Isolation of secondary fungal metabolites
and their influence on sphingolipid metabolism

Dissertation
zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultät
der
Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von
Ana Kralj
aus
Zagreb, Kroatien

Bonn 2007
Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Referentin : PD Dr. Gerhild van Echten-Deckert
2. Referentin : Prof. Dr. Gabriele M. König

Vorveröffentlichungen der Dissertation
In Advance Publications of the Dissertation

Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät, vertreten durch die Mentorin/Betreuerin der Arbeit, in folgenden Beiträgen vorab veröffentlicht:

Parts of the results of this study have been published in advance by permission of the Mathematisch-Naturwissenschaftliche Fakultät, represented by the supervisor of this study:

Publikationen / Research Papers

Tagungsbeiträge / Research Presentations

To Marko
Acknowledgements

I wish to express my cordial gratitude to my supervisor Prof. Dr. G. M. König for the expert guidance, encouragement and kind support during the course of this project. I would like to thank her for introducing me into the important aspects of my work and for providing excellent scientific working facilities and friendly atmosphere.

My sincere gratitude also goes to PD Dr. G. van Echten-Deckert, my co-supervisor. I would like to thank her for introducing me to the sphingolipid world, encouragement, support and constructive criticism in demanding phases of this study. I am particularly grateful for careful revisions of the PhD thesis and for sincere help with many issues which made my research much easier.

My appreciation goes to Prof. Dr. C. E. Müller and Prof. Dr. M. Höfer for participating in the examination committee.

A part of this research involved collaborations with other research groups. For this work thanks go to:

Prof. Dr. H. H. Fiebig, Dr. G. Kelter and Dr. A. Maier, Oncotest GmbH, Institute of Experimental Oncology, Freiburg, for providing cytotoxicity data of extracts and pure compounds.

Dr. M. Maurer, Oncotest GmbH, Institute of Experimental Oncology, Freiburg, for performing immunostimulating assays of pure compounds.

C. Sondag, Department of Chemistry, Bonn, for (HR)EI MS measurements.

Ekaterina Eguereva for the isolation of fungal strains and screening of fungal extracts, for excellent technical assistance in all aspects of laboratory work and for helpful discussions concerning fungal collection. But even more than this, a tremendous thank for support and help, especially in early months in the laboratory, for learning and practicing of German, for being a friend, a colleague and a teacher.
Dr. Stefan Kehraus for performing special NMR experiments and for help in analyses of NMR spectra. Special thanks for proofreading of manuscripts, for help, support and encouragement during this study.

Dr. Anja Krick for numerous LC-MS measurements, for proofreading of manuscripts, for encouragement and discussions during this project.

Edith Neu for performing agar diffusion assays and for friendly assistance in administrative issues.

A part of this work dealing with biochemistry was performed in a research group of PD Dr. van Echten-Deckert, Kekulé Institute for Organic Chemistry and Biochemistry, Bonn. I would like to thank to all its members for friendly working atmosphere and for a kind assistance in the laboratory. A big thank to Andrea Raths for the assistance in the cell culture laboratory, and Roland Broere for the help with molecular biology techniques.

Particular thanks go to Dr. Mihaela Gurgui for an enormous help in the laboratory, for support, discussions and suggestions concerning sphingolipid analyses, and for proofreading of manuscripts and thesis. Moreover, I thank her for being a great friend, for listening and comforting me during the hard times, for endless discussions of all kind and for being always an excellent host.

Additionally, warm thanks to the all members of the Institute for Pharmaceutical Biology, Bonn, for a wonderful working atmosphere, help and support in the laboratory, scientific discussions, and, especially, for encouragement and patience with my German difficulties. Special thanks to the girls in the group for funny and interesting cocktail meetings.

I would like to express my deepest gratitude to my parents for daily e-mails, telephone calls and support during the years of this study. Many thanks go to my sisters and all friends from Croatia for patience and support, especially at the beginning of this study.

At the end, I would like to thank my husband Marko for an enormous encouragement, help, love and support in all phases of my stay in Germany, without whom I would not even start this study nor would I finish it. Special thanks for learning me the basics of scientific thinking and for believing in me constantly.
Table of contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Fungi as a source of biologically active metabolites</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Cytotoxic fungal metabolites</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Sphingolipids</td>
<td>7</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Sphingolipid metabolism and function. General remarks</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Sphingolipids in cancer</td>
<td>11</td>
</tr>
<tr>
<td>1.2.2.1</td>
<td>Ceramide</td>
<td>12</td>
</tr>
<tr>
<td>1.2.2.2</td>
<td>Glucosylceramide and other glycosphingolipids</td>
<td>13</td>
</tr>
<tr>
<td>1.3</td>
<td>Influence of fungal metabolites on sphingolipid metabolism</td>
<td>15</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Inhibitors of serine palmitoyltransferase</td>
<td>15</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Inhibitors of ceramide formation</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Scope of the present study</td>
<td>21</td>
</tr>
<tr>
<td>2.1</td>
<td>Biological and chemical screening of fungal extracts</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>Chemical investigation of selected fungal strains</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Biological evaluation of isolated pure compounds</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Materials and methods</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Fungal strains</td>
<td>22</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Isolation of the fungal strains</td>
<td>22</td>
</tr>
<tr>
<td>3.1.1.1</td>
<td>Isolation from algal material</td>
<td>22</td>
</tr>
<tr>
<td>3.1.1.2</td>
<td>Isolation from the sponge</td>
<td>22</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Fungal strains for chemical investigation</td>
<td>22</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Cultivation of fungal strains</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Chromatography</td>
<td>23</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Thin layer chromatography (TLC)</td>
<td>23</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Vacuum liquid chromatography (VLC)</td>
<td>24</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Size exclusion chromatography (SEC)</td>
<td>24</td>
</tr>
<tr>
<td>3.2.4</td>
<td>High performance liquid chromatography (HPLC)</td>
<td>24</td>
</tr>
</tbody>
</table>
3.3 Structure elucidation
 3.3.1 NMR spectroscopy
 3.3.2 Mass spectrometry
 3.3.3 UV measurements
 3.3.4 IR spectroscopy
 3.3.5 Optical rotation
 3.3.6 Molecular modeling
3.4 Amino acids analysis
 3.4.1 Marfey’s method
3.5 Cell culture
 3.5.1 Primary cultured neurons
 3.5.2 Neuroblastoma B104 cell line
 3.5.3 Sphingolipid labeling in cultured cells
 3.5.4 Cell viability assay
 3.5.5 Cell harvesting
 3.5.6 Protein determination
3.6 Sphingolipid analysis
 3.6.1 Extraction of lipids
 3.6.2 Removal of lipid contaminants
 3.6.3 Removal of salts by reversed-phase chromatography
 3.6.4 Separation of sphingolipids by thin-layer chromatography
 3.6.5 Lactosylceramide synthase (LacCer) assay
3.7 Reverse transcription-polymerase chain reaction (RT-PCR)
 3.7.1 RT-PCR protocols
3.8 MRP1- and Pgp-related transport activities
 3.8.1 MRP1- and Pgp-mediated accumulation assay
 3.8.2 MRP1- and Pgp-mediated efflux assay
3.9 Biological tests
 3.9.1 Agar diffusion assay
 3.9.2 Cytotoxicity test against human cancer cell lines
 3.9.3 Immunostimulating activity
3.10 Chemicals and other materials
 3.10.1 Apparatus and expendable materials
 3.10.2 Cell culture media
3.10.3 Chemicals and solvents 42
3.10.4 Kits 44
3.10.5 Lipids 45
3.10.6 Primers 45
3.10.7 Radioactivity 45
3.10.8 Solutions and buffers 46

4 Results 47

4.1 Screening of fungal extracts for biologically active metabolites 47
 4.1.1 Screening of fungal extracts for cytotoxic activity 47
 4.1.2 Antimicrobial and antialgal activities of fungal extracts 49
 4.1.3 Influence of fungal extracts on sphingolipid metabolism 49

4.2 Arugosins G and H: Prenylated polyketides from the marine-derived fungus
 Emericella nidulans var. *acristata* (Strain number 652) 52
 4.2.1 Introduction 52
 4.2.2 Cultivation, extraction and isolation 54
 4.2.3 Results and discussion 54

4.3 Two New Depsipeptides from the Marine Fungus *Spicellum roseum*
 (Strain number 74) 65
 4.3.1 Introduction 65
 4.3.2 Cultivation, extraction and isolation 66
 4.3.3 Absolute configuration of spicellamide A (11) and spicellamide B (12) 66
 4.3.4 Results and discussion 67

4.4 Lipopeptides from the strain *Fusarium dimerum* complex (Strain number 18) 73
 4.4.1 Introduction 73
 4.4.2 Cultivation, extraction and isolation 73
 4.4.3 Results and discussion 74

4.5 Secondary metabolites from selected marine fungi 78
 4.5.1 *Arthrinium sacchari* 78
 4.5.2 *Aspergillus terreus* 81
 4.5.3 *Fusarium oxysporum* 83
 4.5.4 *Paecilomyces lilacinus* 86
4.6 Influence of fungal metabolites from the strain *Spicellum roseum* on sphingolipid metabolism

4.6.1 Alterations of glycosphingolipid profile by the extract of *Spicellum roseum*
4.6.2 Cultivation, extraction and bioassay-guided isolation
4.6.3 Brefeldin A – uncoupling of ganglioside biosynthesis
4.6.4 Effect of trichothecene derivatives on glycosphingolipid metabolism

4.6.4.1 Influence of trichothecenes on lactosylceramide synthase in neural cells
4.6.4.2 Influence of trichothecenes on galactosyltransferase II
4.6.4.3 Influence of trichothecenes on the translocation of glucosylceramide
4.6.4.4 Influence of trichothecenes on ceramide level in neural cells

5 Discussion

5.1 Selection of fungal strains
5.2 Isolated natural products
5.3 Interference of fungal metabolites with sphingolipid metabolism

5.3.1 Trichothecenes – alterations of glycosphingolipid profiles

5.4 General discussion

6 Summary

7 References

8 Appendix

8.1 Results of the cytotoxicity assay

8.1.1 Cytotoxicity of extracts and VLC fractions

8.1.2 Cytotoxicity of isolated compounds

8.2 1H and 13C NMR spectra of isolated compounds
Abbreviations

°C Degrees Celsius
1D One Dimensional
2D Two Dimensional
$[\alpha]_D^T$ Specific rotatory power; Sodium D-line (589 nm); T: Temperature
δ NMR chemical shift [ppm]
λ Wavelength [nm]
µCi 10^{-6} curie
µg 10^{-6} gram
µL 10^{-6} litre
µm 10^{-6} metre
µM micromolar
ν Wave number [cm$^{-1}$]
8-dT 8-deoxy trichothecin
ACN Acetonitrile
ASW Artificial Sea Water
BFA Brefeldin A
BMS Biomalt Salt Medium
BSA Bovine Serum Albumin
br Broad
c concentration
CaCl$_2$ Calcium chloride
CDP-choline Cytidine-5-diphosphate choline
CFDA 5-carboxyfluorescein diacetate
CH$_2$Cl$_2$ Dichloromethane (see DCM)
cm 10^{-2} metre
CMF Ca$^{2+}$/Mg$^{2+}$-free isotonic solution
CO$_2$ Carbon dioxide
COSY Correlated Spectroscopy
CsA Cyclosporine A
CuSO$_4$ Copper sulphate
CZ Czapek Medium
d doublet
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAD</td>
<td>Diode Array Detector</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DEPT</td>
<td>Distortionless Enhancement by Polarisation Transfer</td>
</tr>
<tr>
<td>dest.</td>
<td>Distilled</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine-tetra-acetic acid</td>
</tr>
<tr>
<td>e.g.</td>
<td>example given</td>
</tr>
<tr>
<td>EI</td>
<td>Electro Ionisation</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic Reticulum</td>
</tr>
<tr>
<td>ESI</td>
<td>Electro Spray Ionisation</td>
</tr>
<tr>
<td>EtOAc</td>
<td>Ethyl Acetate</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FDAA</td>
<td>1-Fluoro-2,4-dinitrophenyl-5-L-alaninamide</td>
</tr>
<tr>
<td>g</td>
<td>grams</td>
</tr>
<tr>
<td>GC</td>
<td>Gas-Chromatography</td>
</tr>
<tr>
<td>GlcCer</td>
<td>Glucosylceramide</td>
</tr>
<tr>
<td>GSL</td>
<td>Glycosphingolipid</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>H$_3$BO$_3$</td>
<td>Boric acid</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank’s Balanced Salt Solution</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HMBC</td>
<td>Heteronuclear Multiple-Bond Correlation</td>
</tr>
<tr>
<td>HMQC</td>
<td>Heteronuclear Multiple Quantum Correlation</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance or High Pressure Liquid Chromatography</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>Water</td>
</tr>
<tr>
<td>H$_2$SO$_4$</td>
<td>Sulphuric acid</td>
</tr>
<tr>
<td>HSQC</td>
<td>Heteronuclear Single Quantum Correlation</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IC$_{50}$</td>
<td>Inhibition Concentration (drug concentration causing 50 % growth inhibition)</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukine</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>J</td>
<td>Spin-spin coupling constant [Hz]</td>
</tr>
</tbody>
</table>
KBr Potassium bromide
KCl Potassium chloride
KH$_2$PO$_4$ Potassium dihydrogen phosphate
L Liter
LacCer Lacrosylceramide
LC Liquid Chromatography
LC$_{50}$ Lethal Concentration (drug concentration, causing 50 % reduction of the initial existent cell quantity)
m Multiplet (in connection with NMR data)
M Molarity
MDR Multidrug Resistance
MEM Minimum Essential Medium
MeOH Methanol
mg 10^{-3} gram
MgCl$_2$ Magnesium chloride
MHz Megahertz
min minute
mL 10^{-3} litre
mM 10^{-3} Mol
MnCl$_2$ Manganese chloride
MRP1 Multidrug Resistance Protein 1
MS Mass Spectrometry
MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide)
MYA Malt-yeast agar Medium
NaCl Sodium chloride
NaHCO$_3$ Sodium hydrogen carbonate
NaOH Sodium hydroxide
Na$_2$SO$_4$ Sodium sulphate
NH$_4$Ac Ammonium acetate
nm nanometer
NMR Nuclear Magnetic Resonance
NOE Nuclear Overhauser Effect
NOESY Nuclear Overhauser Effect Spectroscopy
NP Normal Phase Silica gel
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PE</td>
<td>Petroleum ether</td>
</tr>
<tr>
<td>Pgp</td>
<td>P-glycoprotein</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>q</td>
<td>Quartet</td>
</tr>
<tr>
<td>Rf</td>
<td>Retention Factor (defined as the distance traveled by the compound divided by the distance traveled by the solvent)</td>
</tr>
<tr>
<td>Rh123</td>
<td>Rhodamine 123</td>
</tr>
<tr>
<td>RI</td>
<td>Refractive Index</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>ROESY</td>
<td>Rotating Frame Overhauser Effect Spectroscopy</td>
</tr>
<tr>
<td>RP</td>
<td>Reversed Phase</td>
</tr>
<tr>
<td>Rt</td>
<td>Retention Time</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcription-polymerase chain reaction</td>
</tr>
<tr>
<td>s</td>
<td>Singlet</td>
</tr>
<tr>
<td>Sa</td>
<td>Sphinganine</td>
</tr>
<tr>
<td>SCUBA</td>
<td>Self Contained Underwater Breathing Apparatus</td>
</tr>
<tr>
<td>SEC</td>
<td>Size Exclusion Chromatography</td>
</tr>
<tr>
<td>SL</td>
<td>Sphingolipid</td>
</tr>
<tr>
<td>SM</td>
<td>Sphingomyelin</td>
</tr>
<tr>
<td>So</td>
<td>Sphingosine</td>
</tr>
<tr>
<td>sp.</td>
<td>Species</td>
</tr>
<tr>
<td>SPT</td>
<td>Serine palmitoyltransferase</td>
</tr>
<tr>
<td>SrCl2</td>
<td>Strontium chloride</td>
</tr>
<tr>
<td>t</td>
<td>Triplet</td>
</tr>
<tr>
<td>Td-ol</td>
<td>Trichodermol</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VLC</td>
<td>Vacuum-liquid Chromatography</td>
</tr>
</tbody>
</table>
Abstract

