regression den gleichen Vorhersagefehler (Vergleich Modell A8 mit A-LR2 Tabelle C.2.5-1). Bei den Online-Messanordnungen (OMP, OOP) liefert hingegen die lineare Regression schlechtere SEP Werte als die PLS Regression (Vergleich Modell B1 mit B-LR und C1 mit C-LR). Dies ist damit zu begründen, dass bei den Online-Messanordnungen die Temperatur Einfluss auf die Spektren ausübt. Eine PLS-Regression kann dies besser ausgleichen als die lineare Regression.

Einfluss der Messanordnung:

Der Fehler der Referenzmethode wurde mit 0,2 % Standardabweichung ermittelt. Dagegen ist die Vorhersage des Wassergehaltes bei Externer-Messanordnung (EZ) mit einem SEP von 0,5 % möglich. Der Fehler der Referenzmethode ist damit erwartungsgemäß geringer als der Fehler der Vorhersage (SEP) [70].
Im Vergleich zur Externen-Messanordnung (EZ) ist der Fehler der Vorhersage des Wassergehaltes bei den Online-Messanordnungen mit einem SEP von 1,1 % (Messanordnung OMP) und 0,9 % (Messanordnung OOP) ungefähr doppelt so groß. Die Unterschiede zwischen Externer- und Online-Messanordnung lassen sich dadurch erklären, dass bei der Externen-Messanordnung die Spektrenaufnahmen und die Messungen der Referenzwerte an der gleichen Probe durchgeführt wurden. Bei den Online-Messanordnungen (OMP, OOP) wurden dagegen für die Spektrenaufnahmen und die Referenzmessungen 2 unterschiedliche Proben verwendet. Die (OOP)-Messanordnung zeigt gegenüber der (OMP)-Messanordnung eine Verbesserung des SEP um 0,2 %. Da bei den Versuchschargen die Spektrenaufnahmen und die Referenzwertmessungen für beide Messanordnungen gleichzeitig durchgeführt wurden (siehe: Kapitel:C.2.3 und C.2.4), lassen sich die beiden Ergebnisse gut miteinander vergleichen. Der verwendete interne Probenpräsenter führt daher nicht zu einer Verbesserung der Vorhersage des Wassergehaltes. Messanordnung (OOP) (ohne Probenpräsenter) ist demnach Messanordnung (OMP) zu bevorzugen.

C.3. VORHERSAGE DER PARTIKELGRÖßE VON GRANULATEN IN DER WIRBELSCHICHT IM WELLENLÄNGENBEREICH VON 1000-1600 NM

C.3.1. Auswahl des Wellenlängenbereichs für die Regressionsberechnungen

C.3.1.1. Ergebnisse

![Abb. C.3.1-1 Spektrum von PVP, 1000-1600 nm]
Das PVP Spektrum (Abb. C.3.1-1) zeigt bei 1180 nm mit 80 % Reflexion den geringsten Wert. Von 1000-1100 nm beträgt die Reflexion 97 %, im Bereich von 1400-1500 nm liegen die Werte oberhalb 90 %.

![Graph showing PVP spectrum](image)

Abb. C.3.1-2 Spektrum von Wasser, 1000-1600 nm

Das Spektrum von Wasser (Abb. C.3.1-2) zeigt bei 1 mm Schichtdicke im Bereich von 1000-1600 nm Reflexionswerte kleiner als 90 %. Im Bereich von 1400-1500 nm nehmen die Reflexionswerte weiter ab und erreichen bei 1450 nm ihren Minimalwert mit 10 % Reflexion. Bei 0,1 mm Schichtdicke des Wassers werden von 1000 nm bis 1300 nm annähernd konstante Reflexionswerte von 90 % erhalten. Dagegen sinken die Reflexionswerte von 1400 nm bis 1500 nm auf Werte kleiner als 80 %.

C.3.1.2. Diskussion: Auswahl des Wellenlängenbereichs für die Regressionsberechnungen

Da für das PVP-Pulver (Abb. C.3.1-1) im Bereich von 1000-1000 nm Reflexionswerte von über 97 % gemessen werden, sind in diesem Wellenlängenbereich keine
wesentlichen Absorptionen zu beobachten. Da Rezeptur 1 PVP in einer Konzentration von maximal 5 % (m/m) enthält, ist mit keinem bedeutenden Einfluss auf die Spektren der zu vermessenden Wirbelschichtproben zu rechnen.

Da für Wasser (Abb. C.3.1-2) bei 0,1 mm Schichtdicke von 1000 nm bis 1100 nm mit 90 % die größten Reflexionswerte gemessen werden, zeigen sich hier die geringsten Absorptionen. In der untersuchten Rezeptur 1 liegt der Wassergehalt bei maximal 10 %, während das in Abb. C.3.1-2 gezeigte Spektrum von reinem Wasser aufgenommen wurde. Folglich sind für Wasser geringere Absorptionswerte zu erwarten.

Da sowohl PVP als auch Wasser von 1000-1100 nm die geringsten Absorptionen zeigt, wurde dieser Wellenlängenbereich für die Regressionsberechnungen verwendet.

C.3.2. Vorhersage der Partikelgröße mit der Externen-Messanordnung (EZ)

Der für die Vorhersage der Partikelgröße relevante Wellenlängenbereich wurde in Kapitel C.3.1 ermittelt. Im folgenden soll überprüft werden, wie sich die Partikelgröße bei der Externen-Messanordnung (EZ) vorhersagen lässt.

Da sich der Informationsgehalt der Spektren aus Abb. C.3.2-1 mit bloßem Auge nicht erkennen lässt, werden im folgenden Kapitel Regressionsberechnungen beschrieben, um einen möglichen funktionalen Zusammenhang zwischen Spektrendaten und gemessenen Referenzmesswerten der Partikelgröße erkennen zu können.

C.3.2.1. Ergebnisse: Regressionsberechnungen

Für die Regression zwischen den aus den Spektren gewonnen Daten und den Referenzmesswerten wurden 3 verschiedene Modelle mittels PLS1-Regression erstellt (siehe Tabelle C.3.2-1). Modell D1 und D2 wurden mit der Cross-Methode, Modell D1-TS mit der Test-Set-Methode validiert. Bei der Test-Set-Validierung wurden 70 Spektren für die Regression und 65 Spektren für die Validierung verwendet.
Ergebnisse und Diskussion

Messgröße: x50
Messenordnung: EZ, Extern
Spektrometer: Corona, Zeiss, NIR
x50 Varianz: 38-107 µm
Rezeptur: 1
Spektrenanzahl: 135
Spektren pro Referenz: 5
Regression: PLS1
Validierung: Cross

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Spektrum (nm)</th>
<th>Spektrenart</th>
<th>Vorbehandlung</th>
<th>PCs</th>
<th>SEP</th>
<th>r</th>
<th>Slope</th>
<th>Offset</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>1000-1100</td>
<td>Refl.</td>
<td>keine</td>
<td>4</td>
<td>3,9</td>
<td>0,985</td>
<td>0,99</td>
<td>0,47</td>
<td>-0,002</td>
</tr>
<tr>
<td>D2</td>
<td>1000-1100</td>
<td>Refl.</td>
<td>2. Abl.</td>
<td>2</td>
<td>7,9</td>
<td>0,932</td>
<td>0,89</td>
<td>9,22</td>
<td>0,095</td>
</tr>
</tbody>
</table>

Validierung: Test Set

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Spektrum (nm)</th>
<th>Spektrenart</th>
<th>Vorbehandlung</th>
<th>PCs</th>
<th>SEP</th>
<th>r</th>
<th>Slope</th>
<th>Offset</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1-TS</td>
<td>1000-1100</td>
<td>Refl.</td>
<td>keine</td>
<td>4</td>
<td>4,2</td>
<td>0,988</td>
<td>1,01</td>
<td>-3,18</td>
<td>-1,98</td>
</tr>
</tbody>
</table>

Tabelle C.3.2-1 Regressionsberechnungen der Partikelgröße im NIR, Messanordnung (EZ)

Die Beurteilungsparameter (r, Slope, Offset, Bias) (Tabelle C.3.2-1) für Modell D1, D2 und D1TS werden als gut definiert (siehe Kapitel: B.9). So wird mit Modell D1 und D1TS ein Vorhersagefehler der mittleren Partikelgröße von annähernd 4 µm erhalten. Modell D2, welches mit der 2. Ableitung erstellt wurde, ergibt mit einem SEP von 7,9 µm einen signifikant schlechteren Vorhersagefehler als Modell D1 und D1TS (F-Test, P = 99 %).

C.3.2.2. Diskussion der Regressionsberechnungen

Modell D1 (Tabelle C.3.2-1) welches die mittlere Partikelgröße mit einem Vorhersagefehler (SEP) von 4 µm vorhersagt ist von den untersuchten das Beste. Beim Vergleich der Cross-Validierung (Modell D1) mit der Test-Set-Validierung (Modell D1TS) ergeben sich in den Beurteilungsparameter keine wesentlichen Unterschiede. Mit beiden Validierungsmethoden wird ein Vorhersagefehler von
annähernd 4 µm erhalten. Somit wird der Vorhersagefehler (SEP) sowohl von der Cross- als auch der Test-Set-Validierung bestätigt.

Die Ergebnisse decken sich mit den Arbeiten von Frake [85] und Storz [6], die 3 bis 5 Hauptkomponenten für die bestmögliche Vorhersage der mittleren Partikelgröße von Laktose-Pulver benötigten.

Da der SEP des unvorbehandelten Modells D1 signifikant besser ist als nach der 2. Ableitung (Modell D2), werden die Spektren für die folgenden Regressionsberechnungen keiner Vorbehandlung unterzogen.