Development of new drugs, especially in the area of oncological and infectious diseases, represents today one of the most important research fields. The marine environment is a tremendous source of natural products. Drug development is now turning toward potentially more selective ways (e.g. inducement of certain signaling molecules) in disease treatments, especially when concerning cancer. Sphingolipids (SLs) are ubiquitous constituents of eukaryotic cellular membranes that are involved in cell growth, proliferation, differentiation and apoptosis. These sphingolipid-regulated processes are crucial in cancer development and progression. Pharmacological or molecular manipulations of any of the enzymes involved in SL metabolism have been proposed as new strategies in the treatment of cancer or diseases caused by disrupted sphingolipid balance. The toxic effects of some fungal metabolites were related to their ability to interfere with SL metabolism. The aim of this study was the investigation of secondary metabolites produced by marine-derived fungi with cytotoxic properties and the isolation of new compounds with potent biological activity, preferably with the potential to influence sphingolipid metabolism.

Extracts of seven fungal strains, including five algal-derived and two sponge-derived strains, were chemically investigated. This investigation resulted in the isolation and structure elucidation of 29 pure compounds. Four compounds, arugosin G and H, spicellamide A and B, proved to be new. Arugosins G and H, together with arugosins A and B, were isolated from algicolous fungus *Emericella nidulans* var. *acristata*. They are benzophenone derivatives, biosynthetically related to xanthones, which showed moderate antitumor activity toward individual tumor cell lines. Cyclohexadepsipeptides spicellamide A and B, isolated from sponge-derived fungus *Spicellum roseum*, exhibited moderate cytotoxicity in neuroblastoma cells. Bioassay-guided isolation of cytotoxic compounds revealed the presence of cytochalasins from an *Arthrinium sacchari* extract, of aflatoxins from an *Emericella nidulans* var. *acristata* extract and of trichothecenes from a *Spicellum roseum* extract.

Trichothecenes are cytotoxic compounds that have several inhibitory effects on eukaryotic cells. Tests on sphingolipid metabolism exhibited alterations in the expression of glycosphingolipids by two compounds from trichothecene family, 8-deoxy-trichothecin and trichodermol. In cerebellar neurons and neuroblastoma cells both compounds inhibit lactosylceramide synthase activity and induce an accumulation of glucosylceramide. These data describe a new effect of trichothecenes. However, further studies have to clarify the fate and physiological consequence of accumulated glucosylceramide and also its correlations with known effects of trichothecenes.
1 Introduction

1.1 Fungi as a source of biologically active metabolites

Since the discovery of penicillin, a potent antibiotic produced by *Penicillium notatum*, (Fleming, 1929), a new area in natural product research has started. Fungi were noticed as a source of chemically new compounds with various biological activities. The isolation from soil was a common method to get fungal isolates. However, fungal strains from terrestrial sources yielded often already described secondary metabolites. Thus, fungi from new origins were needed. The marine environment offers a wide array of potential fungal sources including sediment, sand, driftwood, mangrove wood, sea water, algae, sponges and other invertebrates (Jensen and Fenical, 2000). Fungi obtained either from sponges, algae, or wooden substrates account for about 70% of chemistry described from marine-derived fungi. Sponge-derived fungi comprise about 33% of the total compounds in the literature and have the highest number of novel metabolites. Algicolous fungi take the second place accounting for 24% of the total number of compounds with 27% of them being new metabolites (Bugni and Ireland, 2004). Fungal strains, residing inside sponge or algal tissue, can be isolated by placing algal thalli or tissues of the sponge, after surface sterilization to remove unwanted epibionts, on suitable agar media. Interestingly, most of the isolated endophytic fungi are not obligate marine fungi. However, they are a tremendous source of natural products, which is not surprising if considering the complex ecological situation of the endophyte within the host plant (König et al., 2006).

The present work thus deals with the investigation of marine fungal strains, derived from algae or sponges, aiming at finding new bioactive natural products.

1.1.1 Cytotoxic fungal metabolites

Marine-derived fungi are an extremely interesting and valuable source of novel natural products (Bhadury et al., 2006). Biological activities are mainly focused in the areas of antibiotic and anticancer properties (Donia and Hamann, 2003; Simmons et al., 2005), but other selective activities include antiviral, antiparasitic, neuritogenic activity, phosphatase and kinase inhibition (Butler, 2005). Development of new anticancer drugs represents today one of the most important research areas. An analysis of the number of chemotherapeutic agents and their sources indicates that over 60% of the approved drugs are derived from natural
compounds (da Rocha et al., 2001). The present study is thus devoted to the investigation of cytotoxic properties of fungal extracts.

First report of novel cytotoxic metabolites from a sponge-derived fungus describes gymnastatins that are obtained from a strain Gymnascella dankaliensis derived from the sponge Halichondria japonica (Numata et al., 1997). Gymnastatins A, B and C exhibited potent cytotoxicity in a P388 lymphocytic leukemia test system with LC₅₀ values of 18, 108, and 106 ng mL⁻¹, respectively.

Asperazine, isolated from a Hyrtios proteus sponge-derived Aspergillus niger showed selective cytotoxicity against leukemia cells while exhibiting no antimicrobial activity, suggesting asperazine has a specific mammalian target (Varoglu and Crews, 2000).

One of the largest classes of cytotoxic metabolites from algicolous fungi is the leptosin family of dimeric diketopiperazines (Takahashi et al., 1994; Takahashi et al., 1995). The compounds
were isolated from algicolous fungus *Leptosphaeria* sp. Leptosins A and C exhibited cytotoxic activity against a P388 leukemia cell line with a mean LC$_{50}$ of 1.85 and 1.75 ng mL$^{-1}$, respectively (Pettit *et al.*, 2002).

Studies on *Penicillium* isolate OUPS-79 (obtained from the marine alga *Enteromorpha intestinalis*) resulted in the isolation of two unrelated classes of cytotoxic compounds, penochalasins (Iwamoto *et al.*, 2001) and penostatins (Iwamoto *et al.*, 1999). Penochalasins and penostatins have various effects on cells mainly due to their ability to cap F-actin, and have been useful tools for cytoskeletal research. They showed potent cytotoxic activity against P388 leukemia cells exhibiting an LC$_{50}$ of 0.4 ng mL$^{-1}$, (penochalasin A), 0.3 ng mL$^{-1}$, (penochalasin B) and 0.5 ng mL$^{-1}$, (penostatin A) (Maruta *et al.*, 1999).

Cytotoxic sesquiterpenoid nitrobenzoyl esters, isolated from *Aspergillus versicolor*, showed a mean LC$_{50}$ of 1.1 µg mL$^{-1}$ in 60 cell-line panel (Belofsky *et al.*, 1998).
Cytotoxic metabolites obtained from fungi isolated from other sources are compounds like phomopsidin. Phomopsidin is isolated from *Phomopsis* sp., obtained from a submerged mangrove branch, which exhibited an inhibition of microtubule assembly with an LC$_{50}$ 5.7 µM (Kobayashi *et al.*, 2003).

Neomanigicols were isolated from *Fusarium* sp. which was obtained from a driftwood sample in a mangrove habitat. Neomanigicols A and B showed cytotoxic activity against an MCF-7 human breast carcinoma with an LC$_{50}$ value of 4.9 µM and 27 µM, respectively (Renner *et al.*, 1998).
One of the best evaluated fungal metabolite in oncological research is fumagillin. Fumagillin was first isolated from *Aspergillus fumigatus* and it was used for treatment of intestinal amebiasis (Killough *et al.*, 1952; Griffith *et al.*, 1998). It was later found to inhibit angiogenesis through binding to methionine aminopeptidase 2 (Liu *et al.*, 1998; Kim *et al.*, 2004). A number of fumagillin analogues were prepared (Marui *et al.*, 1992; Lee *et al.*, 2007) including TNP-470, which was found to have higher potency and lower toxicity than fumagillin (Ingber *et al.*, 1990), and is one of the first inhibitors of angiogenesis to reach clinical trials (Kruger and Figg, 2000). CKD-732 (Han *et al.*, 2000) is currently undergoing clinical trial and exhibited better potency and less cytotoxicity compared with TNP-470 (Lee *et al.*, 2004; Kim *et al.*, 2007).

![Chemical structures of fumagillin, TNP-470, and CKD-732](attachment:chemical_structures.png)

Fumagillin \(R = \text{CO(CH=CH)4CO}_2\text{H} \)
TNP-470 \(R = \text{CONHCOCH}_2\text{Cl} \)
CKD-732 \(R = \text{COCH=CHC}_6\text{H}_5\text{OCH}_2\text{CH}_2\text{N(CH}_3)_2 \)

Halimide was discovered concurrently from a marine and a terrestrial fungus, *Aspergillus* sp., and is produced as a mixture of (+) and (-) enantiomers (Kanoh *et al.*, 1997; Fairchild *et al.*, 1998). Early studies showed that the (-) enantiomer inhibited cell proliferation by binding at the colchicine-binding site of tubulin and disrupting the microtubule network, which resulted in G2/M cell cycle arrest (Kanoh *et al.*, 1999a; Kanoh *et al.*, 1999b). Additionally, the (-) enantiomer exhibited elevated cytotoxic activity against various tumor cells including lung, colon, breast and leukemia with IC\(_{50}\) values in the low to submicromolar range (Kanoh *et al.*, 1999a). To remove chirality and optimize biological activity, a series of synthetic analogs was generated, including NPI-2358. Nereus Pharmaceuticals has initiated a Phase I clinical trial to evaluate the safety of tumor vascular disrupting agent NPI-2358 for the treatment of patients with solid tumors (Spear, 2007).
From the literature review it can be concluded that most of the cytotoxic metabolites are produced by genus of *Aspergillus* or *Penicillium*. One explanation for the high number of compounds reported from these two genera is that they are both salt tolerant, fast growing species and are easily obtained from many substrates. Additionally, *Aspergillus* and *Penicillium* spp. are known to produce extracts with a wide variety of activities. Thus, decreasing the isolation number of ubiquitous species could represent a valid method to increase the probability of the isolation of novel chemical structures.
1.2 Sphingolipids

1.2.1 Sphingolipid metabolism and function. General remarks

In 1884 J. L. W. Thudichum discovered a new class of lipids while studying the chemical composition of the brain. He named them sphingolipids after the sphinx of Greek mythology because of the riddle of their structure (Thudichum, 1884). Sphingolipids (SLs) are ubiquitous constituents of eukaryotic cellular membranes. Although sphingolipids have been considered for many years only as structural components of membranes, it is now acknowledged that they are also involved in controlling cellular processes such as proliferation, growth, migration, differentiation, senescence, and apoptosis (Cuvillier, 2002; Hannun and Obeid, 2002; Malisan and Testi, 2002; Spiegel and Milstien, 2003). Hence, they are currently recognized as signaling molecules capable of determining cellular fate.

The basic building block of all sphingolipids is sphingosine (4E-(2-amino-1,3-dihydroxy)-octadecene) having the D-erythro (or 2S, 3R) configuration, or sphinganine (dihydrosphingosine). A fatty acid is attached to carbon-2 of the sphingoid base via an amide bond, yielding ceramide, and attachment of hydrophilic head groups to the OH-group at C-1 yields complex SLs.

The metabolic pathways of simple and complex SLs are shown in Figure 1-2-1. It is clear from that figure that the metabolites are interconvertible which complicates determination concerning the specific role of each one of them. De novo synthesis of sphingolipids occurs at the cytosolic face of the endoplasmic reticulum (ER), and starts by the condensation of serine and palmitoyl-CoA catalyzed by serine palmitoyltransferase (SPT), which is a pyridoxal phosphate dependent enzyme (Mandon et al., 1992). Its product, 3-ketosphinganine, is immediately reduced by the NADPH dependent 3-ketosphinganine reductase yielding D-erythro-sphinganine. After acylation of sphinganine to dihydroceramide by the enzyme (dihydro)ceramide synthase, ceramide is subsequently formed by introduction of a 4,5-trans double bond by dihydroceramide desaturase (Rother et al., 1992; Michel et al., 1997). Ceramide is the central lipid in the metabolism of sphingolipids (van Echten-Deckert and Herget, 2006). Once formed, it is subsequently transported from the ER to the Golgi complex where it serves as a substrate for the synthesis of sphingomyelin and more complex glycosphingolipids (GSLs). Sphingomyelin biosynthesis requires the transfer of phosphorylcholine headgroup from phosphatidylcholine to ceramide, liberating diacylglycerol through the action of sphingomyelin synthase (Ramstedt and Slotte, 2002).
Figure 1-2-1. Scheme of sphingolipid metabolism.
Ceramide is the central molecule in the metabolism of sphingolipids. It can be formed de novo (red arrows), from hydrolysis of sphingomyelin or glycosphingolipids, or from dephosphorylation of ceramide-1-phosphate (C1P) (black arrows) or recycling of sphingosine (salvage pathway). Ceramide can serve as a precursor in many biosynthetic pathways (green arrows). The major pathway for catabolism of ceramide is its deacylation by ceramidases to sphingosine, which in turn is phosphorylated to generate sphingosine-1-phosphate (S1P) (dark blue arrows). S1P can be irreversibly cleaved by lyase to phosphoethanolamine and hexadecenal (dark blue arrows) or it can be dephosphorylated by phosphatases that regenerate sphingosine in the ceramide salvage pathway (light blue arrows). GSL, glycosphingolipids; PLP, pyridoxal phosphate; NADPH, nicotine adenine dinucleotide phosphate (Wedeking and van Echten-Deckert, 2006).
The biosynthesis of most GSLs requires the glucosylation of ceramide which is catalyzed by glucosylceramide (GlcCer) synthase on the cytosolic surface of the Golgi apparatus (Futerman and Pagano, 1991). Almost all gangliosides are derived from lactosylceramide (LacCer), which is formed by the transfer of galactose to GlcCer (van Echten-Deckert and Herget, 2006). This reaction is catalyzed by the enzyme lactosylceramide synthase which is found on the luminal leaflet of Golgi membranes (Lannert et al., 1998; Giraudo and Maccioni, 2003). Addition of one or two sialic acid molecules to LacCer results in formation of GM3 and GD3 (Figure 1-2-2), respectively, which represent precursors of more complex gangliosides that are particularly enriched in brain (van Echten-Deckert and Herget, 2006).

Interestingly, the topology of GlcCer biosynthesis differs from that of LacCer formation. Thus, GlcCer synthesized at the cytosolic face of the Golgi apparatus (Coste et al., 1986; Lannert et al., 1998) or a pre-Golgi compartment (van Echten and Sandhoff, 1989) must be translocated across the Golgi membrane to be accessible for the enzyme LacCer synthase, which is active at the luminal face of Golgi membranes. It has been suggested that multidrug resistance (MDR) proteins (MDR1 P-glycoprotein (Pgp) and multidrug resistance protein1

Figure 1-2-2. Biosynthesis of glycosphingolipids.

GlcCer, glucosylceramide; LacCer, lactosylceramide. Modified from (van Echten and Sandhoff, 1993). The terminology of gangliosides (GM3, GD3, GA2, GM2, GD2, GA1, GM1, GD1b, GM1b, GD1a, GT1b, Gd1c, GT1a, GQ1b) is according to Svennerholm (Svennerholm, 1963).
(MRP1)) can act as GlcCer flippases in Golgi membranes in several cell lines (Raggers et al., 1999; De Rosa et al., 2004).

Another important metabolite that can be generated from ceramide is ceramide-1-phosphate, which is formed by the action of ceramide kinase (Bajjalieh et al., 1989).

Catabolism of sphingolipids occurs after endocytosis primarily in the lysosomes by the stepwise action of specific hydrolases that remove the headgroups of complex SLs, resulting in the formation of ceramide (Hannun et al., 2001) (Figure 1-2-1). Other subcellular compartments, including Golgi apparatus and plasma membranes, contain hydrolases and contribute in degradation of SLs (Goni and Alonso, 2002). Sphingomyelin and glycosphingolipids are degraded to ceramide through the action of sphingomyelinases and exoglycosidases, respectively (Hannun, 1994; van Echten-Deckert and Herget, 2006). Ceramide is then deacylated by ceramidases to sphingosine (Hassler and Bell, 1993). Sphingosine may be phosphorylated into sphingosine-1-phosphate, or it can enter the salvage pathway to form ceramide (Hannun et al., 2001). Sphingosine-1-phosphate can also enter the salvage pathway by the action of phosphatases that regenerate sphingosine, or it can be irreversibly cleaved to phosphoethanolamine and hexadecenal by a pyridoxal 5’-phosphate (PLP)-dependent lyase (Van Veldhoven, 2000; Ikeda et al., 2004). The aldehyde intermediate is oxidized to fatty acid whereas phosphoethanolamine can be utilized for the synthesis of phosphatidylethanolamine. Thus, both of SL-breakdown products may enter glycerolipid metabolic pathway (Hannun et al., 2001).

Sphingolipids are essential for the growth of not only mammalian cells but also invertebrate and fungal cells (Hanada et al., 1992; Dickson, 1998; Adachi-Yamada et al., 1999), and modulate various cellular events including proliferation, differentiation, and apoptosis (Pettus et al., 2002; Proia, 2003; Watterson et al., 2005). In addition, sphingolipids, along with cholesterol, form detergent-resistant membrane microdomains, so called “lipid rafts”, which are implicated in signal transduction and membrane trafficking (Barenholz, 2004; Lucero and Robbins, 2004). The pathological aspects of SLs have also been receiving attention. Inborn dysfunctions of enzymes or accessory factors involved in the degradation of sphingolipids often cause infant lethality, suggesting that the abnormal accumulation of SLs is toxic to cells or tissues (Futerman and van Meer, 2004; Kolter and Sandhoff, 2006). Also, various types of pathogens exploit sphingolipids of host cells as membrane receptors (Wedeking and van
Echten-Deckert, 2006). In addition, lipid-rafts of host cells can be platforms for infection signaling and entry of intracellular parasites (Hanada, 2005).

1.2.2 Sphingolipids in cancer

As already mentioned above, sphingolipids generate biologically active signals that affect cell proliferation, differentiation and apoptosis. These sphingolipid-regulated processes are crucial in cancer development and progression, and influence the efficacy of anti-cancer therapeutics (Kok and Sietsma, 2004; Fox et al., 2006; Ogretmen, 2006). A dynamic sphingolipid equilibrium has been described where pro-apoptotic SLs exist in a balance with pro-survival SLs (Cuvillier et al., 1996).

Figure 1-2-3. The biological roles of sphingolipids.

The most common example of this equilibrium is the balance between ceramide and sphingosine-1-phosphate (Figure 1-2-3). When this balance shifts either way, it can lead to cellular death or growth arrest in the case of ceramide accumulation or alternatively to proliferative disorders (i.e. cancer, angiogenesis) in the case of formation of sphingosine-1-phosphate. In addition, other sphingolipid-based second messengers, including ceramide-1-phosphate and glycosphingolipids are also in dynamic flux with ceramide. Thus, pharmacological or molecular manipulations of any of the enzymes involved in SL metabolism have been proposed as a tool to increase the sensitivity of tumors to various therapeutic agents (Modrak et al., 2006). Sphingosine kinase, sphingomyelinase, ceramidase, and glucosylceramide synthase, among other enzymes important to SL metabolism, are being studied as potential new drug targets.
1.2.2.1 Ceramide

The function of ceramide as a mediator of apoptosis suggests novel therapeutic approaches based on elevating levels of endogenous ceramide and/or mimicking its actions. A number of clinically important cytotoxic agents appear to be effective because of their ability to activate ceramide-mediated pathways in cancer cells (Figure 1-2-4). Drugs can impact ceramide metabolism by promoting ceramide synthesis de novo, by activating sphingomyelinase, and/or by blocking glucosylceramide formation. Targeting enzymes of ceramide formation appears to elevate endogenous levels of ceramide, leading to increased cytotoxic responses in various cancer cells (Ogretmen and Hannun, 2004; Reynolds et al., 2004).

![Diagram of ceramide metabolism](image)

Figure 1-2-4. Compounds that contribute to increased levels of cellular ceramide. ↑, stimulation; ↓, inhibition. Modified from Duan, 2005; (Duan, 2005).

Both of the anthracyclines doxorubicin and daunorubicin effectively elevate ceramide levels in several cell types. It is reported that daunorubicin promotes ceramide formation and apoptosis by stimulating ceramide synthase activity (Bose et al., 1995) or via hydrolysis of sphingomyelin (Jaffrezou et al., 1996). Some of the cytotoxic properties of vinca alkaloids (vincristine and vinblastine), widely used in the treatment of leukemia patients, may be due to increase de novo formation of cellular ceramide (Zhang et al., 1996). The effects of paclitaxel inhibited microtubule depolymerization in different solid tumors were also linked to de novo
synthesis of ceramide (McCloskey et al., 1996; Charles et al., 2001). On the other hand, triphenylethylene antiestrogens, such as tamoxifen, block conversion of ceramide to glucosylceramide (Cabot et al., 1996) and, thereby, promote increases in cellular ceramide. Multidrug treatments, such as a combination of tamoxifen with agents that elevate de novo ceramide formation like doxorubicin, increase the anti-tumor effect of a single drug (Lucci et al., 1999).

Until recently, cancer chemotherapy has focused primarily on targeting DNA, critical cellular proteins or metabolites involved in DNA synthesis and repair, or on targeting microtubule disruption. Cancer drug development is now turning toward potentially more selective ways to inducing tumor cell death or cytostasis (Reynolds et al., 2004). The ability of ceramide and ceramide-generating drugs to induce cytotoxicity in cancer cells via few apoptotic signaling pathways provides new approaches in cancer therapy.

1.2.2.2 Glucosylceramide and other glycosphingolipids

Glycosphingolipids (GSLs) are biosynthetically derived from ceramide backbone linked to an oligosaccharide chain of variable length and complexity. Gangliosides are prominent members of GSLs that are distinguished by the presence of one or more sialic acid residues. GSLs are involved in important physiological processes including differentiation, migration, proliferation and apoptosis (Bektas and Spiegel, 2004; Wedeking and van Echten-Deckert, 2006). Thus, disturbance of GSL metabolism results in various pathological disorders. This is obvious in GSL storage diseases, such as Gaucher and Tay-Sachs disease, in which glucosylceramide and GM2 accumulate, respectively, due to malfunctioning of the proteins responsible for their degradation (Buccoliero and Futerman, 2003).

The simplest GSL, glucosylceramide (GlcCer), in contrast to the apoptotic effect of its biosynthetic precursor ceramide, was reported to have growth stimulatory and anti-apoptotic effects (Datta and Radin, 1988; Marsh et al., 1995; Marchell et al., 1998). Moreover, increased GlcCer synthesis appears to be connected with multidrug resistance (MDR), in which cells lose sensitivity for anti-cancer drugs due to the decreased levels of ceramide (Senchenkov et al., 2001). It is reported that a number of cancer cell lines accumulate this noncytotoxic metabolite (Lavie et al., 1996; Lucci et al., 1998). Therefore, limiting the synthesis of glycolipids could be one approach to dampening drug resistance. Well-known drug resistance modulators such as tamoxifen, verapamil, and cyclosporine A have been shown to exert part of their effect by inhibition of glucosylceramide synthase (Senchenkov et
Therefore, inhibition of GlcCer synthesis could reduce multidrug resistance and increase ceramide effects.