C.3.2.3. Ergebnisse: Zeitlichen Verlaufs der Partikelgröße von Regressionsmodell D1

Um das Ergebnis von Modell D1 genauer zu analysieren, werden in Abb. C.3.2-2 die zeitlichen Verläufe der mittleren Partikelgröße und des Wassergehaltes genauer betrachtet. Dabei ist anzumerken, dass die Proben 1 bis 24 aus dem Wirbelschichtprozess entnommen wurden. Die Proben Nr. 25 bis 27 wurden durch Verreibung in einem Mörser aus Probe Nr. 24 hergestellt. Es galt festzustellen, ob die Vorhersage der Partikelgröße auch dann noch zutrifft, wenn sich die Partikelgröße wieder verkleinert.

C.3.2.4. Diskussion des zeitlichen Verlaufs der Partikelgröße von Regressionsmodell D1

Da Regressionsmodell D1 nach Abb. C.3.2-2 den gleichen zeitlichen Verlauf der Partikelgröße zeigt wie die Referenzmethode Laserbeugung ist davon auszugehen, dass die Vorhersage der Partikelgröße weder durch Wasser noch durch PVP beeinflusst wird. Da Modell D2, welches mit der 2. Ableitung erstellt wurde, zu größeren Schwankungen in der Vorhersage führt als Modell D1, wird das unvorbehandelte Modell D1 bevorzugt.
C.3.3. Vorhersage der Partikelgröße bei der Online-Messanordnung (OMP)

Die Vorhersage der Partikelgröße (x50) bei externer Messanordnung (EZ) ist mit einem Vorhersagefehler (SEP) von 4 µm möglich (siehe Modell D1, Kapitel C.3.2.1). Im folgenden ist zu überprüfen, ob sich die Partikelgröße bei der Online-Messanordnung (OMP) genauso gut vorhersagen lässt.

Abb. C.3.3-1 Spektren Rezeptur 1: Messanordnung (OMP) Vorhersage der Partikelgröße in der Wirbelschicht, 1000-1600 nm

Da die Spektren mit bloßem Auge nicht auswertbar sind, ist eine Regressionsberechnung notwendig, um einen möglichen funktionalen Zusammenhang zwischen Spektrendaten und gemessenen Referenzmesswerten erkennen zu können.
C.3.3.1. Ergebnisse der Regressionsberechnungen

Für die Regression zwischen den aus den Spektren gewonnenen Daten und den Referenzmesswerten wurden 2 verschiedene Modelle mittels PLS1-Regression erstellt (siehe Tabelle C.2.2-1). Modell E1 wurde mit der Cross-Methode, Modell E1-TS mit der Test-Set-Methode validiert. Bei der Test-Set-Validierung wurden 80 Spektren für die Regression und 75 Spektren für die Validierung verwendet.

<table>
<thead>
<tr>
<th>Messgröße:</th>
<th>x50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messanordnung:</td>
<td>OMP, ONLINE mit Probenpräsenter</td>
</tr>
<tr>
<td>Spektrometer:</td>
<td>Corona, Zeiss, NIR</td>
</tr>
<tr>
<td>x50 Varianz</td>
<td>41-112 µm</td>
</tr>
<tr>
<td>Rezeptur:</td>
<td>1</td>
</tr>
<tr>
<td>Spektrenanzahl:</td>
<td>155</td>
</tr>
<tr>
<td>Spektren pro Referenz:</td>
<td>5</td>
</tr>
<tr>
<td>Regression</td>
<td>PLS1</td>
</tr>
<tr>
<td>Validierung</td>
<td>Cross</td>
</tr>
<tr>
<td>Nr.</td>
<td>Spektrum (nm)</td>
</tr>
<tr>
<td>E1</td>
<td>1000-1100</td>
</tr>
<tr>
<td>Validierung</td>
<td>Test-Set</td>
</tr>
<tr>
<td>E1 TS</td>
<td>1000-1100</td>
</tr>
</tbody>
</table>

Tabelle C.3.3-1 Regressionsberechnungen der Partikelgröße im NIR, Messanordnung (OMP)

Die Beurteilungsparameter (r, Slope, Offset, Bias) (Tabelle C.2.2-1) werden bei Modell E1 und E1TS als gut bewertet (siehe: B.9.3).

C.3.3.2. Diskussion der Regressionsberechnungen

Beim Vergleich der Cross-Validierung (Modell E1) mit der Test-Set-Validierung (Modell E1TS) ergeben sich in den Beurteilungsparameter keine wesentlichen Unterschiede (Tabelle C.3.3-1). Mit beiden Validierungsmethoden wird ein Vorhersagefehler von annähernd 5 µm erhalten. Somit wird der Vorhersagefehler (SEP) sowohl von der Cross- als auch der Test-Set-Validierung bestätigt.
Mit der Online-Messanordnung (OMP) lassen sich mit einem SEP von 5 µm annähernd so gute Ergebnisse erzielen wie mit Messanordnung (EZ).

C.3.3.3. Grafische Darstellung der Vorhersage der Partikelgröße von Regressionsmodell E1

Mit Ausnahme von Probe 18 liegen die Differenzen zwischen Vorhersage und Referenz nach Abb. C.3.3-3 und Abb. C.3.3-4 innerhalb von + 10 µm. Dieses
Ergebnis ist auch so zu erwarten, da für die Vorhersagen ein SEP von 5 µm ermittelt wurde. Statistisch betrachtet sollten demnach 95 % der Vorhersagen im Bereich von + - 2 SEP Werten liegen.

C.4. VORHERSAGE DER PARTIKELGRÖßE VON GRANULATEN IN DER WIRBELSCHICHT IM WELLENLÄNGENBEREICH VON 400-1000 NM

C.4.1. Auswahl des Wellenlängenbereichs für die Regressionsberechnungen

Die Online-Vorhersage der Partikelgröße im NIR gelingt mit einem Vorhersagefehler (SEP) von rund 5 µm. Im folgenden ist zu überprüfen, ob sich die Partikelgröße im Wellenlängenbereich von 400-1000 nm besser vorhersagen lässt.

C.4.1.1. Ergebnis

Abb. C.4.1-1 Transmissionsspektrum einer 10 % igen PVP-Lösung, 400-1000 nm

PVP (Abb. C.4.1-1) zeigt im Wellenlängenbereich von 600-1000 nm Reflexionswerte größer 99,5 %. Unterhalb von 600 nm nimmt die Reflexion bis auf 90 % bei 400 nm ab.

C.4.1.2. Diskussion: Auswahl des Wellenlängenbereichs für die Regressionsberechnungen

Da das PVP-Spektrum (Abb. C.4.1-1) im Bereich von 600-1000 nm mit über 99,5 % die größten Reflexionswerte zeigt, sind hier die geringsten Absorptionen des PVP vorhanden. Deshalb hat PVP in diesem Wellenlängenbereich den geringsten Störeinfluss auf die Spektren der zu vermessenden Proben. Die Regressionsberechnungen wurden im Wellenlängenbereich von 600-850 nm durchgeführt, da hier auch das Wasser die geringsten Absorptionen zeigt [86].
C.4.2. Vorhersage der Partikelgröße im VIS bei Messanordnung (OMP)

Der für die Vorhersage der Partikelgröße relevante Wellenlängenbereich im VIS wurde in Kapitel C.4.1 ermittelt. Im folgenden ist zu überprüfen, ob sich die Partikelgröße bei der Online-Messanordnung (OMP) von 600-850 nm besser vorhersagen lässt als von 1000-1100 nm.

![Spektren Rezeptur 1: Messanordnung (OMP), 400-1000 nm](image)

Abb. C.4.2-1 Spektren Rezeptur 1: Messanordnung (OMP), 400-1000 nm

Da die Spektren mit bloßem Auge nicht auswertbar sind, ist eine Regressionsberechnung notwendig, um einen möglichen funktionalen Zusammenhang zwischen Spektrendaten und gemessenen Referenzmesswerten erkennen zu können.
C.4.2.1. Ergebnisse: Regressionsberechnung der Partikelgröße (x50) für Messanordnung (OMP) im VIS Bereich

Für die Regression zwischen den aus den Spektren gewonnenen Daten und den Referenzmesswerten wurden 2 verschiedene Modelle mittels PLS1-Regression erstellt (siehe Tabelle C.4.2-1). Modell F1 wurde mit der Cross-Methode, Modell F1-TS mit der Test-Set-Methode validiert.

<table>
<thead>
<tr>
<th>Messgröße:</th>
<th>x50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messanordnung:</td>
<td>OMP, Online mit Probenpräsenter</td>
</tr>
<tr>
<td>Spektrometer:</td>
<td>Corona, Zeiss, VIS</td>
</tr>
<tr>
<td>x50 Varianz</td>
<td>41-100 µm</td>
</tr>
<tr>
<td>Rezeptur:</td>
<td>1</td>
</tr>
<tr>
<td>Spektrenanzahl:</td>
<td>65</td>
</tr>
<tr>
<td>Spektren pro Referenz:</td>
<td>5</td>
</tr>
<tr>
<td>Regression</td>
<td>PLS1</td>
</tr>
<tr>
<td>Validierung</td>
<td>Cross</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Spektrum (nm)</th>
<th>Spektrart</th>
<th>Vorbehandlung</th>
<th>PCs</th>
<th>SEP</th>
<th>R</th>
<th>Slope</th>
<th>Offset</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>600-850</td>
<td>Refl.</td>
<td>Keine</td>
<td>3</td>
<td>7,3</td>
<td>0,937</td>
<td>0,91</td>
<td>6,98</td>
<td>0,04</td>
</tr>
<tr>
<td>F1 TS</td>
<td>600-850</td>
<td>Refl.</td>
<td>Keine</td>
<td>3</td>
<td>6,68</td>
<td>0,955</td>
<td>0,98</td>
<td>1,37</td>
<td>0,058</td>
</tr>
</tbody>
</table>

Tabelle C.4.2-1 Regressionsberechnungen der Partikelgröße im VIS, Messanordnung (OMP)

Für Modell F1 und F1TS (Tabelle C.4.2-1) liegen die Beurteilungsparameter (r, Slope, Offset, Bias) im Bereich der nach Kapitel B.9 als gut definierten Grenzen.