While GlcCer elicits antiapoptotic role, ganglioside GD3 has been shown to sensitize human hepatoma cells to treatment with ionizing radiation or daunorubicin (Garcia-Ruiz et al., 2000; Paris et al., 2002). Ergo, sialyltransferase II, the enzyme that catalyzes formation of GD3 from GM3 by addition of a sialic acid molecule, might be another good target for anticancer therapy.
1.3 Influence of fungal metabolites on sphingolipid metabolism

Since sphingolipids are involved in various cellular functions, each disturbance in sphingolipid homeostasis can lead to serious pathological effects. Thus, strategies which either mimic/antagonize these lipids or modulate their levels could provide novel therapeutic possibilities. Several inhibitors of SL biosynthesis have been described. They have been isolated from natural sources or have been generated by design and chemical synthesis. Most of the synthetic inhibitors are structural analogs of cellular SLs. Although analogs of natural SLs can possess higher membrane permeability then natural ones (Modica-Napolitano and Aprille, 2001; Senkal et al., 2006), some of them that are synthesized as SL enzyme inhibitors, probably on account of their structural similarity to natural SLs, are also reported to have several physiological functions which may not be related to their enzyme inhibition (Igarashi et al., 1989; Khan et al., 1990; Sweeney et al., 1996). Thus, specific SL enzyme inhibitors are desired.

During the last two decades several compounds have been isolated from natural sources, mostly from fungi, that inhibit the activity of enzymes involved in sphingoid base metabolism. The most representative ones are discussed below.

1.3.1 Inhibitors of serine palmitoyltransferase

The first step of sphingolipid biosynthesis is the condensation of serine and palmitoyl CoA, a reaction catalyzed by serine palmitoyltransferase (SPT) to produce 3-ketodihydrosphingosine. Fungal metabolites that inhibit SPT activity are shown in Figure 1-3-1.

Myriocin (ISP-1), the structure of which resembles that of sphingosine, was initially isolated as an antibiotic and immunosuppressant from a culture broth of Isaria sinclairi (Fujita et al., 1994). Myriocin inhibits the activity of SPT, the rate-limiting enzyme in de novo biosynthesis of SLs. Thus, ISP-1 inhibits de novo formation of all sphingolipids in mammalian cells with IC\textsubscript{50} values in the nanomolar range (Miyake et al., 1995). Myriocin is also known to induce apoptosis of cytotoxic T cells (Fujita et al., 1994; Nakamura et al., 1996).
Chemical modification of ISP-1 led to a novel synthetic compound, FTY720 (Figure 1-3-2), which has more potent immunosuppressive activity and less toxicity than ISP-1 (Kiuchi et al., 2000).

Although structurally similar to sphingosine, FTY720, unlike ISP-1, does not inhibit serine palmitoyltransferase. It has been reported that FTY720 is effectively phosphorylated by sphingosine kinase 2 and that FTY720-phosphate (FTY720-P) is a high affinity agonist for sphingosine-1-phosphate (S1P) receptors (Brinkmann and Lynch, 2002; Paugh et al., 2003) which play an important role in inflammatory processes. FTY720 is currently being evaluated by Novartis in Phase III clinical trials for use in transplantation and autoimmune diseases such as multiple sclerosis.
It has been published that only (S)-configured enantiomer acts as agonist on S1P receptors (Kiuchi et al., 1998; Albert et al., 2005).

Other sphingosine analogs, the sphingofungins, isolated from two species of thermotolerant fungi, *Aspergillus fumigatus* and *Paecilomyces variotii* (Horn et al., 1992; Zweerink et al., 1992), inhibit activity of mammalian and yeast SPT. Sphingofungin B caused growth inhibition of a Chinese hamster ovary cell line which was due to inhibition of sphingolipid synthesis (Hanada et al., 2000).

Lipoxamycin from *Streptomyces* sp. is an antifungal compound that inhibits SPT from *Saccharomyces cerevisiae* (Mandala et al., 1994). Viridofungins from *Trichoderma viride* are potent inhibitors of SPT but they also inhibit squalene synthase (Mandala et al., 1997; Onishi et al., 1997), while sulfamisterin, derived from the fungus *Pycnidiella* sp., is a specific SPT inhibitor (Yamaji-Hasegawa et al., 2005).

1.3.2 Inhibitors of ceramide formation

Fumonisins are a group of mycotoxins initially isolated from corn culture material of *Fusarium moniliforme* (Gelderblom et al., 1998). Later they have been isolated from other *Fusarium* species (i.e. *F. verticillioides* and *F. proliferatum*) and from *Alternaria alternata* (Chen et al., 1992). Until now several fumonisins have been isolated and characterized of which fumonisin B1 is the most toxic. Contamination of food with those toxins causes a neurodegenerative disease of horses called equine leucoencephalomalacia (Marasas et al., 1988) as well as pulmonary edema in pigs (Harrison et al., 1990) and liver and renal damage in numerous animals (Kriek et al., 1981; Voss et al., 1990). Consumption of corn contaminated with *F. moniliforme* has been correlated with human esophageal cancer in areas of southern Africa and China (Yang, 1980). Most or all of the toxicities resulting from
exposure to fumonisins can be explained by their ability to alter sphingolipid metabolism by inhibiting ceramide synthase (Merrill et al., 2001; Riley et al., 2001).

Fumonisins are structurally similar to sphingosine. Fumonisin B1 is comprised of a long-chain aminopentol backbone with two ester-linked tricarballylic acids (Figure 1-3-3). Fumonisin B1 inhibits ceramide synthase in a way that the aminopentol backbone competes for binding of the sphingoid base substrate, whereas the anionic tricarballylic acids interfere with binding of the fatty acyl-CoA (Merrill et al., 2001). Fumonisins cause rapid elevations in sphinganine due to inhibition of de novo sphingolipid biosynthesis (Figure 1-3-4). This most often results in growth arrest (Ciacci-Zanella et al., 1998; Zhang et al., 1999) and apoptosis (Schmelz et al., 1998) due to increased levels of sphinganine. However, in some cells fumonisins are growth stimulatory instead of toxic. These effects appears when the synthesis of sphinganine-1-phosphate is increased due to the accumulation of sphinganine (Smith and Merrill, 1995). All those mentioned effects of fumonisins are reflected on protein kinase C activity, cell growth and differentiation, apoptosis, carcinogenicity and lipid peroxidation (Soriano et al., 2005). Thus, interference with sphingolipid metabolic pathway causes numerous effects in cells.
Figure 1-3-4. Disruption of SL metabolism by fumonisin B1 (FB1).

Shown are the inhibition of ceramide formation from sphinganine and sphingosine by fumonisin B1, resulting in elevations in these sphingoid bases (and sometimes sphingoid base 1-phosphate) and reduction in complex sphingolipids (Desai et al., 2002).

Alternaria toxin, isolated from Alternaria alternata (Shier et al., 1991) (Figure 1-3-5) is a phytotoxin with structural similarity to the sphingolipid backbone. It inhibits SL biosynthesis on the stage of ceramide formation but with less potency than fumonisins (Merrill et al., 1993b).

Australifungin (Sporomiella australis) (Figure 1-3-5) is a potent antifungal agent that was reported as an inhibitor of sphinganine N-acyltransferase (Mandala et al., 1995).
Figure 1-3-5. Structures of australifungin and alternaria toxin.
2 Scope of the present study

The main goal of the present study was the isolation of new and preferably biologically active secondary metabolites from marine-derived fungi with an emphasis on such compounds that influence on sphingolipid metabolism.

2.1 Biological and chemical screening of fungal extracts

Selected fungal strains were cultured in small scale and extracted which enabled biological tests and chemical screening. These tests mainly consisted of agar diffusion assays for antibacterial, antifungal and antialgal activity, cytotoxic assays in a panel of 6 cancer cell lines and assays for sphingolipid metabolism alterations. Additional investigations by 1H NMR and MS were used for chemical characterization of the fungal extracts. The results obtained with those methods were used for the selection of strains which were subsequently subjected to detailed chemical and biological analyses.

2.2 Chemical investigation of selected fungal strains

In order to isolate pure and biologically active metabolites, selected strains were cultured on a large scale, extracted, and the extracts separated using diverse chromatographic methods, mainly HPLC. The chemical investigations were completed by structure elucidation, using 1D and 2D NMR techniques and by physical characterization of the isolated metabolites.

2.3 Biological evaluation of isolated pure compounds

Pure compounds isolated in this study were tested in the same assays as used for the evaluation of the extracts. Additionally, specific cytotoxicity assays and tests on sphingolipid metabolism were used for the compounds that exhibited potent activity in order to describe their mechanism of action.
3 Materials and methods

3.1 Fungal strains

3.1.1 Isolation of the fungal strains
All chemically investigated fungal strains, described in this study, were obtained from fungal culture collection of Professor G. M. König (Institute for Pharmaceutical Biology, University of Bonn), and were isolated by Ekaterina Eguereva or by former Ph. D. students Dr. Ulrich Höller and Dr. Christine Klemke.

3.1.1.1 Isolation from algal material
After sterilization of the algal material with 70 % ethanol, algal samples were rinsed with sterile water and pressed onto agar plates to detect any residual fungal spores on their surface. The water used for media was artificial sea water (ASW) containing the following salts: \[(g/L): \text{KBr} (0.1), \text{NaCl} (23.48), \text{MgCl}_2 \times 2\text{H}_2\text{O} (10.61), \text{CaCl}_2 \times 2\text{H}_2\text{O} (1.47), \text{KCl} (0.66), \text{SrCl}_2 \times 6\text{H}_2\text{O} (0.04), \text{Na}_2\text{SO}_4 (3.92), \text{NaHCO}_3 (0.19), \text{H}_3\text{BO}_3 (0.03)\]. Sterilized algae were then cut into pieces and placed on agar plates containing isolation medium: biomalt 20 g/L, 15 g/L agar, 1 L ASW, benzyl penicillin and streptomycin sulphate (250 mg/L). Fungal colonies growing out of the algal tissue were transferred onto medium for sporulation: 15 g/L agar and 20 g/L biomalt extract in artificial sea water (Klemke, PhD Thesis).

3.1.1.2 Isolation from the sponge
Fungal strains were isolated by inoculating small pieces of the inner tissue of the sponge on glucose peptone yeast extract agar at room temperature: Glucose 1 g/L, peptone from Soya 0.5 g/L, yeast extract 0.1 g/L, streptomycin sulfate 250 mg/L, agar 15 g/L, 1 L ASW (Höller et al., 2000). Fungal colonies growing out of the tissue of the sponge were transferred to medium for sporulation (15 g/L agar, 20 g/L biomalt extract, 1 L ASW).

3.1.2 Fungal strains for chemical investigation
All strains, described in this study, were identified by the Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands.

Aspergillus terreus was isolated from the alga *Cystoseira* sp. collected around Greece.
Emericella nidulans var. acristata (Fennell & Raper) Subramanian was isolated from a green alga collected from Sardinia (Italy, Mediterranean Sea).

Spicellum roseum (Nicot & Roquebert) was isolated from the sponge Ectyplasia perox collected around the Caribbean island of Dominica.

Arthrinium sacchari (Speg) M.B. Ellis anamorph of Apiospora montagnei Saccardo was isolated from the green alga collected at the Adriatic Coast (Croatia).

Paecilomyces lilacinus (Thom) Samson was isolated from unidentified algae sample collected around the Island of Tenerife.

Fusarium oxysporum was isolated from the alga Pelvetia sp. collected at South Atlantic Coast (France).

Fusarium dimerum complex (contains many species) was isolated from the sponge Callyspongia sp. collected in Australia.

3.1.3 Cultivation of fungal strains
Fungal strains were cultivated in Fernbach flasks at room temperature for one to three months (specific cultivation conditions see in the “Results” chapter). The solid media used for the cultivation were (a) biomalt agar medium (20 g/L biomalt, 17 g/L agar and ASW), (b) peptone agar medium (20 g/L biomalt, 10 g/L peptone form Soya, 17 g/L agar and ASW), or (c) malt-yeast agar medium (4 g/L yeast extract, 10 g/L malt extract, 4 g/L glucose, 15 g/L agar and ASW, pH 7.3). For the screening examinations fungal strains were cultivated in Petri dishes for one month on three different media: (a) biomalt agar medium, (b) malt-yeast agar medium, or (c) czapek agar medium (35 g/L Czapek solution agar, 15 g/L agar and ASW).

3.2 Chromatography

3.2.1 Thin layer chromatography (TLC)
TLC was carried out using either TLC aluminium sheets silica gel 60 F\textsubscript{254} (Merck) or TLC aluminium sheets RP-18 F\textsubscript{254} (Merck) as stationary phase. Standard chromatograms of fungal extracts and fractions were prepared by applying 20 µL of solution (5 mg/mL) to a TLC plate.
and using PE/acetone or MeOH/H$_2$O mixtures as mobile phases under saturated conditions. Chromatograms were detected under UV light (254 and 366 nm), and with vanillin-H$_2$SO$_4$ (0.5 g vanillin dissolved in a mixture of 85 ml methanol, 10 mL acetic acid and 5 mL sulphuric acid, TLC plate heated at 110°C after spraying) giving colored spots on a white plate.

3.2.2 Vacuum liquid chromatography (VLC)

Sorbents for VLC were silica gel 60 (0.063-0.200 mm, Merck) or Polygoprep 60 C$_{18}$ (0.05 mm, Macherey-Nagel). Columns were filled with the appropriate sorbent, compressed under vacuum and soaked with PE or MeOH. Before applying the sample solution, the columns were equilibrated with the first designated eluent.

3.2.3 Size exclusion chromatography (SEC)

Sephadex™ LH-20 (0.018-0.111 mm, Pharmacia Biotech AB; size exclusion material) was used as column material with MeOH as eluent. Before applying the sample solution, the column was wet packed with MeOH.

3.2.4 High performance liquid chromatography (HPLC)

HPLC was performed on either (a) a Merck-Hitachi system equipped with an L-6200A pump, an L-4500A photodiode array detector, a D-6000A interface with D-7000 HSM software and a Rheodyne 7725i injection system or (b) a Waters system, controlled by Waters millennium software, consisting of a 717 plus autosampler, 600 controller pump with in-line degasser and a 996 photodiode array detector. A third system (c) was equipped with a Rheodyne 7725i injection system, a Waters 515 HPLC pump, a Knauer RI detector K-2300 and a Linseis L 250 E recorder. Columns used were:

- A: Knauer Eurospher-100, C-8, 250 x 8 mm, 5 µm
- B: Knauer Si Eurospher-100, 250 x 8 mm, 5 µm
- C: Macherey-Nagel Nucleodur 100-5 C$_{18}$, 250 x 4.6 mm, 5 µm
- D: Phenomenex Synergi Hydro-RP, 250 x 4.6 mm, 4 µm
- E: Phenomenex Synergi Max-RP, 250 x 4.6 mm, 4 µm
- F: Phenomenex Max C$_{12}$, 250 x 4.6 mm, 5µm
- G: Phenomenex Chirex 3126 (D), 4.6 x 5 mm, 5 µm
Typical flow rates were 1.5 or 2.0 mL/min (250 x 8 mm column), or 1.0 mL/min (250 x 4.6 mm column). All solvents, except H$_2$O, were distilled prior to use. The eluents were degassed under reduced pressure.

3.3 Structure elucidation

Structures were elucidated mainly using one and two dimensional NMR techniques and various MS methods. Furthermore optical rotation and UV parameters as well as IR properties provided additional information. Additionally, calculated NMR data of the assumed structures with ACD software helped to elucidate most structures. Identity of isolated compounds with compounds reported in literature was stated, based on 1H NMR and 13C NMR, spectroscopic data, and specific optical rotation. Based on literature searches, using the MarinLit database, Sci Finder-database and Antibase, the structures were designed as known or as new.

3.3.1 NMR spectroscopy

All NMR spectra of extracts and pure compounds were recorded using either a Bruker Avance 300 DPX operating at 300 MHz (1H) and 75 MHz (13C) or a Bruker Avance 500 DRX spectrometer operating at 500 MHz for 1H and 125 MHz for 13C, respectively. Spectra of pure compounds were processed using Bruker 1D WIN-NMR, 2D WIN-NMR or XWIN-NMR Version 2.6, 3.1 and 3.5 software. Spectra were referenced to residual solvent signals with resonances at δ$_{\text{H/C}}$ 3.35/49.0 for CD$_3$OD, δ$_{\text{H/C}}$ 7.26/77.0 for CDCl$_3$, δ$_{\text{H/C}}$ 2.04/29.8 for (CD$_3$)$_2$CO. From DEPT experiments multiplicity for 13C could be derived: s = C, d = CH, t = CH$_2$, q = CH$_3$. Structural assignments were based on spectra resulting from one or more of the following NMR experiments: 1H, 13C, DEPT135, 1H-1H COSY, 1H-13C direct correlation (HMQC and HSQC), 1H-13C long range correlation (HMBC), 1H-1H NOESY and 1H selective NOE.

3.3.2 Mass spectrometry

Mass spectral measurements were performed by Ms. C. Sondag (Department of Chemistry, University of Bonn) using a Kratos MS 50 (EI), Kratos Concept 1H (FAB) and a Finnigan MAT 95 (EI, ESI) spectrometer.

HPLC-MS (ESI) measurements were conducted by Dr. A. Krick, Institute for Pharmaceutical Biology, Bonn, Germany employing an Agilent 1100 Series HPLC including DAD (205 nm), with reversed phase C$_{18}$ column (Macherey-Nagel Nucleodur 100, 125 x 2 mm, 5 µm) and
Materials and methods

3.3.3 UV measurements

UV spectra were recorded on a Perkin-Elmer Lambda 40 with UV WinLab Version 2.80.03 software, using 1.0 cm quartz cells. Compounds were measured in methanol. The molar absorption coefficient was determined in accordance with the Lamber-Beer-Law:

\[
A = \varepsilon \times c \times b \Leftrightarrow \varepsilon = \frac{\frac{L}{mol \times cm}}{\frac{A}{c \left[\frac{mol}{L} \right] \times b [cm]}}
\]

A = absorption at peak maximum

\(c\) = concentration

\(b\) = layer thickness of solution

3.3.4 IR spectroscopy

IR spectra were recorded as film, using a Perkin-Elmer FT-IR Spectrum BX spectrometer together with Spectrum v3.01 software.

3.3.5 Optical rotation

Optical rotation measurements were conducted on a Jasco model DIP-140 polarimeter (1 dm, 1 cm³ cell). The samples were dissolved in methanol and measured at \(\lambda = 589\) nm corresponding to the sodium D line at room temperature. Specific optical rotation \([\alpha]_D^T\) was calculated pursuant to:

\[
[\alpha]_D^T = \frac{100 \times \alpha}{c \times l}
\]

T: temperature \([\degree C]\)

D: sodium D line at \(\lambda = 589\)

\(c\) : concentration \([g/100\ mL]\)

\(d\) : cell length \([dm]\)
For each compound at least 10 measurements were accomplished and the average value was calculated and assigned as α.

3.3.6 Molecular modeling

The configurations of spicellamide A and B were revealed by conformation search (Boltzmann jump) using the CVFF1.01 force field refined with 500 iterations of smart minimization as implemented in the Cerius2 4.0 (MSI) molecular modeling software package. Calculations were performed using a Silicon Graphics O2 workstation (Irix 6.5.6).

3.4 Amino acids analysis

3.4.1 Marfey’s method

Depsipeptides (spicellamide A and B, 0.4 mg each) were hydrolyzed with 6 M HCl (0.5 mL) at 110 °C for 16 h. After concentration to dryness, the residues were dissolved in H$_2$O (50 µL). A 1 % 1-fluoro-2,4-dinitrophenyl-5-L-alaninamide (FDAA) solution in acetone (Marfey’s reagent, 100 µL) and 1 M NaHCO$_3$ (20µL) were added. In this manner FDAA reacts with the α-amino group of L- and D-amino acids yielding diastereomers (Figure 3-1A) which can be separated by HPLC due to large differences in their capacity factors which come from intramolecular H-bonding (Figure 3-1B) (Bhushan and Bruckner, 2004). The mixtures were incubated at 80 °C for 40 min, cooled down to room temperature, neutralized with 2 M HCl (10 µL), and evaporated to dryness (Marfey, 1984).
Figure 3-1. (A) Formation of L-L and L-D diastereomers. (B) Structure of L-L-diastereomer showing H-bonding (Brückner and Keller-Hoehl, 1990).

The residues were resuspended in DMSO (100 µL) and subjected to HPLC-MS using a reversed-phase C\textsubscript{18} column (Macherey-Nagel Nucleodur 100, 125 x 2 mm, 5 µm) and gradient elution (from MeOH/H\textsubscript{2}O 10/90 to MeOH/H\textsubscript{2}O 100/0 in 20 min, MeOH 100% for 10 min, with added NH\textsubscript{4}Ac, 2 mmol). The retention times and molecular weights of the FDAA derivatives of standards were compared with those of hydrolyzed depsipeptide samples.
3.5 Cell culture

3.5.1 Primary cultured neurons
Cells were prepared from cerebella of six-day-old NMRI (Navy Marine Research Institute) mice, which were bred in the animal house of the University of Bonn (Germany), according to Trenkner and Sidman (Trenkner and Sidman, 1977). The cerebellum was dissected out and immersed in Ca\(^{2+}\)/Mg\(^{2+}\)-free isotonic solution (CMF) under sterile conditions, washed three times in CMF and incubated in trypsin/DNase for 14 min at room temperature. Trypsin/DNase solution was removed and the cells were washed three times with 10 % heat-inactivated horse serum (30 min at 57 °C) in Dulbecco’s modified Eagle’s medium (DMEM). The cells were then dissociated by repeated passage through a constricted Pasteur pipette in a DNase solution (10 % horse serum + 0.05 % DNase in DMEM) and collected by centrifugation at room temperature for 7 min at 1000g. The cells were suspended in DMEM containing 10 % heat-inactivated horse serum and plated onto poly-L-lysine-coated 8 cm\(^2\) Petri dishes (6 x 10\(^6\) cells/dish). At 24 h after plating, cytosine arabinose was added to the medium (4 x 10\(^{-5}\) M) to arrest the division of non-neuronal cells. After 5-6 days in culture, cells were used for metabolic studies. Experiments were performed in minimum essential medium (MEM) containing 0.3 % horse serum and 1 % cytosine arabinoside.

3.5.2 Neuroblastoma B104 cell line
The rat neuroblastoma B104 cell line (ICLCATL99008) that originates in the central nervous system (Schubert et al., 1974). Neuroblastoma B104 cells were routinely cultured in DMEM, supplemented with 2 mM glutamine, 10 % heat-inactivated fetal calf serum, and antibiotics (penicillin 100 U/l and streptomycin 100 mg/l). For experiments, cells were subcultured in 8 cm\(^2\) Petri dishes. Medium was renewed every 48 h until confluency was reached. Experiments were performed in MEM supplemented with 0.3 % heat-inactivated fetal calf serum.

3.5.3 Sphingolipid labeling in cultured cells
From the culture dishes medium was removed, and the cells were rinsed two times with MEM supplemented with 0.3 % horse serum and 1 % cytosine arabinoside (cerebellar neurons), or with 0.3 % fetal calf serum (neuroblastoma B104 cells). The cells were then incubated in the same media containing substances, wanted to be tested, diluted in 70 % ethanol, or only 70 % ethanol as control. Incubation temperature was 35.5 °C for primary cultured neurons, and 37
°C for neuroblastoma B104 cells, while the saturation with CO₂ was 5 % for the both cell types. For the sphingolipid analysis, 4 h after the stimulation of the cells, 1 μCi/ml of either [¹⁴C] serine or [¹⁴C] galactose were added in the medium.

3.5.4 Cell viability assay
Cell viability was tested in CellTiter-Blue Cell Viability Assay (Promega) that is based on the conversion of resazurin to the fluorescent product resorufin exclusively by metabolically active (viable) cells. The neuroblastoma B104 cell line or primary cultured neurons were cultured in 8 cm² Petri dishes as described above. After 24 h of the incubation with different fungal metabolites, 100 μL of CellTiter-Blue reagent (resazurin) were added to each cell culture dish and incubation continued for 1 h. Then an aliquot of 100 μL from each culture dish was transferred to a 96-well microtiter plate and fluorescence of resorufin was recorded (544Ex/590Em nm). The values were presented as percentages of control.

3.5.5 Cell harvesting
After 24 h of the incubation with different fungal metabolites, cells were washed two times with 500 μL of ice-cold phosphate-buffered saline (PBS), harvested with plastic scraper in 1.5 mL PBS, and centrifuged at 4 °C for 10 min at 3000g. Then PBS was removed and the pellets were stored at -20 °C until the further analysis.

3.5.6 Protein determination
The protein concentration was determined with the Bradford method in a 96-well microtiter plate (Bradford, 1976). The method is based on the binding of Coomassie Blue to protein which causes a shift in the absorption maximum of the dye from 465 to 595 nm. This increase in absorption at 595 nm is monitored. Bovine serum albumin (BSA) was used as a standard for which was calculated a standard curve from the absorptions obtained from 10 standard solutions ranging from 0 to 250 μg/mL. Always, 20 μL of standard or aliquots of protein sample (see Chapter 3.6.1) were added to 200 μL of Bradford reagent (Coomassie-blue R250) diluted 1:5 in Millipore water. The microtiter plate was incubated for 10 min in the absence of light and the absorption measurements and calculations of sample concentrations were carried out photometrically on a Multiskan Ascent readout instrument.
3.6 Sphingolipid analysis

Sphingolipid extraction and analysis by thin layer chromatography (TLC) were done according to van Echten-Deckert (van Echten-Deckert, 2000).

3.6.1 Extraction of lipids

The cell pellets were suspended in 400 µL of water and homogenized by repeated passage through plastic pipette tips. At this step aliquots for other measurements were taken (e.g. protein determination, see Chapter 3.5.6). For the extraction of total lipids, 5.85 mL mixture of chloroform-methanol (2:1, v/v) was added to the homogenized pellets. Extraction was performed for 24 h at 50 ºC with continuous stirring. To avoid solvent loss by evaporation during extraction, screw-capped Pyrex tubes with Teflon inlays were used throughout. After extraction, denaturated protein particles were removed by passing the samples through cotton wadding introduced into glass Pasteur pipettes, which were used as filtration columns. Prior to application of the lipid extract, the wadding filter was rinsed with 0.5 mL of extraction solvent chloroform-methanol-water (20:10:2, v/v/v). The filtered sample was collected in a new screw-capped Pyrex tube with Teflon inlay placed under the pipette tip. Finally, the wadding filter was rinsed with 2 mL of extraction solvent that was collected in the same tube. The solvent was evaporated under a stream of nitrogen.