C.4.2.2. Diskussion: Regressionsberechnungen der Partikelgröße (x50) für Messanordnung (OMP) im VIS Bereich

Beim Vergleich der Cross-Validierung (Modell F1) mit der Test-Set-Validierung (Modell F1TS) ergeben sich für den SEP keine wesentlichen Unterschiede (Tabelle C.4.2-1). Mit beiden Validierungsmethoden wird ein Vorhersagefehler von annähernd
Ergebnisse und Diskussion

7 µm erhalten. Somit wird der Vorhersagefehler (SEP) sowohl von der Cross- als auch der Test-Set-Validierung bestätigt. Die Partikelgröße lässt sich daher im Wellenlängenbereich von 600-850 nm etwas schlechter vorhersagen als im NIR, bei dem ein SEP von 5 µm ermittelt wurde.

C.4.2.3. Graphische Darstellung der Vorhersage der Partikelgröße durch das Regressionsmodell F1

Die Differenzen zwischen Vorhersage und Referenz (Abb. C.4.2-3, Abb. C.4.2-4) liegen innerhalb von + - 14 µm. Dieses Ergebnis ist auch so zu erwarten, da der SEP
rund 7 µm beträgt. Statistisch betrachtet sollten demnach 95 % der Vorhersagen im Bereich von +/- 2 SEP Werten liegen.

C.4.3. Vorhersage der Partikelgröße im VIS bei Messanordnung (OOP)

Die Vorhersage der Partikelgröße (x50) im VIS bei der Online-Messanordnung (OMP) ist mit einem Vorhersagefehler (SEP) von 7 µm möglich (siehe Modell F1, Kapitel C.4.2). Im folgenden ist zu überprüfen, wie sich die Partikelgröße im VIS bei der Online-Messanordnung (OOP) vorhersagen lässt.

Da die Spektren mit bloßem Auge nicht auswertbar sind, ist eine Regressionsberechnung notwendig, um einen möglichen funktionalen Zusammenhang zwischen Spektrendaten und gemessenen Referenzmesswerten erkennen zu können.
C.4.3.1. Ergebnisse: Regressionsberechnungen der Partikelgröße bei Messanordnung (OOP) im VIS

<table>
<thead>
<tr>
<th>Messgröße:</th>
<th>x50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messanordnung:</td>
<td>OOP, Online ohne Probenpräsenter</td>
</tr>
<tr>
<td>Spektrometer:</td>
<td>Corona, Zeiss, VIS</td>
</tr>
<tr>
<td>x50 Varianz</td>
<td>41-100 µm</td>
</tr>
<tr>
<td>Rezeptur:</td>
<td>1</td>
</tr>
<tr>
<td>Spektrenanzahl:</td>
<td>65</td>
</tr>
<tr>
<td>Spektren pro Referenz:</td>
<td>5</td>
</tr>
<tr>
<td>Regression</td>
<td>PLS1</td>
</tr>
</tbody>
</table>

Validierung

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Spektrum (nm)</th>
<th>Spektrenart</th>
<th>Vorbehandlung</th>
<th>PCs</th>
<th>SEP</th>
<th>R</th>
<th>Slope</th>
<th>Offset</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>600-850</td>
<td>Refl.</td>
<td>keine</td>
<td>3</td>
<td>6,93</td>
<td>0,945</td>
<td>0,91</td>
<td>6,9</td>
<td>0,11</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Validierung</td>
<td>Test Set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1 TS</td>
<td>600-850</td>
<td>Refl.</td>
<td>keine</td>
<td>3</td>
<td>7,6</td>
<td>0,953</td>
<td>1,06</td>
<td>-2,7</td>
<td>1,73</td>
</tr>
</tbody>
</table>

Tabelle C.4.3-1 Regressionsberechnungen der Partikelgröße im VIS, Messanordnung (OOP)

Für Modell G1 und G1TS (Tabelle C.4.3-1) werden die Beurteilungsparameter (r, Slope, Offset, Bias) als gut definiert (siehe: B.9).

C.4.3.2. Diskussion: Regressionsberechnungen der Partikelgröße bei Messanordnung (OOP) im VIS

Bei Modell G1 und G1TS (Tabelle C.4.3-1) ist die Vorhersage der mittleren Partikelgröße (x50) mit einem SEP von annähernd 7 µm möglich.

Beim Vergleich der Cross-Validierung (Modell F1) mit der Test-Set-Validierung (Modell F1TS) ergeben sich für den SEP keine wesentlichen Unterschiede. Mit beiden Validierungsmethoden wird ein Vorhersagefehler von annähernd 7 µm erhalten. Somit wird der Vorhersagefehler (SEP) sowohl von der Cross- als auch der Test-Set-Validierung bestätigt.
Messenordnung (OMP) zeigt mit einem SEP von rund 7 µm keinen Vorteil gegenüber Messanordnung (OOP), bei der ebenfalls ein SEP von rund 7 µm ermittelt wird. Die Partikelgröße lässt sich deshalb ohne den Probenpräsenter (siehe B.6.4.4) genauso gut vorhersagen.

C.4.3.3. Graphische Darstellung der Vorhersage der Partikelgröße von Regressionsmodell G1

\[
y = 0.9128x + 6.905
\]

Abb. C.4.3-1 Modell G1 Vorhersage gegen Referenz

Abb. C.4.3-2 Modell G1: Zeitlicher Verlauf von Vorhersage und Referenz

Abb. C.4.3-3 Modell G1: Residuenplot

C.4.4. Zusammenfassung: Vorhersage der Partikelgröße

Für den Vergleich der Vorhersage der Partikelgröße (x50) mit den verschiedenen Messanordnungen dient Tabelle C.4.4-1. Der Fehler der Vorhersage ist als SEP angegeben (siehe Kapitel B.9.2.2).

<table>
<thead>
<tr>
<th>Modell Nr.</th>
<th>Verwendete Wellenlängen</th>
<th>Messanordnung</th>
<th>Regression</th>
<th>SEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>1000-1100</td>
<td>EZ</td>
<td>PLS/ 4 PC</td>
<td>4,0 µm</td>
</tr>
<tr>
<td>E1</td>
<td>1000-1100</td>
<td>OMP</td>
<td>PLS/ 5 PC</td>
<td>5,4 µm</td>
</tr>
<tr>
<td>F1</td>
<td>600-850</td>
<td>OMP</td>
<td>PLS/ 3 PC</td>
<td>7,3 µm</td>
</tr>
<tr>
<td>G1</td>
<td>600-850</td>
<td>OOP</td>
<td>PLS/ 3 PC</td>
<td>6,9 µm</td>
</tr>
</tbody>
</table>

Tabelle C.4.4-1 Zusammenfassung der Vorhersage der Partikelgröße

Mit der Externen-Messanordnung (EZ) (Tabelle C.4.4-1) ist im Bereich von 1000-1100 nm mit einem SEP von 4 µm (Modell D1) die beste Vorhersage der mittleren Partikelgröße möglich. Bei den Online-Messanordnungen wird das beste Ergebnis im Wellenlängenbereich von 1000-1100 nm mit Messanordnung (OMP) mit einem SEP von 5,4 µm erhalten (Modell E1). Die Modelle F1 und G1, die im Bereich von 600-850 nm erstellt wurden ergeben mit einem SEP von jeweils rund 7 µm etwas schlechtere Vorhersagen als bei 1000-1100 nm. Allerdings werden im Bereich von 600-850 nm nur 3 Hauptkomponenten, von 1000-1100 nm 5 Hauptkomponenten für die Regression benötigt. Dies ist auf den geringen Einfluss des Wassers im Bereich von 600-850 nm zurückzuführen, der im Gegensatz zur Regression bei 1000-1100 nm nicht mehr auszumachen ist.