3.6.2 Removal of lipid contaminants

Phospholipids, extracted along with sphingolipids, comigrate with sphingolipid separation by TLC, and therefore they should be removed from lipid extracts. For the removal of phospholipids, extracts were dissolved in 2.5 mL of methanol and sonicated for 5 min in a sonifier (Sonorex RK 100, Bandelin, Berlin, Germany). Then 62.5 µL of sodium hydroxide (4 M stock solution in water) was added. After shaking for 2 hours at 37 ºC, samples were neutralized by addition of about 10 µL of concentrated acetic acid. Finally the solvent was evaporated under a stream of nitrogen.

3.6.3 Removal of salts by reversed-phase chromatography

Small hydrophilic molecules such as salts, amino acids, sugars, small peptides extracted along with sphingolipids, as well as salts formed by addition of sodium hydroxide, interfere with lipid behavior during separation by TLC. Reversed-phase liquid chromatography (RP-LC) was used to remove polar nonlipid contaminants. The silica gel RP18 (silica gel LiChroprep
RP18, 40-63 µm, Merck) used for RP-LC was suspended in chloroform-methanol (2:1, v/v) and shaked for 30 min. After the gel was settled down supernatant was removed. The gel was resuspended in methanol (1:1, v/v), shaked for 30 min, settled down and the supernatant was removed. This step was repeated 3-4 times with fresh methanol. Finally, the gel suspended in methanol was stored at 4 °C until the use.

For the column preparation, small pieces of silanized glass fiber wadding (Macherey-Nagel) were introduced into glass Pasteur pipettes and 2 mL of the silica gel RP18 suspension was added. The columns were rinsed two times with 1 mL of chloroform-methanol-0.1 M potassium chloride (3:48:47, v/v/v). In the mean time, samples were dissolved in 1 mL of methanol and sonicated for 5 min. Then 1 mL of ammonium acetate (300 mM in H₂O) was added to each sample, and the samples were applied to the columns. Empty sample tubes were rinsed two times with 0.5 mL of ammonium acetate (200 mM in methanol-water, 1:1, v/v) which was applied to the column. Columns were washed with 6 mL of water to elute all polar contaminants. Then new tubes were placed under each column. Lipids were eluted with 1 mL of methanol and 8 mL of chloroform-methanol (1:1, v/v). Solvent was evaporated under a stream of nitrogen.

3.6.4 Separation of sphingolipids by thin-layer chromatography

Sphingolipids were separated by thin layer chromatography using glass-backed silica gel 60 precoated TLC plates (Merck). Samples were dissolved in maximum 50µL of chloroform-methanol-water (20:10:2, v/v/v) and applied as 1 cm bands on the TLC plate using small glass capillaries (length 50 mm, diameter 0.5 mm, Hilgenberg, Malsfeld, Germany). TLC plates were dried overnight in a desiccator under vacuum before development.

The solvents used for the development of chromatograms were freshly mixed and added to the tank at least 90 min prior to initiating chromatography for the formation of the vapor-liquid equilibrium. The solvent system used for the separation of most sphingolipids was the mixture of chloroform-methanol-0.22% aqueous CaCl₂ (60:35:8, v/v/v). For a good resolution of ceramide, the TLC plate was run twice consecutively in chloroform-methanol-acetic acid (190:9:1, v/v/v). Neutral sphingolipids (glucosylceramide, lactosylceramide, sphingomyelin, GM3 and sphingosine) were separated in solvent system of chloroform-methanol-2 M aqueous ammonia (65:25:4, v/v/v).

After running, TLC plates were removed from the tank, and solvents were allowed to evaporate. Sphingolipids were visualized by autoradiography using the bio-imaging analyzer.
Fujix Bas1000 software, TINA 2.09 (Raytest, Straubing, Germany) and identified by R_f values of standards.

3.6.5 Lactosylceramide synthase (LacCer) assay

In a total volume of 50 µl, the assay mixture contained 100 µM GlcCer (Biotrend, Cologne, Germany), 100 µg of Triton X-100, 64 mM sodium cacodylate (Sigma-Aldrich, Steinheim, Germany), HCl buffer (pH 7.35), 10 mM Mn²⁺, 10 mM Mg²⁺, 20 mM CDP-choline (Sigma-Aldrich, Steinheim, Germany) and 500 µM UDP-galactose (Sigma-Aldrich, Steinheim, Germany) and 500 µM UDP-[¹⁴C] galactose (8000 cpm/nmol), and 100 µg of cell protein. Incubation was for 30 min at 37 ºC. Radioactivity of the reaction product was quantified in a liquid scintillation counter. The radioactive product of the enzyme assay co-migrated with authentic lactosylceramide when applied to TLC (solvent system: chloroform, methanol, 0.22% aqueous CaCl₂ (60:35:8, by volume)). Blanks containing no glycolipid acceptor were run in parallel.

3.7 Reverse transcription-polymerase chain reaction (RT-PCR)

Total RNA was isolated from neuroblastoma B104 cells and cerebellar neurons using the RNaseFreeDNasel-set (Qiagen GmbH, Hilden, Germany) following provider’s instructions. The principle of the procedure of the kit is the selective binding of RNA to a silica membrane while the rest of the cell components are washed away.

As starting material, cells were disrupted by addition of buffer containing 1 % β-mercaptoethanol (Sigma) and homogenized to reduce viscosity of lysates. Afterwards, 70 % ethanol was added to provide proper binding conditions to the silica-gel membrane of the columns provided by the kit. Finally, RNA was eluted in 60 µL of water. The concentration (µg/mL) of isolated RNA was quantified by measuring RNA/protein absorption (260/280 nm) using spectrophotometer (SmartSpec™Plus, Bio-Rad).

To obtain DNA copy (cDNA), approximately 0.4 µg of total RNA was reverse-transcribed using SuperScript II First-Strand Synthesis System for RT-PCR with Hexamer Random Primers (Invitrogen, Karlsruhe, Germany) according to manufacturer’s instructions. Semiquantitative PCR was performed using the both gene-specific primers pairs (representing intron spanning sequences, respectively) for LacCer synthase: 5’-CCTCCCTCCACATTTCTCC-3’ (forward), 5’-ATCTTCTCTGCCCCTACCA-3’ (reverse), 23 cycles; and 5’-CATGATCAGGCTGTATACCAATAAA-3’ (forward), 5’-
Materials and methods

CTTGATTATTGCGCTCCGGATA-3’ (reverse), 25 cycles with similar results; for 18 S rRNA: 5’-AAACGGCTACCACATCCAAG-3’ (forward), 5’-CCTCCAATGGATCCTCGTTA-3’ (reverse), 7 cycles. All reactions were carried out with taq DNA polymerase (Invitrogen, Karlsruhe, Germany) in a MJ PTC 200 thermal cycler (Biozym, Hess. Oldendorf, Germany). Annealing was at 59 ºC and product size was between 100 and 150 base pairs.

In order to observe PCR products they were run on a 1.7 % agarose gel (agarose in Tris-Acetate-EDTA buffer). For analysis, 10 % ethidium bromide was added to the gel to allow visualization under a UV lamp. Samples were applied on the gel with 10 % of loading dye and run with power supply of 120V, 110A for 60 min.

3.7.1 RT-PCR protocols

RNA isolation

Cells (8 cm² Petri dish) were washed two times with 1 mL of sterile 37 ºC warm PBS, harvested with plastic scraper in 600 µL of buffer containing 1 % β-mercaptoethanol (Sigma) and homogenized to reduce viscosity of lysates. Isolation of RNA was preformed using the RNeasy mini kit and the RNaseFreeDNaseI-set (Qiagen GmbH, Hilden, Germany). The protocol used is summarized as follows:
- Mix 600 µL of lysis buffer with 600 µL 70 % EtOH
- Load 700 µL of the sample into column and centrifuge (20 s, 10000 rpm), discard waste, load rest of the sample and repeat the procedure
- Add 350 µL wash buffer RW1, centrifuge (20 s, 10000 rpm), discard waste
- Mix 10 µL DNase with 70 µL RDD buffer, add on the membrane and leave for 15 min
- Add 350 µL wash buffer RW1, centrifuge (20 s, 10000 rpm), discard waste
- Add 500 µL wash buffer RPE (+ EtOH), centrifuge (20 s, 10000 rpm), discard waste, repeat and centrifuge (2 min, 10000 rpm), discard waste and centrifuge to dry (1 min, max)
- Place column in tube, add 30 µL RNase free water, centrifuge (1 min, 10000 rpm), add another 30 µL RNase free water and repeat the procedure

Reverse transcription

<table>
<thead>
<tr>
<th>PrimerMix</th>
<th>1 x [µL]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Hexamers</td>
<td>1</td>
</tr>
<tr>
<td>dNTP-Mix</td>
<td>1</td>
</tr>
<tr>
<td>H₂O</td>
<td>3</td>
</tr>
</tbody>
</table>
Add PrimerMix to 5 µL RNA.

65 ºC 5 min
0 ºC 2 min

MasterMix 1 x [µL]
10X RT Buffer 2
MgCl₂ 2
H₂O 2
DTT 2
RNase Out 1
SS III 1

Add MasterMix to each sample.

25 ºC 10 min
50 ºC 50 min
85 ºC 5 min
0 ºC 2 min

Add 1 µL RNaseH, spin with the pipette.

37 ºC 20 min

Polymerase chain reaction

MasterMix 1 x [µL]
10X Buffer 4
Forward-Primer 2
Reverse-Primer 2
dNTP-Mix 1
H₂O 28.5
Taq 0.5

Add PrimerMix to 2 µL cDNA, spin with the pipette, centrifuge (Short).

Example of PCR program:

Initial denaturation step: 94 ºC 2:30 min

Cycle Step 1 – Denaturation: 94 ºC 0:30 min

Cycle Step 2 – Annealing 55-60 ºC 0:30 min (dependent upon primer used)
Cycle Step 3 – Elongation 68 °C 1:0 min
Repeat cycle steps accordingly between 7 to 35 times.
Final Elongation Step: 68 °C 9:0 min
Cooling: 0 °C 5:0 min
PCR products were either stored at 4 ºC or ran on a 1 % agarose gel for analysis.

3.8 MRP1- and Pgp-related transport activities

MRP1- and Pgp-related transport activities were investigated by using the fluorescent probes 5-carboxyfluorescein diacetate (CFDA) and rhodamine-123 (Rh123) in efflux and accumulation assays (Neyfakh, 1988; Laupeze et al., 1999). The neuroblastoma B104 cells and cerebellar neurons were cultivated in 8 cm² Petri dishes at 37 °C (neuroblastoma) or 35.5 °C (cerebellar neurons) and 5% CO₂. At confluence, cells were washed twice with Hank’s balanced salt solution (HBSS) (1.3 mM CaCl₂, 5.4 mM KCl, 0.44 mM KH₂PO₄, 0.83 mM MgSO₄, 137 mM NaCl, 4.2 mM NaHCO₃, 0.34 mM Na₂HPO₄ and 25 mM D-glucose, pH 7.2 – 7.6) at 37 °C.

3.8.1 MRP1- and Pgp-mediated accumulation assay

For MRP1- and Pgp-mediated accumulation assay cells were pre-incubated 1 h at 37 ºC with HBSS containing ethanol (2% v/v) or tested compounds (30 µM 8-deoxy-trichothecin, 30 µM trichodermol, 20 µM MK571 and 15 µM cyclosporine A). CFDA (2 µM, MRP1-assay) and Rh-123 (20 µM, Pgp-assay) were then added for an incubation of 2 h at 37 ºC. The accumulation of CFDA and Rh-123 was stopped by washing the cells five times with cold PBS and the cells were lysed with 0.1 % Triton X-100 at room temperature. Fluorescence of CFDA and Rh-123 in media and cell lysates was measured using a spectrofluorometer (Labsystems Fluoroskan II, GMI, USA) at a wavelength of 485 nm for excitation and 538 nm for emission.

3.8.2 MRP1- and Pgp-mediated efflux assay

For MRP1- and Pgp-mediated drug efflux assay cells were loaded with 2µM CFDA in the presence or absence of the MRP1 inhibitor MK571 (20µM), or with 20 µM Rh-123 in the presence or absence of the Pgp inhibitor cyclosporine A (15µM) for 2 h at 37 ºC. Cells were then washed five times with HBSS and incubated with HBSS containing 30 µM 8-deoxy-trichothecin, 30 µM trichodermol, 20 µM MK571 (MRP1-assay), 15 µM cyclosporine A
(Pgp-assay) or ethanol (2% v/v) as a control. After incubation for 1 h at 37 ºC, cells were washed five times with cold PBS and lysed with 0.1 % Triton X-100 at room temperature. The fluorescent of CFDA and Rh-123 in media and cell lysates was measured as described above.
3.9 Biological tests

3.9.1 Agar diffusion assay

Antimicrobial tests of extracts and HPLC fractions were performed by E. Neu following the method described by Schulz et al. (Schultz et al., 1995). The bacteria *Bacillus megaterium* de Bary (Gram positive) and *Escherichia coli* (Migula) Castellani & Chambers (gram negative), the fungi *Microbotryum violaceum* (Pers.) Roussel (Ustomycetes), *Eurotium rubrum* (formerly *E. repens*) König, Spieckermann & Bremer (Ascomycetes) (all from DSMZ; Braunschweig, Germany), *Mycotypha microspora* Fenner (Zygomycetes) and the green microalga *Chlorella fusca* Shih Krass (Chlorophyceae) (both kindly provided by B. Schulz, Institute of Microbiology, University of Braunschweig, Germany) were used as test organisms.

Sample solutions contained 1 mg/mL per test sample. 50 µL (equivalent to 50 µg) of each solution were pipetted onto a sterile antibiotic filter disk (Schleicher & Schuell 2668), which was then placed onto the appropriate agar medium and sprayed with a suspension of the test organism. Growth media, preparation of spraying suspensions, and conditions of incubation were carried out according to Schulz et al. (Schultz et al., 1995). For tested samples, a growth inhibition zone ≥ 3 mm or a complete inhibition ≥ 1 mm, measured from the edge of the filter disk, were regarded as a positive result; growth inhibition: growth of the appropriate test organism was significantly inhibited compared to a negative control; complete inhibition: no growth at all in the appropriate zone. Benzyl penicillin (1 mg/mL MeOH), streptomycin (1 mg/mL MeOH) and miconazole (1 mg/2 mL DCM) were used as positive controls.

3.9.2 Cytotoxicity test against human cancer cell lines

All cytotoxicity data were provided by Dr. G. Kelter and Dr. A. Maier, Oncotest GmbH, Institute for Experimental Oncology, Freiburg, Germany. For screening purpose cytotoxicity of fungal extracts against the following six cell lines were performed according to Roth et al. (Roth et al., 1999): GXF 251L (gastric), LXFL 529L (large cell lung carcinoma), MEXF 462NL (melanoma), RXF 486L (renal), UXF 1138L (uterus carcinoma), MAXF 401NL (breast carcinoma). Extracts were tested in concentrations of 10 µg/mL. The cytotoxicity of pure compounds was tested at Oncotest GmbH using 36 human tumor cell lines. The origin of the donor xenografts was described in Fiebig et al. (Fiebig et al., 1992):
Materials and methods

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Cell Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bladder</td>
<td>BXF 1218L, BXF T24</td>
</tr>
<tr>
<td>CNS</td>
<td>CNXF 498NL, CNXF SF268</td>
</tr>
<tr>
<td>Colorectal</td>
<td>CXF HCT116, CXF HT29, CXF SW620</td>
</tr>
<tr>
<td>Gastric</td>
<td>GXF 251L</td>
</tr>
<tr>
<td>Lung</td>
<td>LXF 1121L, LXF 289L, LXF 526L, LXF 529L, LXF 629L, LXF H460</td>
</tr>
<tr>
<td>Mammary</td>
<td>MAXF 401NL, MAXF MCF7</td>
</tr>
<tr>
<td>Melanoma</td>
<td>MEXF 276L, MEXF 394NL, MEXF 462NL, MEXF 541L, MEXF 520L</td>
</tr>
<tr>
<td>Ovary</td>
<td>OVXF 1619L, OCXF 899L, OVXF OVCAR3</td>
</tr>
<tr>
<td>Pancreas</td>
<td>PAXF 1657L, PAXF PANC1</td>
</tr>
<tr>
<td>Prostate</td>
<td>PRXF 22RV1, PRXF DU145, PRXF LNCAP, PRXF PC3M</td>
</tr>
<tr>
<td>Pleuramesothelioma</td>
<td>PXF 1752L</td>
</tr>
<tr>
<td>Renal</td>
<td>RXF 1781L, RXF 393NL, RXF 486L, RXF 944L, RXF UO31</td>
</tr>
<tr>
<td>Uterus body</td>
<td>UXF 1138L</td>
</tr>
</tbody>
</table>

Cell death of ≥ 70% was regarded as active while moderate activity was defined as 50-70% cell death.

3.9.3 Immunostimulating activity

All immunostimulating analyses were preformed by Dr. M. Maurer, Oncotest GmbH, Institute for Experimental Oncology, Freiburg, Germany. The immunostimulating effects of selected pure compounds were investigated by analyzing the stimulation of cytokine production by peripheral blood mononuclear cells (PBMCs) from healthy donors as described in Kralj et al. (Kralj et al., 2006). The cytokines IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ were quantitatively measured with a Coulter Cytomics FC500 cytometer using the cytometric bead array (Morgan et al., 2004). The results were analyzed with the Coulter Cytomics Bead Array Analysis program.
3.10 Chemicals and other materials

3.10.1 Apparatus and expendable materials

- **Agarose gel electrophoresis**: ComPhor Midi; Biozym (Oldendorf, Germany)
- **Analytical balance**: Sartorius (Göttingen, Germany)
- **Autoclave**: Labortechnik (Oberschleissheim, Germany)
- **Balance**: Sartorius (Göttingen, Germany)
- **Bench centrifuge**: Megafuge 2.0 R; Heraeus
- **Cell culture flasks**: Costar (Cambridge, MA/USA)
- **Cell scrapers**: Costar (Cambridge, MA/USA)
- **Centrifuge**: Multifuge 3 S-R; Heraeus (Hanau, Germany)
- **Centrifuge tubes, 15 mL**: Greiner (Nürtingen, Germany)
- **Centrifuge tubes, 50 mL**: Falcon (Heidelberg, Germany)
- **Plastic tubes, 0.5/1.5/2.0 mL**: Eppendorf (Hamburg, Germany)
- **Fernbach flasks (1800 mL)**: Schott Duran (Wertheim, Germany)
- **Filter paper**: Macherey-Nagel (Düren, Germany)
- **Fluorimeter**: Digitalfluorimeter Modell 8-9; Locarte, Dynex Hybaid Labsystems (Frankfurt, Germany)
- **Gel analyzing system**: AlphaDigiDoc; Biozym (Oldendorf, Germany)
- **Heating-agitator**: IKA Werke (Staufen, Germany)
- **Imager-Plates (Screens)**: BAS MS 2040 Imaging Plate, Raytest (Staubenhardt, Germany)
- **Incubators**: Heraeus (Hanau, Germany)
- **Incubation shaker**: Memmert (Schwabach, Germany)
- **Laminar flow**: Ika-Labortechnik (Staufen, Germany)
<table>
<thead>
<tr>
<th>Material/Equipment</th>
<th>Supplier/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microtiter plates</td>
<td>Heraeus (Hanau, Germany)</td>
</tr>
<tr>
<td>Parafilm</td>
<td>Falcon (Heidelberg, Germany)</td>
</tr>
<tr>
<td>Petri dishes, 8 cm²</td>
<td>Falcon (Heidelberg, Germany)</td>
</tr>
<tr>
<td>57/143 cm²</td>
<td>Greiner (Nürtingen, Germany)</td>
</tr>
<tr>
<td>Photometer</td>
<td>Smart Spec 3000; Biorad (Munich, Germany)</td>
</tr>
<tr>
<td>pH-Meter</td>
<td>InoLab WTW (Weilheim, Germany)</td>
</tr>
<tr>
<td>Pipettes</td>
<td>Eppendorf Research 0.5-10, 2-20, 10-200, 100-1000 (Hamburg, Germany)</td>
</tr>
<tr>
<td>Pipette tips</td>
<td>Greiner (Nürtingen, Germany)</td>
</tr>
<tr>
<td>Rotational evaporator</td>
<td>Heidolph (Kelheim, Germany)</td>
</tr>
<tr>
<td>Röntgen cassette</td>
<td>Chronex; DuPont (de Nemour, France)</td>
</tr>
<tr>
<td>Pyrex tubes</td>
<td>VWR (Darmstadt, Germany)</td>
</tr>
<tr>
<td>Scintillation counter</td>
<td>Packard Tricarb 1600 TR (Rodgau Jügesheim, Germany)</td>
</tr>
<tr>
<td>Scintillation vials</td>
<td>Packard (Frankfurt, Germany)</td>
</tr>
<tr>
<td>Shaking water bath</td>
<td>Gesellschaft für Labortechnik (Burgwedel, Germany)</td>
</tr>
<tr>
<td>Sonicator</td>
<td>Sonorex RK 100, Bandelin (Berlin, Germany)</td>
</tr>
<tr>
<td>Spectrofluorometer</td>
<td>Labsystems Fluoroskan II, GMI (Minnesota, USA)</td>
</tr>
<tr>
<td>Termal cycler</td>
<td>MJ Research PTC-200 (Biozym, Hess. Oldendorf, Germany)</td>
</tr>
<tr>
<td>Ultrasonicator</td>
<td>SmartSpec™Plus, Bio-Rad (CA/USA)</td>
</tr>
<tr>
<td>Vortex</td>
<td>Bender-Hohlbein (Zürich, Switzerland)</td>
</tr>
<tr>
<td>Voltage supply source</td>
<td>Consort; Biometra (Göttingen, Germany)</td>
</tr>
<tr>
<td>Water filtration apparatus</td>
<td>EasyPure UV/UF; Barnstedt/Werner</td>
</tr>
</tbody>
</table>
3.10.2 Cell culture media

DMEM PAA Laboratories (Pasching, Austria)
MEM PAA Laboratories (Pasching, Austria)
HBSS Sigma-Aldrich (Steinheim, Germany)

3.10.3 Chemicals and solvents

All solvents were research grade and supplied by Infracor or BASF. Acetone, CHCl₃, CH₂Cl₂, EtOAc, MeOH and PE were distilled prior to use. Water used was de-ionised using a IBM Wasseraufbereitung VC 30 WE. Water for HPLC was de-ionised using a Millipore (milli-Q® academic) system.

Acetic acid Merck (Darmstadt, Germany)
Acetone-δ₆ 99.8% Deutero GmbH (Kastellaun, Germany)
Acetonitrile KMF (Lohmar, Germany)
Acetyl chloride Lancaster (Frankfurt/Main, Germany)
Agar Fluka (Buchs, Switzerland)
Agarose EEO AppliChem (Darmstadt, Germany)
D-Alanine 99% Sigma-Aldrich (Steinheim, Germany)
L-alanine 99% Sigma-Aldrich (Steinheim, Germany)
N-Methyl-DL-alanine Sigma-Aldrich (Steinheim, Germany)
N-Methyl-L-alanine Sigma-Aldrich (Steinheim, Germany)
Ammonium acetate Merck (Darmstadt, Germany)
Ammonium hydroxide Merck (Darmstadt, Germany)
Benzyl penicillin Fluka (Buchs, Switzerland)
Biomalt Villa Natura (Kirn, Germany)
Bovine serum albumin Sigma-Aldrich (Steinheim, Germany)
CaCl₂ Merck (Darmstadt, Germany)
CDP-choline Sigma-Aldrich (Steinheim, Germany)
Materials and methods

CFDA
Chloroform
Chloroform-d₄ 99.8%
Coomassie-blue R260
CuSO₄
Cyclosporin A
Cytosine arabinose
Czapek Solution Agar
Dimethylsulphoxide
DNase
Ethanol
Ethidium bromide
1-Fluoro-2,4-dinitrophenyl-5-L-alaninamide
Foetal bovine serum
Glucose
Glutamax®
H₃BO₃
HCl, 37%
H₂SO₄
D-Hydroxyisocaproic acid
L-Hydroxyisocaproic acid
D-Hydroxyisovaleric acid
L-Hydroxyisoovaleric acid
Horse serum
KBr
KCl
KH₂PO₄
Lichenysin A
Malt-extract
Methanol
Methanol-d₄ 99.8 % D
MgCl₂ × 6 H₂O

Fluka (Buchs, Switzerland)
Merck (Darmstadt, Germany)
Deutero GmbH (Kastellaun, Germany)
Serva (Heidelberg, Germany)
Merck (Darmstadt, Germany)
Fluka (Buchs, Switzerland)
Sigma-Aldrich (Steinheim, Germany)
Becton Dickinson (MD, USA)
AppliChem (Darmstadt, Germany)
Roche (Mannheim, Germany)
Riedel de Haen (Seelze, Germany)
AppliChem (Darmstadt, Germany)
Sigma-Aldrich (Steinheim, Germany)
PAA Laboratories (Pasching, Austria)
Merck (Darmstadt, Germany)
Sigma-Aldrich (Steinheim, Germany)
Serva (Heidelberg, Germany)
Merck (Darmstadt, Germany)
Merck (Darmstadt, Germany)
Bachem (Weil am Rhein, Germany)
Bachem (Weil am Rhein, Germany)
Fluka (Buchs, Switzerland)
Fluka (Buchs, Switzerland)
Cytochrome (Berlin, Germany)
Merck (Darmstadt, Germany)
Merck (Darmstadt, Germany)
Merck (Darmstadt, Germany)
kindly provided by Dr. Golyshin (Department of Environmental Microbiology, Braunschweig, Germany)
Roth (Karlsruhe, Germany)
Fluka (Buchs, Switzerland)
Deutero GmbH (Kastellaun, Germany)
Merck (Darmstadt, Germany)
MK571: Alexis biochemicals (Lausen, Switzerland)
MnCl$_2$ x 4 H$_2$O: Merck (Darmstadt, Germany)
NaCl: Merck (Darmstadt, Germany)
NaHCO$_3$: Merck (Darmstadt, Germany)
NaOH: Merck (Darmstadt, Germany)
Na$_2$SO$_4$: Merck (Darmstadt, Germany)
Penicillin/Streptomycin: Biomol GmbH (Hamburg, Germany)
Peptone from Soya: Fluka (Buchs, Switzerland)
N-Methyl-D-phenylalanine: Sigma-Aldrich (Steinheim, Germany)
N-Methyl-L-phenylalanine: Sigma-Aldrich (Steinheim, Germany)
Rhodamine-123: Sigma-Aldrich (Steinheim, Germany)
Sephadex® LH-20: Pharmacia Biotech (Uppsala, Sweden)
Sodium cacodylate: Sigma-Aldrich (Steinheim, Germany)
SrCl$_2$ x 6 H$_2$O: Merck (Darmstadt, Germany)
Streptomycin sulphate: Fluka (Buchs, Switzerland)
Surfactin: kindly provided by Dr. Golyshin (Department of Environmental Microbiology, Braunschweig, Germany)
Taq DNA polymerase: Invitrogen (Karlsruhe, Germany)
Tetrahydrofuran-d$_8$: Deutero GmbH (Kastellaun, Germany)
Tris-Acetate-EDTA buffer: AppliChem (Darmstadt, Germany)
Tritone-X 100: Sigma-Aldrich (Steinheim, Germany)
Tween 20: Roth (Karlsruhe, Germany)
UDP-Galactose: Sigma-Aldrich (Steinheim, Germany)
Yeast extract: Roth (Karlsruhe, Germany)
Vanillin: Merck (Darmstadt, Germany)

All other chemicals were supplied by Merck (Darmstadt, Germany), Fluka (Buchs, Switzerland), Roth (Karlsruhe, Germany) and Sigma-Aldrich (Steinheim, Germany).