C.5. MESSUNG DER PARTIKULÄREN POROSITÄT VON GRANULATEN MIT DER QUECKSILBERPOROSIMETRIE

C.5.1. Vermessung von porenfreien Glasgranulaten bei verschiedenen Partikelgrößen

C.5.1.1. Ergebnisse:

![Graphik]

Abb. C.5.1-1 Quecksilberporosimetrie: Gemessene Porositätswerte von Granulaten unterschiedlicher Partikelgröße: Granulat B4, Glaskugelchen, zertrümmertes Glas

<table>
<thead>
<tr>
<th>Korngröße n-klasse (µm)</th>
<th>Mittlere Korngröße (µm)</th>
<th>Porosität (%) Messung 1</th>
<th>Porosität (%) Messung 2</th>
<th>Porosität (%) Messung 3</th>
<th>Mittelwert Porosität (%)</th>
<th>Standard Abw. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-100</td>
<td>50</td>
<td>54,1</td>
<td>52,6</td>
<td>53,1</td>
<td>53,3</td>
<td>0,8</td>
</tr>
<tr>
<td>100-200</td>
<td>150</td>
<td>51,9</td>
<td>51,7</td>
<td>52,4</td>
<td>52,0</td>
<td>0,4</td>
</tr>
<tr>
<td>200-355</td>
<td>277,5</td>
<td>34,3</td>
<td>31,5</td>
<td>32,5</td>
<td>32,8</td>
<td>1,4</td>
</tr>
<tr>
<td>355-500</td>
<td>427,5</td>
<td>21,3</td>
<td>21,5</td>
<td>22,1</td>
<td>21,6</td>
<td>0,4</td>
</tr>
<tr>
<td>630-800</td>
<td>715</td>
<td>20,3</td>
<td>19,5</td>
<td>19,6</td>
<td>19,8</td>
<td>0,4</td>
</tr>
<tr>
<td>800-1000</td>
<td>900</td>
<td>19,4</td>
<td>19,6</td>
<td>19,7</td>
<td>19,6</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Mittelwert: 0,6

Tabelle C.5.1-1 Granulat B4: gemessene Quecksilberporositätswerte bei verschiedenen Partikelgrößen (Rohdaten)

<table>
<thead>
<tr>
<th>Korngröße n-klasse (µm)</th>
<th>Mittlere Korngröße (µm)</th>
<th>Porosität % Messung 1</th>
<th>Porosität % Messung 2</th>
<th>Porosität % Messung 3</th>
<th>Mittelwert Porosität (%)</th>
<th>Standard Abw. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-50</td>
<td>50</td>
<td>38,6</td>
<td>37,8</td>
<td>38,8</td>
<td>38,4</td>
<td>0,5</td>
</tr>
<tr>
<td>100-200</td>
<td>150</td>
<td>32,9</td>
<td>34,2</td>
<td>33,6</td>
<td>33,6</td>
<td>0,7</td>
</tr>
<tr>
<td>200-300</td>
<td>250</td>
<td>12,8</td>
<td>12,9</td>
<td>13,8</td>
<td>13,2</td>
<td>0,6</td>
</tr>
<tr>
<td>300-400</td>
<td>350</td>
<td>5,6</td>
<td>4,8</td>
<td>5,8</td>
<td>5,4</td>
<td>0,5</td>
</tr>
<tr>
<td>400-600</td>
<td>500</td>
<td>3,1</td>
<td>2,4</td>
<td>2,6</td>
<td>2,7</td>
<td>0,4</td>
</tr>
<tr>
<td>750-1000</td>
<td>875</td>
<td>1,6</td>
<td>1,8</td>
<td>1,6</td>
<td>1,7</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Mittelwert: 0,5

Tabelle C.5.1-2 Glaskugeln: gemessene Quecksilberporositätswerte bei verschiedenen Partikelgrößen (Rohdaten)
Ergebnisse und Diskussion

<table>
<thead>
<tr>
<th>Korngrößenklasse (µm)</th>
<th>Mittlere Korngröße (µm)</th>
<th>Porosität % Messung 1</th>
<th>Porosität % Messung 2</th>
<th>Porosität % Messung 3</th>
<th>Mittelwert Porosität (%)</th>
<th>Standard Abw. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-100</td>
<td>50</td>
<td>55,3</td>
<td>54,1</td>
<td>54,5</td>
<td>54,6</td>
<td>0,6</td>
</tr>
<tr>
<td>100-200</td>
<td>150</td>
<td>53,5</td>
<td>51,3</td>
<td>52,1</td>
<td>52,3</td>
<td>1,1</td>
</tr>
<tr>
<td>200-355</td>
<td>277,5</td>
<td>34,1</td>
<td>29,3</td>
<td>30,5</td>
<td>31,3</td>
<td>2,5</td>
</tr>
<tr>
<td>355-500</td>
<td>427,5</td>
<td>8,6</td>
<td>8,5</td>
<td>9,2</td>
<td>8,8</td>
<td>0,4</td>
</tr>
<tr>
<td>500-630</td>
<td>565</td>
<td>5,3</td>
<td>5,5</td>
<td>5,6</td>
<td>5,5</td>
<td>0,2</td>
</tr>
<tr>
<td>630-800</td>
<td>715</td>
<td>4,0</td>
<td>3,6</td>
<td>3,9</td>
<td>3,8</td>
<td>0,2</td>
</tr>
<tr>
<td>800-1000</td>
<td>900</td>
<td>2,7</td>
<td>2,7</td>
<td>2,8</td>
<td>2,7</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Tabelle C.5.1-3 Zertrümmertes Glas: gemessene Quecksilberporositätswerte bei verschiedenen Partikelgrößen (Rohdaten)

C.5.1.2. Diskussion: Vermessung von porenfreien Glasgranulaten bei verschiedenen Partikelgrößen

Nach Kepler beträgt die Zwischenraumporosität bei sphärischen Partikeln gleicher Größe in dichtester Kugelpackung 26 % [87]. Da bei porenfreien Glaskügelchen ab einer Partikelgröße von 600 µm Porositätswerte von lediglich 2,7 % gemessen werden (Abb. C.5.1-1), wird ab dieser Partikelgröße der Hohlraum zwischen den Partikeln durch das Quecksilberporosimeter nicht mehr wesentlich erfasst. Dies ist damit zu erklären, dass ab einer Partikelgröße > 600 µm die Poren zwischen den Partikeln (Interporen) so groß sind, dass das Quecksilber schon vor Analyosenstart in die Probe intrudiert und die Zwischenräume der Glaskügelchen füllt. Im Druckbereich von ca. 0,1 bis 4000 bar lassen sich zylindrische Poren mit Durchmessern von ca. 100 µm bis 2 nm erfassen [84]. Daraus kann gefolgert werden, das sphärische Partikel mit einem Durchmesser von über 600 µm, Zwischenraumporen mit einem Durchmesser von mindestens 100 µm aufweisen. Dies soll mit der folgenden Abbildung veranschaulicht werden.
Folglich kann für Partikel mit 600 µm Durchmesser, die in dichtester Kugelpackung angeordnet sind, eine zylindrische Pore mit 100 µm Durchmesser in die Pore des Zwischenraumes gelegt werden (Abb. C.5.1-2). Da nach Washburn bei den verwendeten Intrusionsdrücken des Quecksilberporosimeters nur zylindrische Poren im Bereich von 2 nm bis 100 µm erfasst werden können [84], werden ab 600 µm Partikeldurchmesser die Poren zwischen den Partikeln nicht erfasst. Dies ist für die Bestimmung der partikulären Porosität von Bedeutung, da ab einer Partikelgröße von über 600 µm nur die Hohlräume in den Partikeln erfasst werden. Demnach wird bei der Vermessung runder Partikel größer als 600 µm automatisch die partikuläre Porosität gemessen. Dabei ist jedoch zu beachten, dass alle Partikelporen kleiner als 100 µm sein müssen, um sie vollständig mit dem Quecksilberporosimeter erfassen zu können. Gegebenenfalls muss dies durch mikroskopische Aufnahmen überprüft werden.

Das als Modellsubstanz für nicht sphärische Granulate verwendete zertrümmerte Glas zeigt wie die Glaskugelchen ab Partikelgrößen > 600 µm Porositäten < 5,5 % (Abb. C.5.1-1). Demnach wird ab Partikelgrößen > 600 µm auch hier nahezu vollständig die partikuläre Porosität gemessen. Der Restbetrag der Zwischenraumporosität des zertrümmerten Glases kann bei Verwendung gleicher Korngrößen vom erhaltenen Porositätswert abgezogen werden. Da für Granulat B4
ab Partikelgrößen über 600 µm Porositätswerte von annähernd 20 % gemessen werden, stellt dieser Wert abzüglich der 5,5 % des zertrümmerten Glases die Partikelporosität dar.

C.5.2. Bestimmung der Größe der Zwischenraumporen

In Kapitel C.5.1 konnte gezeigt werden, dass die Hohlräume zwischen den Partikeln in Abhängigkeit der Partikelgröße im Bereich von 100-600 µm in unterschiedlichem Ausmaß von der Quecksilberporosimetrie erfasst werden. Folglich ist für diesen Größenbereich eine Methode zu finden, um die partikuläre Porosität auch hier bestimmen zu können.

C.5.2.1. Ergebnisse

Abb. C.5.2-1 Glaskügelchen: Porengrößenverteilungsdiagramm bei verschiedenen Partikelgrößen

Abb. C.5.2-2 Zertrümmertes Glas: Porengrößenverteilungsdiagramm bei verschiedenen Partikelgrößen

C.5.2.2. Diskussion: Bestimmung der Größe der Poren zwischen den Partikeln bei verschiedenen Partikelgrößen von porösen Glasgranulaten mit den Porengrößenverteilungsdiagrammen

C.5.3. Trennung der Zwischenraumporosität von der Partikelporosität

Um eine Trennung der Interporen von den Intraporen vornehmen zu können, wurde ein Granulat (B4) aus Laktose und 5 % PVP hergestellt. Die Porengrößenverteilung des mit 16 % Wasser granulierten und getrockneten Granulates wurde mittels Quecksilber-Porosimetrie ermittelt. Erst bei höheren Drücken werden die partikulären
Poren mit Quecksilber gefüllt. Folglich sollte das Porengrößenverteilungsdiagramm von Granulat (B4) zwei Peaks in unterschiedlichen Porengrößenbereichen aufweisen.

C.5.3.1. Ergebnisse

![Diagramm der Porengrößenverteilung](image)

Abb. C.5.3-1 Trennung der Partikelporosität von der Zwischenraumporosität im Porengrößenverteilungsdiagramm

Abb. C.5.3-1 zeigt die bei der Messung erhaltenen Porengrößenverteilungsdiagramme des Laktose-Granulates (B4) und des porenfreien Granulats aus zertrümmertem Glas. Die zwei erhaltenen Peaks sind deutlich zu erkennen, getrennt von einem Minimum bei ca. 10 µm.

C.5.3.2. Diskussion: Trennung der Zwischenraumporosität von der Partikelporosität mittels der Porengrößenverteilungsdiagramme

Da sich im Porengrößenverteilungsdiagramm (Abb. C.5.3-1) sowohl bei Granulat (B4) als auch bei dem zertrümmerten Glas im Bereich von 10 bis 100 µm ein nahezu gleich großer Peak zeigt, kann davon ausgegangen werden, dass in
diesem Bereich der Hohlraum zwischen den Partikeln vom Quecksilber erfasst wird.
Folglich handelt es sich beim Peak von Granulat (B4) von 1 μm bis 10 μm um die
Partikelporen. Die Partikelporosität ergibt sich dann durch:

\[\text{Porosität}_\text{partikulär}[\%] = \frac{V_{\text{HgIntrusion, D=10,um bis 2nm}}}{V_{\text{Partikel ohne Zwischenraum}}} \times 100 \]

Gleichung C.5.3-1 Berechnung der partikulären Porosität

Beim porrenfreien zertrümmerten Glas findet demnach bei Porengrößen kleiner als
10 μm keine Quecksilberintrusion mehr statt. Das Minimum der
Porengrößenverteilung bei 10 μm trennt die Intraporen von den Interporen.
Das Volumen der Partikel ohne Zwischenraum lässt sich über die
Quecksilberdifferenzmasse zwischen Blindwertmessung und Probenmessung (siehe
Kapitel: B.11) berechnen.
Die Trennung der Interporen von den Intraporen setzt voraus, dass sich die beiden
Porentypen in ihrer Größe unterscheiden. Sind die Partikelporen so groß wie die
Interporen, so werden diese gleichzeitig vom Quecksilberporosimeter erfasst. Eine
Trennung ist dann nicht mehr möglich.
C.5.4. Zusammenfassung: Messung der partikulären Porosität von Granulaten

Die partikuläre Porosität lässt sich in Abhängigkeit der zu vermessen Partikelgröße der Probe wie folgt bestimmen.

<table>
<thead>
<tr>
<th>Partikelgröße Granulat</th>
<th>Gemessene Porosität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Größer 600 µm</td>
<td>Partikuläre Porosität</td>
</tr>
<tr>
<td>100-600 µm</td>
<td>Partikuläre Porosität und Zwischenraum-Porosität (in unterschiedlichem Ausmaß); Trennung der Partikelporen von den Zwischenraumporen am Minimum der Porengrößenverteilung.</td>
</tr>
</tbody>
</table>

Tabelle C.5.4-1 Abhängigkeit der gemessenen Porosität von der Partikelgröße

Besteht die zu vermessende Probe aus Partikeln, die größer sind als 600 µm, misst man mit dem Quecksilberporosimeter automatisch die Partikelporosität (siehe Kapitel C.5.1.2).

Besteht die zu vermessende Probe aus Partikeln zwischen 100-600 µm, misst man sowohl die partikuläre Porosität als auch die Zwischenraumporosität in unterschiedlichem Ausmaß (siehe Kapitel C.5.1.2). Der erhaltene Messwert muss in diesem Fall um das aus dem Partikelgrößenverteilungsdiagramm zugängliche Zwischenraumvolumen korrigiert werden. Die für die Trennung benötigte Grenz-Porengröße ist von der Partikelgröße der zu vermessenden Probe abhängig und kann wie in Abb. C.5.2-1 und Abb. C.5.2-2 gezeigt, ermittelt werden. Das Porengrößenverteilungsdiagramm weist an dieser Stelle ein Minimum auf.
C.6. HERSTELLUNGSEINFLÜSSE AUF DIE PARTIKULÄRE POROSITÄT VON GRANULATEN

C.6.1. Einfluss der zugegebenen Granulierflüssigkeitsmenge

Da die Porosität von Granulaten Einfluss auf die Härte von Tabletten besitzt [9], sollten die Auswirkungen unterschiedlicher Granulierungsparametern auf die Partikelporosität untersucht werden. Dafür wurde mittels Mischgranulation im Mini-Granulierer in Abhängigkeit der zugegebenen Wassermenge reine Laktose (Granulac 200) granuliert. Zur Messung der partikulären Porosität diente wie in Kapitel C.5 beschrieben die Korngrößenfraktion von 630-800 µm, welche mittels Siebung gewonnen wurde.

Abb. C.6.1-1 Einfluss der zugegebenen Granulierflüssigkeitsmenge auf die partikuläre Porosität von Granulaten
Zugefügte Menge Wasser (% des Trockengewichts)	Porosität % Messung 1	Porosität % Messung 2	Porosität % Messung 3	Mittelwert	St. Abw.
12% | 32,4 | 32,1 | 33,2 | 32,6 | 0,6
12% | 30,6 | 31,4 | 31,5 | 31,2 | 0,5
12% | 29,8 | 30,3 | 31,6 | 30,6 | 0,9
Mittelwert | 30,9 | 31,3 | 32,1 | 31,4 | 0,7
St. Abw. | 1,3 | 0,9 | 1,0 | 1,0 | 0,2
14% | 29,5 | 29,1 | 30,1 | 29,6 | 0,5
14% | 29,0 | 29,5 | 28,3 | 28,9 | 0,6
14% | 26,4 | 27,6 | 28,3 | 27,4 | 1,0
Mittelwert | 28,3 | 28,7 | 28,9 | 28,6 | 0,7
St. Abw. | 1,7 | 1,0 | 1,0 | 1,1 | 0,2
16% | 26,6 | 27,1 | 25,5 | 26,4 | 0,8
16% | 25,5 | 25,4 | 26,6 | 25,8 | 0,7
16% | 26,8 | 26,2 | 25,9 | 26,3 | 0,5
Mittelwert | 26,3 | 26,2 | 26,0 | 26,2 | 0,6
St. Abw. | 0,7 | 0,9 | 0,6 | 0,3 | 0,2

| Tabelle C.6.1-1: Einfluss der zugegebenen Granulierflüssigkeitsmenge auf die partikuläre Porosität von Granulaten |

In Abb. C.6.1-1 und Tabelle C.6.1-1 zeigt sich mit Zunahme der Wassermenge von 12 % auf 16 % eine signifikante Abnahme der mittleren Porosität von 31,4 % auf 26,2 % (F-Test (p = 95 %)). Durch Variation der maximal zugefügten Menge an Granulierflüssigkeit um 4 % ändert sich die partikuläre Porosität der getrockneten Granulate um ca. 5 %.

C.6.2. Einfluss der Nachgranulationszeit

Um den Einfluss der Nachgranulationszeit auf die partikuläre Porosität zu untersuchen, wurde mittels Mischgranulation im Mini-Granulierer reine Laktose (Granulac 200) mit unterschiedlichen Nachgranulationszeiten mit Wasser granuliert und anschließend im Trockenschrank bei 70°C getrocknet. Zur Messung der
partikulären Porosität diente wie in Kapitel C.5 beschrieben die Korngrößenfraktion von 630-800 µm, welche mittels Siebung gewonnen wurde.

Die Umdrehungsgeschwindigkeit des Mischers betrug 300 U/min, die des Zerhackers 1500 U/min. Die Zugabe der Granulierflüssigkeit erfolgte innerhalb von 5 Minuten tropfenweise über eine Schlauchpumpe mit Kanüle. Es wurden jeweils 3 Granulate mit Nachgranulationszeiten von 1 min und 10 min hergestellt und deren Porosität (n=3) mit dem Quecksilberporosimeter vermessen (siehe Abb. C.6.2-1, Tabelle C.6.2-1).

Abb. C.6.2-1 Einfluss der Nachgranulationszeit auf die partikuläre Porosität von Granulaten

<table>
<thead>
<tr>
<th>Nachgranulationszeit</th>
<th>Porosität % Messung 1</th>
<th>Porosität % Messung 2</th>
<th>Porosität % Messung 3</th>
<th>Mittelwert</th>
<th>St. Abw.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 min</td>
<td>29,5</td>
<td>29,1</td>
<td>30,5</td>
<td>29,7</td>
<td>0,7</td>
</tr>
<tr>
<td>1 min</td>
<td>29,0</td>
<td>29,5</td>
<td>28,9</td>
<td>29,1</td>
<td>0,3</td>
</tr>
<tr>
<td>1 min</td>
<td>26,4</td>
<td>27,6</td>
<td>26,1</td>
<td>26,7</td>
<td>0,8</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>28,3</td>
<td>28,7</td>
<td>28,5</td>
<td>28,5</td>
<td>0,6</td>
</tr>
<tr>
<td>St. Abw.</td>
<td>1,7</td>
<td>1,0</td>
<td>2,2</td>
<td>1,6</td>
<td>0,3</td>
</tr>
<tr>
<td>10 min</td>
<td>25,3</td>
<td>25,8</td>
<td>26,3</td>
<td>25,8</td>
<td>0,5</td>
</tr>
<tr>
<td>10 min</td>
<td>27,7</td>
<td>27,3</td>
<td>26,1</td>
<td>27,0</td>
<td>0,8</td>
</tr>
<tr>
<td>10 min</td>
<td>25,8</td>
<td>26,2</td>
<td>26,1</td>
<td>26,0</td>
<td>0,2</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>26,3</td>
<td>26,4</td>
<td>26,2</td>
<td>26,3</td>
<td>0,5</td>
</tr>
<tr>
<td>St. Abw.</td>
<td>1,3</td>
<td>0,8</td>
<td>0,1</td>
<td>0,7</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Tabelle C.6.2-1 Einfluss der Nachgranulationszeit auf die partikuläre Porosität von Granulaten
In Abb. C.6.2-1 und Tabelle C.6.2-1 sinkt der mittlere Porositätswert der Granulate von 28,5 % auf 26,3 % bei Erhöhung der Nachgranulationszeit von einer auf zehn Minuten. Dieser Unterschied ist jedoch nicht signifikant (F-Test, p = 95 %). Aus theoretischen Sicht scheint es jedoch einleuchtend, dass mit zunehmender Nachgranulationszeit die Granulate stärker verdichtet werden.

C.6.3. Einfluss der Zugabeart der Granulierflüssigkeit

![Abb. C.6.3-1 Einfluss der Zugabeart der Granulierflüssigkeit auf die partikuläre Porosität von Granulaten](image)
<table>
<thead>
<tr>
<th>Zugabeart</th>
<th>Porosität % Messung 1</th>
<th>Porosität % Messung 2</th>
<th>Porosität % Messung 3</th>
<th>Mittelwert</th>
<th>St. Abw.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tropfen</td>
<td>29,5</td>
<td>29,1</td>
<td>29,9</td>
<td>29,5</td>
<td>0,4</td>
</tr>
<tr>
<td>Tropfen</td>
<td>29,0</td>
<td>29,5</td>
<td>28,7</td>
<td>29,1</td>
<td>0,4</td>
</tr>
<tr>
<td>Tropfen</td>
<td>26,4</td>
<td>26,8</td>
<td>26,1</td>
<td>26,4</td>
<td>0,4</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>28,3</td>
<td>28,5</td>
<td>28,2</td>
<td>28,3</td>
<td>0,4</td>
</tr>
<tr>
<td>St. Abw.</td>
<td>1,7</td>
<td>1,5</td>
<td>1,9</td>
<td>1,7</td>
<td>0,0</td>
</tr>
<tr>
<td>Sprühen</td>
<td>27,0</td>
<td>26,7</td>
<td>27,7</td>
<td>27,1</td>
<td>0,5</td>
</tr>
<tr>
<td>Sprühen</td>
<td>27,7</td>
<td>27,6</td>
<td>26,8</td>
<td>27,4</td>
<td>0,5</td>
</tr>
<tr>
<td>Sprühen</td>
<td>28,3</td>
<td>27,5</td>
<td>27,6</td>
<td>27,8</td>
<td>0,4</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>27,7</td>
<td>27,3</td>
<td>27,4</td>
<td>27,4</td>
<td>0,5</td>
</tr>
<tr>
<td>St. Abw.</td>
<td>0,7</td>
<td>0,5</td>
<td>0,5</td>
<td>0,3</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Tabelle C.6.3-1 Einfluss der Zugabeart der Granulierflüssigkeit auf die partikuläre Porosität von Granulaten

In Abb. C.6.3-1 und Tabelle C.6.3-1 ergeben sich für die Zugabeart „Tropfen“ mit 28,3 % partikulärer Porosität im Vergleich zum „Sprühen“ 27,4 % partikuläre Porosität keine signifikanten Unterschiede (F-Test, p = 95 %).

Der Einfluss der Zugabeart ist folglich für das Laktose-Granulat von keiner Bedeutung.

C.6.4. Einfluss der Partikelgröße

Für die Untersuchung des Einflusses der Partikelgröße auf die partikuläre Porosität, wurde mittels Mischgranulation im Mini-Granulierer (siehe Abb. C.6.4-1) reine Laktose (Granulac 200) mit Wasser granuliert und anschließend im Trockenschrank bei 70°C getrocknet. Es folgte die Fraktionierung des Granulates in die Partikelgrößenklassen 100-200 µm, 200-355 µm, 355-500 µm und 630-800µm mittels Siebung und die Messung der partikulären Porosität mit dem Quecksilberporosimeter.

Die Umdrehungsgeschwindigkeit des Mischers betrug 300 U/min, die des Zerhackers 1500 U/min. Die Granulierflüssigkeit wurde tropfenweise innerhalb von 5 Minuten über eine Schlauchpumpe mit Kanüle zugegeben. Die Granulate wurden eine Minute
nachgranuliert und anschließend im Trockenschrank bei 70°C getrocknet. Für jede Korngrößenfraktion wurden 3 Granulate hergestellt, von denen die partikuläre Porosität wie in Kapitel C.5 beschrieben durch Trennung der Interporosität von der Intraporosität mit den Porengrößenverteilungsdiagrammen erfolgte.

![Diagramm](image)

Abb. C.6.4-1 Einfluss der Partikelgröße auf die partikuläre Porosität von Laktose Granulaten (Porengrößenverteilungsdiagramm)

In Abb. C.6.4-1 spiegeln die Flächen unter den Kurven von 2 nm bis 20 µm Porengröße die partikuläre Porosität wider. Demnach ist allein anhand der graphischen Darstellung zu erkennen, dass sich mit Zunahme der Korngröße größere partikuläre Porositäten ergeben. Die Peaks von 100 µm bis 20 µm Porengröße sind auf die Interporen zurückzuführen. Um die einzelnen Kornklassen gleichberechtigt miteinander vergleichen zu können, erfolgte die Trennung der Interporen von den Intraporen bei allen Partikelgrößen bei 20 µm. Die Ergebnisse werden in Abb. C.6.4-2 und Tabelle C.6.4-1 wiedergegeben.
Wie in Abb. C.6.4-2 und Tabelle C.6.4-1 ersichtlich, nimmt mit zunehmender Korngröße die partikuläre Porosität der Granulate zu. Für die Korngrößenklasse 630-800 µm wird eine um rund 5 % höhere Porosität als bei der 100-200 µm Fraktion ermittelt.

Für Granulat B4 welches aus Laktose und 5 % PVP besteht wurde der gleiche Versuch erneut durchgeführt. Die Ergebnisse sind in Abb. C.6.4-4 und Abb. C.6.5-1 dargestellt.
Abbildung C.6.4-3 Einfluss der Partikelgröße auf die partikuläre Porosität von Granulaten bei Laktose, PVP Granulat B4 (Porengrößenverteilungsdiagramm)

Abbildung C.6.4-4 Einfluss der Partikelgröße auf die partikuläre Porosität von Granulaten
<table>
<thead>
<tr>
<th>Mittlere Partikelgröße (µm)</th>
<th>Granulat 1</th>
<th>Granulat 2</th>
<th>Granulat 3</th>
<th>Mittelwert</th>
<th>St. Abw.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-200</td>
<td>10,8</td>
<td>9,9</td>
<td>9,6</td>
<td>10,1</td>
<td>0,5</td>
</tr>
<tr>
<td>200-355</td>
<td>11,2</td>
<td>10,8</td>
<td>11,3</td>
<td>11,1</td>
<td>0,2</td>
</tr>
<tr>
<td>355-500</td>
<td>12,6</td>
<td>13,3</td>
<td>12,6</td>
<td>12,8</td>
<td>0,3</td>
</tr>
<tr>
<td>630-800</td>
<td>15,1</td>
<td>15,8</td>
<td>15,0</td>
<td>15,3</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Tabelle C.6.4-2 Einfluss der Partikelgröße auf die partikuläre Porosität von Granulaten bei Laktose, PVP Granulat

Nach Abb. C.6.5-1 und Tabelle C.6.4-1 wird mit Zunahme der Partikelgröße eine Zunahme der partikulären Porosität beobachtet. Dabei ermittelt man für die Korngrößenklasse 630-800 µm eine um rund 5 % höhere Porosität als bei der 100-200 µm Fraktion.

Im Vergleich zur reinen Laktose zeigt die mit PVP granulierte Laktose kleinere partikuläre Porendurchmesser. Dies deckt sich mit den Ergebnissen von Mattson und Nyström, die mit Zunahme des PVP Gehaltes kleinere Porendurchmesser erhielten [10].

C.6.5. Theoretische Überlegungen zum Einfluss der Partikelgröße auf die Partikelporosität

Ob sich die Zunahme der partikulären Porosität mit steigender Partikelgröße (Kapitel C.6.4) auch theoretisch bestätigen lässt, sollte mittels Abb. C.6.5-1 geklärt werden.
In Abb. C.6.5-1 wird die partikuläre Porosität in Abhängigkeit der Partikelgröße bei idealem Partikelwachstum betrachtet. Für Partikel A wurde ein Gesamtvolumen von 100 mm³ und ein Hohlraum zwischen den Partikeln von 1 mm³ definiert. Demnach ergibt sich für Partikel A eine Porosität von 1 % (siehe Gleichung B.11.1-1). Bei Partikel B, welches aus 2 Partikeln A aufgebaut ist, werden dementsprechend 2 % Porosität ermittelt. Für Partikel C welcher aus 3 Partikeln A aufgebaut ist liegt die Porosität bei 2,3 %.

Anhand des Modells aus Abb. C.6.5-1 können die Messergebnisse aus Kapitel C.6.4 bestätigt werden. Demnach ist bei größeren Partikeln eine größere partikuläre Porosität zu erwarten.
C.6.6. Zusammenfassung: Herstellungseinflüsse auf die Partikelporosität von Granulaten

Durch Variation der maximal zugegebenen Granulationsflüssigkeit Wasser um bis zu 4 %, wurde für Laktose ein Unterschied in der partikulären Porosität von 5 % gemessen. Die Granulatporositäten lagen bei 26 bis 31 %.

Durch Variation der Nachgranulationszeit von 1 bis 10 Minuten, wurde für Laktose ein Unterschied in der Porosität von 26,3 auf 28,6 % gemessen, der jedoch nicht signifikant war.

Durch Veränderung der Zugabeart von „Tropfen“ auf „Sprühen“, konnte für Laktose ebenfalls kein signifikanter Unterschied festgestellt werden.

Durch Verwendung unterschiedlicher Korngrößenklassen reiner Laktose ergaben sich signifikante Unterschiede in der partikulären Porosität von 5 %.

D. ZUSAMMENFASSUNG

D.1. ONLINE-ÜBERWACHUNG DER GRANULATEIGENSCHAFTEN WASSERGEHALT UND PARTIKELGRÖßE MIT DER NIR-VIS-SPEKTROSKOPIE IN DER WIRBELSCHICHT

Im ersten Teil dieser Arbeit wurden die Granulateigenschaften Feuchte und mittlere Partikelgröße online mit der NIR-VIS-Spektroskopie überwacht. Dabei wurden zwei Online-Messanordnung (OMP, OOP) am Wirbelschichtgerät getestet und miteinander verglichen.

Der Wassergehalt ließ sich im Wellenlängenbereich von 1400-1500 nm bei der Online-Messanordnung (OMP) mit einem Vorhersagefehler (SEP) von 1,1 % Wassergehalt vorhersagen. Im Vergleich zur externen Messanordnung (EZ), mit der ein Vorhersagefehler (SEP) von 0,5 % Wassergehalt ermittelt wurde, zeigt die Online-Messanordnung (OMP) damit schlechtere Ergebnisse. Die Online-Messanordnung (OOP) zeigt mit einem Vorhersagefehler (SEP) von 0,9 % Wassergehalt ebenfalls bessere Ergebnisse als Messanordnung (OMP). Folglich werden durch Vermessung der Proben außerhalb des Prozessbehälters bessere Ergebnisse erzielt als bei den Online-Messungen innerhalb des Prozessbehälters. Da die Probe nach externer Messung wieder dem Prozess zugeführt werden muss, ist diese Art der Messung für den automatischen Betrieb schwieriger umzusetzen als es für Messanordnung (OMP und OOP) der Fall ist.

D.2. UNTERSUCHUNGEN ZUR POROSITÄT VON GRANULATEN

Im zweiten Teil der Arbeit sollte die Möglichkeit der Messung der partikulären Porosität von Granulaten mit der Quecksilberporosimetrie untersucht werden. In weiteren Versuchen wurde der Einfluss von Herstellungsparametern auf die Partikelporosität von Laktose Granulaten untersucht.

Bei der Untersuchung des Einflusses der Herstellungsparameter auf die partikuläre Porosität von Granulaten hat die maximal zugegebene Granulationsflüssigkeitsmenge sowie die Partikelgröße einen signifikanten Einfluss auf die partikuläre Porosität. In beiden Fällen wurde ein Unterschied von 5 % Partikelporosität gemessen.

E. ANHANG

E.1. ABKÜRZUNGSVERZEICHNIS

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Prozent</td>
</tr>
<tr>
<td>µm</td>
<td>Mikrometer</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>Bias</td>
<td>systematischer Fehler</td>
</tr>
<tr>
<td>et al.</td>
<td>et allii [lateinisch] und andere</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>min.</td>
<td>Minute</td>
</tr>
<tr>
<td>MN/m²</td>
<td>Mega Newton pro Quadratmeter</td>
</tr>
<tr>
<td>NIRS</td>
<td>Nahinfrarot Spektroskopie</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>Offset</td>
<td>y- Achsenschnittpunkt der Regressionsgerade im Diagramm Vorhersage gegen Referenz</td>
</tr>
<tr>
<td>PAT</td>
<td>Process Analytical Technology</td>
</tr>
<tr>
<td>PC’s</td>
<td>Principal Components, Hauptkomponentenanzahl</td>
</tr>
<tr>
<td>PLS</td>
<td>Partial Least Squares Regression = Kleinstquadratregression</td>
</tr>
<tr>
<td>PVP</td>
<td>Polyvinylpyrrolidon</td>
</tr>
<tr>
<td>r</td>
<td>Korrelationskoeffizient</td>
</tr>
<tr>
<td>Rel. St. Abw.</td>
<td>Relative Standard Abweichung</td>
</tr>
<tr>
<td>SEC</td>
<td>Standard Error of Calibration = Standardfehler der Kalibrierung</td>
</tr>
<tr>
<td>SEP</td>
<td>Standard Error of Prediction = Standardfehler der Vorhersage</td>
</tr>
<tr>
<td>Slope</td>
<td>Steigung der Regressionsgerade im Diagramm Vorhersage gegen Referenz</td>
</tr>
<tr>
<td>St. Abw.</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>U/min</td>
<td>Umdrehungen pro Minute</td>
</tr>
<tr>
<td>Vorbeh.</td>
<td>Vorbehandlung der Spektren</td>
</tr>
<tr>
<td>x50</td>
<td>Median der Partikelgrößenverteilung</td>
</tr>
</tbody>
</table>
E.2. VERWENDETE SUBSTANZEN

Granulac 200
\(\alpha\) - Laktose Monohydrat, Lot: 0452
Meggle GmbH, Deutschland

DiCaFos
Dicalciumphosphat Dihydrat, Charge: A49333A
Chemische Werke Budenheim, Deutschland

Avicel PH 101
Mikrokristalline Cellulose, Lot: 6447C
FMC Biopolymer, USA

C-Pharm Gel
Maisstärke, Lot: 612353952
Cerestar GmbH, Deutschland

Kollidon 30
Polyvinylpyrrolidon 30, Charge 6156250950
BASF AG, Deutschland
E.3. VERWENDETE GERÄTE

Wirbeschichtgranulierer:
Hersteller: L.B. Bohle GmbH, Enningerloh, Deutschland
Typ: BFS 15

Trocknungswaage:
Hersteller: Mettler Toledo, Deutschland
Typ: HB 43 Halogen Moisture Analyzer

Laserbeugungsspektrometer:
Hersteller: Sympathec GmbH, Deutschland
Typ: Helos 12 KA/KA
Datenerfassung: Helos-Software, Version: 4.7.2

NIR/VIS Spektrometer:
Hersteller: Bruker Optics GmbH, Deutschland
Typ: Vektor 22/N
Datenerfassung: OPUS Software, Version: NT 3.1

NIR/VIS Spektrometer:
Hersteller: Bühler (heute. Buechi), Deutschland
Typ: NIRVIS
Datenerfassung: Nircal Software, Version: 3.04

NIR/VIS Spektrometer:
Hersteller: Carl Zeiss AG, Deutschland
Typ: Corona
Datenerfassung: Aspect Plus Software, Version: 1.75
Quecksilberporosimeter:
Hersteller: Porotec GmbH, Deutschland
Typ: Pascal 140 und 440
Datenerfassung: Pascal Software, Version 1.03

Mischgranulierer:
Hersteller: L.B. Bohle GmbH, Deutschland
Typ: Bohle Mini Granulierer
Datenerfassung: BMG Software, Version 3.5
E.4. ABBILDUNGSVERZEICHNIS

Abb. B.1.6-1 Rasterelektronenmikroskopische Aufnahmen der Glaskugelchen (links) und des zertrümmerten Glases (rechts) ... 13
Abb. B.3.4-1 Versuchsaufbau: Wirbelschicht .. 16
Abb. B.4.4-1 Versuchsaufbau: Thermogravimetrische Wassergehaltsbestimmung . 18
Abb. B.5.4-1 Versuchsaufbau: Laserbeugung .. 20
Abb. B.6.2-1 Messprinzip: NIR/VIS-Spektrometer ... 22
Abb. B.6.4-1 Messanordnung (EZ) ... 24
Abb. B.6.4-2 Messanordnung (EBr) ... 25
Abb. B.6.4-3 Messanordnung (EBu) ... 26
Abb. B.6.4-4 Messanordnung (OMP) ... 27
Abb. B.6.4-5 Messanordnung (OOP) .. 28
Abb. B.11.1-1 Porositätstypen .. 39
Abb. B.11.1-2 Messprinzip der Quecksilberporosimetrie ... 40
Abb. C.1.1-1 Einfluss der Stampfdichte von Laktose (Granulac 200) auf die NIR-Spektren .. 43
Abb. C.1.1-2 Mehrfachreflexion von Licht in Kapillaren unterschiedlicher Größe 44
Abb. C.1.2-1 Einfluss des Abstandes des NIR-Messkopfes zum Produkt auf die NIR-Spektren .. 45
Abb. C.1.3-1 Reproduzierbarkeit von 10 Reflexionsspektren bei einmaliger Messkopfpositionierung, Messanordnung (EBr) .. 46
Abb. C.1.3-2 Reproduzierbarkeit von 10 Reflexionsspektren bei mehrfacher Messkopfpositionierung, Messanordnung (EBr) .. 47
Abb. C.1.4-1 Vergleich der Spektrenreproduzierbarkeit der Messanordnungen (EBr, EBr, EZ) .. 48
Abb. C.1.5-1 Vergleich der Spektrenreproduzierbarkeit der Messanordnungen (OMP, OOP, EZ) .. 49
Abb. C.2.1-1 Wasser Spektrum 1000-1600 nm .. 52
Abb. C.2.1-2 PVP Spektrum 1000-1600 nm ... 53
Abb. C.2.2-1 Reflexionsspektren, Rezeptur 3, Messanordnung (EZ) 54
Abb. C.2.2-2 Vorbehandelte Reflexionsspektren, MSC, Rezeptur 3, Messanordnung (EZ) ... 55
Abb. C.2.2-3 Vorbehandelte Reflexionsspektren, 2. Ableitung, Rezeptur 3, Messanordnung (EZ)... 55
Abb. C.2.2-4 Modell A8: Vorhersage gegen Referenz... 62
Abb. C.2.2-5 Modell A-LR2: Vorhersage gegen Referenz.. 62
Abb. C.2.2-6 Modell A8: Zeitlicher Verlauf von Vorhersage und Referenz: Charge 1 von Probennummer 1 bis 7, Charge 2 von Probennummer 8 bis 36 64
Abb. C.2.2-7 Modell A-LR2: Zeitlicher Verlauf von Vorhersage und Referenz: Charge 1 von Probennummer 1 bis 7, Charge 2 von Probennummer 8 bis 36 64
Abb. C.2.2-8 Modell A8: Residuenplot (Vorhersage – Referenz) 65
Abb. C.2.2-9 Modell A-LR2: Residuenplot (Vorhersage – Referenz).................... 65
Abb. C.2.3-1 Modell B1: Vorhersage gegen Referenz:.. 70
Abb. C.2.3-2 Modell B-LR: Vorhersage gegen Referenz: ... 70
Abb. C.2.3-3 Modell B1: Verlauf von Vorhersage und Referenz: Charge 1 von Probennummer 1 bis 18, Charge 2 von Probennummer 19 bis 33 72
Abb. C.2.3-4 Modell B-LR: Verlauf von Vorhersage gegen Referenz: Charge 1 von Probennummer 1 bis 18, Charge 2 von Probennummer 19 bis 33 72
Abb. C.2.3-5 Modell B1: Residuenplot (Vorhersage – Referenz) 73
Abb. C.2.3-6 Modell B-LR: Residuenplot (Vorhersage – Referenz) 73
Abb. C.2.4-1 Modell C1: Vorhersage gegen Referenz: .. 79
Abb. C.2.4-2 Modell C-LR: Vorhersage gegen Referenz:.. 79
Abb. C.2.4-3 Modell C1: Verlauf von Vorhersage und Referenz: Charge 1 von Probennummer 1 bis 18, Charge 2 von Probennummer 19 bis 33 81
Abb. C.2.4-4 Modell C-LR: Verlauf von Vorhersage und Referenz: Charge 1 von Probennummer 1 bis 18, Charge 2 von Probennummer 19 bis 33 81
Abb. C.2.4-5 Modell C1: Residuenplot (Vorhersage – Referenz) 82
Abb. C.2.4-6 Modell C-LR: Residuenplot (Vorhersage – Referenz) 82
Abb. C.3.1-1 Spektrum von PVP, 1000-1600 nm .. 87
Abb. C.3.1-2 Spektrum von Wasser, 1000-1600 nm .. 88
Abb. C.3.2-1 Spektren Rezeptur 1: Messanordnung (EZ) Vorhersage der Partikelgröße in der Wirbelschicht, 1000-1600 nm .. 90
Abb. C.3.2-2 Zeitlicher Verlauf der mittleren Partikelgröße (x50) von Rezeptur 1 bei Messanordnung (EZ) .. 93
Abb. C.3.3-1 Spektren Rezeptur 1: Messanordnung (OMP) Vorhersage der Partikelgröße in der Wirbelschicht, 1000-1600 nm .. 94
Abb. C.3.3-2 Modell E1 Vorhersage gegen Referenz .. 96
Abb. C.3.3-3 Modell E1: Zeitlicher Verlauf von Vorhersage und Referenz: Charge 1 von Probenummer 1 bis 16, Charge 2 von Probenummer 17 bis 31 97
Abb. C.3.3-4 Modell E1: Residuenplot ... 97
Abb. C.4.1-1 Transmissionsspektrum einer 10 % igen PVP-Lösung, 400-1000 nm. 99
Abb. C.4.2-1 Spektren Rezeptur 1: Messanordnung (OMP), 400-1000 nm 100
Abb. C.4.2-2 Modell F1 Vorhersage gegen Referenz .. 102
Abb. C.4.2-3 Modell F1: Zeitlicher Verlauf von Vorhersage und Referenz 103
Abb. C.4.2-4 Modell F1: Residuenplot ... 103
Abb. C.4.3-1 Modell G1 Vorhersage gegen Referenz ... 106
Abb. C.4.3-2 Modell G1: Zeitlicher Verlauf von Vorhersage und Referenz 107
Abb. C.4.3-3 Modell G1: Residuenplot ... 107
Abb. C.5.1-1 Quecksilberporosimetrie: Gemessene Porositätswerte von Granulaten unterschiedlicher Partikelgröße: Granulat B4, Glaskugelchen, zertrümmertes Glas ... 109
Abb. C.5.1-2 Modell zur Ermittlung der Porengröße der Zwischenraumporen 112
Abb. C.5.2-1 Glaskugelchen: Porengrößenverteilungsdiagramm bei verschiedenen Partikelgrößen ... 114
Abb. C.5.2-2 Zertrümmertes Glas: Porengrößenverteilungsdiagramm bei verschiedenen Partikelgrößen ... 114
Abb. C.5.3-1 Trennung der Partikelporosität von der Zwischenraumporosität im Porengrößenverteilungsdiagramm ... 116
Abb. C.6.1-1 Einfluss der zugegebenen Granulierflüssigkeitsmenge auf die partikuläre Porosität von Granulaten ... 119
Abb. C.6.2-1 Einfluss der Nachgranulationszeit auf die partikuläre Porosität von Granulaten ... 121
Abb. C.6.3-1 Einfluss der Zugabeart der Granulierflüssigkeit auf die partikuläre Porosität von Granulaten ... 122
Abb. C.6.4-1 Einfluss der Partikelgröße auf die partikuläre Porosität von Laktose Granulaten (Porengrößenverteilungsdiagramm) 124
Abb. C.6.4-2 Einfluss der Partikelgröße auf die partikuläre Porosität von Granulaten bei Laktose Granulat ... 125
Abb. C.6.4-3 Einfluss der Partikelgröße auf die partikuläre Porosität von Granulaten bei Laktose, PVP Granulat B4 (Porengrößenverteilungsdiagramm) 126
Abb. C.6.4-4 Einfluss der Partikelgröße auf die partikuläre Porosität von Granulaten ... 126
Abb. C.6.5-1 Modell zur Abhängigkeit der Partikelgröße von der Porosität für ideales Partikelwachstum ... 128
E.5. TABELLENVERZEICHNIS

Tabelle C.2.2-1 Regressionsmodelle, Messanordnung (EZ) 58
Tabelle C.2.3-1 Regressionsmodelle, Messanordnung (OMP) 68
Tabelle C.2.3-2 Vorhersage des Wassergehaltes bei Messanordnung (OMP) mit Modell B1 mit der Test Set Validierung 75
Tabelle C.2.4-1 Regressionsmodelle, Messanordnung (OOP) 77
Tabelle C.2.4-2 Vorhersage des Wassergehaltes bei Messanordnung (OOP) mit Modell C1 mit der Test Set Validierung 84
Tabelle C.2.5-1 Zusammenfassung der Vorhersage des Wassergehaltes 85
Tabelle C.3.2-1 Regressionsberechnungen der Partikelgröße im NIR, Messanordnung (EZ) 91
Tabelle C.3.3-1 Regressionsberechnungen der Partikelgröße im NIR, Messanordnung (OMP) 95
Tabelle C.4.2-1 Regressionsberechnungen der Partikelgröße im VIS, Messanordnung (OMP) 101
Tabelle C.4.3-1 Regressionsberechnungen der Partikelgröße im VIS, Messanordnung (OOP) 105
Tabelle C.4.4-1 Zusammenfassung der Vorhersage der Partikelgröße 108
Tabelle C.5.1-1 Granulat B4: gemessene Quecksilberporositätswerte bei verschiedenen Partikelgrößen (Rohdaten) 110
Tabelle C.5.1-2 Glaskügelchen: gemessene Quecksilberporositätswerte bei verschiedenen Partikelgrößen (Rohdaten) 110
Tabelle C.5.1-3 Zertrümmertes Glas: gemessene Quecksilberporositätswerte bei verschiedenen Partikelgrößen (Rohdaten) 111
Tabelle C.5.4-1 Abhängigkeit der gemessenen Porosität von der Partikelgröße 118
Tabelle C.6.1-1 Einfluss der zugegebenen Granulierflüssigkeitsmenge auf die partikuläre Porosität von Granulaten 120
Tabelle C.6.2-1 Einfluss der Nachgranulationszeit auf die partikuläre Porosität von Granulaten 121
Tabelle C.6.3-1 Einfluss der Zugabeart der Granulierflüssigkeit auf die partikuläre Porosität von Granulaten 123
Tabelle C.6.4-1 Einfluss der Partikelgröße auf die partikuläre Porosität von Granulaten bei Laktose Granulat 125
Tabelle C.6.4-2 Einfluss der Partikelgröße auf die partikuläre Porosität von Granulaten bei Laktose, PVP Granulat 127
F. LITERATURVERZEICHNIS

[27] Srinivasakannan C, Balasubramaniam N: *Particle growth in fluidised bed granulation*. Chemical and Biochemical Engineering Quarterly 2003 17: 201-205

[34] Nienow AW: *Fluidised bed granulation and coating: Applications to materials, agriculture and biotechnology*. Chemical Engineering Communications 1995 139: 233-253

[70] Rein H: NIR-VIS-Spektroskopie. DAZ 2000 50: 45-58

[71] Liu YD, Ying Y, Yu HY and others: Comparison of the HPLC method and FT-NIR analysis for quantification of glucose, fructose, and sucrose in intact apple fruits. Journal of Agricultural and Food Chemistry 2006 54: 2810-2815

[78] Ferreira MMC, Antunes AM, Melgo MS and others: Chemometrics I: Multivariate calibration, a tutorial. Quimica Nova 1999 22: 724-731