3.10.4 Kits

CellTiter-Blue Cell Viability Assay: Promega (Mannheim, Germany)
Materials and methods

RNeasy mini kit
Qiagen GmbH (Hilden, Germany)
RNaseFreeDNaseI-set
Qiagen GmbH (Hilden, Germany)

3.10.5 Lipids

Glucosylceramide
Matreya LLC (PA/USA)
Lactosylceramide
Matreya LLC (PA/USA)

3.10.6 Primers

All primers were purchased from Invitrogen (Karlsruhe, Germany) and diluted to final concentration of 2.5 nmol.

LacCer synthase
5’-CCTCCCCTCCACATTTCTCC-3’ (forward)
5’-ATCTTCTCTGCCTACCA-3’ (reverse)

5’-CATGATCAGGCTGTATACCAATAAA-3’ (forward)
5’-CTTGTATTATTGCCTTCGGGATA-3’ (reverse)

18 S rRNA
5’-AAACGGCTACCACATCCAAG-3’ (forward)
5’-CCTCCAATGGATCCTCGTTA-3’ (reverse)

3.10.7 Radioactivity

L-[3-¹⁴C] serine
Amersham Biosciences (Braunschweig, Germany)
D-[U-¹⁴C] galactose
Amersham Biosciences (Braunschweig, Germany)
UDP-D-[U-¹⁴C] galactose
Amersham Biosciences (Braunschweig, Germany)
¹⁴C₈-Lactosyl-S-Ceramide
synthesized by Dr. G. Schwarzmann
¹⁴C₈-Glucosyl-S-Ceramide
synthesized by Dr. G. Schwarzmann
¹⁴C₈-GM3
synthesized by Dr. G. Schwarzmann
3.10.8 Solutions and buffers

<table>
<thead>
<tr>
<th>Substance</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca(^{2+})/Mg(^{2+})-free isotonic solution (CMF)</td>
<td>Isotonic solution I 50 % (v/v)</td>
</tr>
<tr>
<td></td>
<td>Isotonic solution II 49.5 % (v/v)</td>
</tr>
<tr>
<td></td>
<td>Phenol-red 0.3 % (v/v)</td>
</tr>
<tr>
<td></td>
<td>NaHCO(_3) 0.2 % (v/v)</td>
</tr>
<tr>
<td>Coomassie-blue R260-stock solution</td>
<td>Coomassie-blue R260 0.05 % (w/v)</td>
</tr>
<tr>
<td></td>
<td>Ethanol 25 %</td>
</tr>
<tr>
<td></td>
<td>85 % Phosphoric acid 50 % (v/v)</td>
</tr>
<tr>
<td>Isotonic solution I</td>
<td>Glucose 0.4 % (w/v)</td>
</tr>
<tr>
<td></td>
<td>KCl 0.06 % (w/v)</td>
</tr>
<tr>
<td></td>
<td>NaCl 1.6 % (w/v)</td>
</tr>
<tr>
<td>Isotonic solution II</td>
<td>KH(_2)PO(_4) 0.005 % (w/v)</td>
</tr>
<tr>
<td></td>
<td>NaH(_2)PO(_4) 0.01 % (w/v)</td>
</tr>
<tr>
<td>Phosphate buffered saline (PBS)</td>
<td>KCl 3 mM</td>
</tr>
<tr>
<td></td>
<td>KH(_2)PO(_4) 1.5 mM</td>
</tr>
<tr>
<td></td>
<td>NaCl 140 mM</td>
</tr>
<tr>
<td></td>
<td>Na(_2)HPO(_4) 16 mM</td>
</tr>
<tr>
<td>Poly-L-lysine-solution, pH 8.4</td>
<td>H(_3)BO(_3) 100 mM</td>
</tr>
<tr>
<td></td>
<td>Poly-L-lysine 1 mg/100 ml</td>
</tr>
</tbody>
</table>
4 Results

4.1 Screening of fungal extracts for biologically active metabolites

In this study marine-derived fungi were taken as a source of biologically active natural products. For screening purposes the strains were cultivated on 500 mL of solid media in Petri dishes. Each strain was cultivated on three different media: biomalt agar medium (BMS), malt-yeast agar medium (MYA) and czapek agar medium (CZ). After one month of cultivation, fungal biomass, together with the medium, was homogenized and extracted three times with 100 mL ethyl acetate. Each extract was characterized by 1H NMR and LC-MS, and tested in different biological assays.

The major criterion for selection of fungi for further tests and analyses was the significant cytotoxic activity. The selected cytotoxic strains were further screened for their influence on sphingolipid metabolism. On the basis of their biological activity and/or chemical characteristics (1H NMR and MS data), some of the fungal strains were chosen for mass cultivation and detailed chemical and biological examinations.

4.1.1 Screening of fungal extracts for cytotoxic activity

Extracts of 82 fungal strains, cultivated on three different media, were screened for their cytotoxic activity against six human cancer cell lines in a concentration of 10 µg/mL. The results of the most active extracts are given in Tables 4-1-1. Out of 82 tested strains, 29 strains (35.4 %) exhibited an activity with test/control value smaller than 30 % in at least one cell line. If a strain showed activity in more than one medium, only the extract from the most active medium was counted. Most of the active extracts revealed high activity against uterus and lung carcinoma, while only few showed activity against a gastric cancer cell line. Extract 652 of the fungal strain *Emericella nidulans* (not listed in the tables below) was tested in a panel of 36 cell lines and effected tumor activity in 31 out of 36 cell lines at 5 µg/mL, which is indicative of possible high antitumor effects.

According to the antitumor activity, 1H NMR and LC-MS data, extracts marked in blue in Table 4-1-1 were chosen for further studies.
In vitro antitumor activity of selected fungal strains

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Tumour Type / Name / FU</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. run</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. run</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both runs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test/control value</th>
<th>T/C activity</th>
<th>Act.</th>
<th>% Tumour Suppression</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This number refers to the fungal collection (Institute of Pharmaceutical Biology, Bomb; BMS, bromat-agar medium).
4.1.2 Antimicrobial and antialgal activities of fungal extracts

Cytotoxic fungal extracts (marked in blue in Tables 4-1-1.) were tested for their antimicrobial and antialgal activities in a concentration of 1 mg/mL. The active extract (Table 4-1-2) originated from the strain *Spicellum roseum* (strain nr. 74) with inhibition zones of 5 and 11 mm against *Eurotium rubrum* and *Mycotypha microspora*, respectively. A strain of *Fusarium oxysporum* (strain nr. 588) exhibited antibacterial and antifungal activities, inhibiting the growth of *Bacillus megaterium* (5 mm) and *Mycotypha microspora* (3 mm). Antifungal activity was exhibited also by the strain *Arthrinium sacchari* (strain nr. 727) which showed a zone of 4 mm growth inhibition of *Mycotypha microspora*. All other strains showed slightly or no antimicrobial activity while algal growth was not inhibited by any of the tested strains.

Table 4-1-2. Results of agar diffusion assay of cytotoxic fungal extracts.

<table>
<thead>
<tr>
<th>Extract</th>
<th>Fungal strain</th>
<th>Inhibition of test organism (mm)</th>
<th>Escherichia coli</th>
<th>Bacillus megaterium</th>
<th>Microbotryum violaceum</th>
<th>Eurotium rubrum</th>
<th>Mycotypha microspora</th>
<th>Chlorella fusca</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 BMS</td>
<td>Miconhaela sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16 BMS</td>
<td>Scleronomospora sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18 MYA</td>
<td>Fusarium dimerum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>74 BMS</td>
<td>Spicellum roseum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75 BMS</td>
<td>Phoma sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85 MYA</td>
<td>Sporothrix sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>96 BMS</td>
<td>Microaspergillus sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>167 CZ</td>
<td>Monodictys putredinis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>190 CZ</td>
<td>Ulicoladium sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>193 BMS</td>
<td>Paeollomyces helicasius</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>194 MYA</td>
<td>Alternaria japonica</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>211 MYA</td>
<td>Paeolomyces sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>273 MYA</td>
<td>Acremonium sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>588 MYA</td>
<td>Fusarium oxysporum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>598 BMS</td>
<td>Fusarium sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>620 MYA</td>
<td>Chaetomium sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>630 MYA</td>
<td>Rhinocladiella sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>652 BMS</td>
<td>Emericella nidulans</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>705 CZ</td>
<td>Girko2 EDOM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>712 CZ</td>
<td>Microaspergillus sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>714 MYA</td>
<td>Trichoderma harzianum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>726 BMS</td>
<td>Crol2 EDOM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>727 BMS</td>
<td>Arthrinium sacchari</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>738 BMS</td>
<td>Acremonium sclerotigenum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>741 BMS</td>
<td>Phoma macrostoma</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A.T.</td>
<td>Aspergillus terreus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1 This number refers to the fungal collection (Institute for Pharmaceutical Biology, Bonn); BMS, biomalt-agar medium; MYA, malt-yeast medium, CZ, czapek agar medium.

4.1.3 Influence of fungal extracts on sphingolipid metabolism

Of 25 tested cytotoxic fungal extracts, seven altered sphingolipid metabolism. The influence of fungal extracts on sphingolipid metabolism (Figure 4-1-1) of cerebellar neurons and neuroblastoma cells was studied by following the incorporation of L-[3-14C] serine into cellular sphingolipids (Figure 4-1-1).
As shown in Figure 4-1-2, cells incubated with extracts 96, 738, 588 and 74 exhibited an accumulation of glucosylceramide (GlcCer) along with the reduced levels of lactosylceramide (LacCer) and complex gangliosides (A, D), which indicated an inhibitory activity of these extracts on formation of LacCer and gangliosides (Figure 4-1-1). Increased levels of ceramide were noticed in extracts 18, 96 and 738 (B). Fungal extract 193 showed reduced levels of GlcCer, LacCer and complex gangliosides (A), while extract 16 displayed alterations in the levels of LacCer and sphingosine/sphinganine (So/Sa) (C) when compared to control cells.

The activity of fungal extracts on sphingolipid pathway was the main lead for the selection of strains for further investigations. Hence, all strains which showed any modifications in sphingolipids were chosen for detailed examinations. Also, the extracts with no influence on sphingolipids but with prominent cytotoxic activity and/or interesting 1H NMR and MS data were selected for a large-scale cultivation and further studies.

Thus, the following strains were investigated in this study:

<table>
<thead>
<tr>
<th>Extract No.1</th>
<th>Isolation No.2</th>
<th>Taxonomy of fungal strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>193 A 26</td>
<td>Stagonospora sp.</td>
</tr>
<tr>
<td>18</td>
<td>193 A 28</td>
<td>Fusarium dimerum</td>
</tr>
<tr>
<td>74</td>
<td>193 H 15</td>
<td>Spicillum roseum</td>
</tr>
<tr>
<td>96</td>
<td>193 H 48</td>
<td>Microsphaeropsis sp.</td>
</tr>
<tr>
<td>193</td>
<td>195 21 W</td>
<td>Paecilomyces lilacinus</td>
</tr>
<tr>
<td>588</td>
<td>Fr S1 5N</td>
<td>Fusarium oxysporum</td>
</tr>
<tr>
<td>652</td>
<td>Sar 14 15E</td>
<td>Emericella nidulans var. acristata</td>
</tr>
<tr>
<td>727</td>
<td>Cro2 CA EtOHb</td>
<td>Arthrinium sacchari</td>
</tr>
<tr>
<td>738</td>
<td>Lau 4K CM</td>
<td>Acremonium sclerotigenum</td>
</tr>
<tr>
<td>A. T.</td>
<td>GrK4 5N</td>
<td>Aspergillus terreus</td>
</tr>
</tbody>
</table>

1,2 Numbers refers to the fungal collection (Institute for Pharmaceutical Biology, Bonn).
Figure 4-1-2. Effects of fungal extracts on SL metabolism.

Primary cultured neurons (A, B and D) or neuroblastoma cells (C) were incubated in the absence (C, control) or presence of different fungal extracts (10 µg/mL). After 4 h 1 µCi of [14C]serine was added to the medium. Twenty hours later cells were harvested and lipids were extracted, isolated, separated by TLC, and detected as described in Materials and Methods. TLC plates were developed in CHCl₃-MeOH-0.22 % aqueous CaCl₂ (60:35:8; v/v/v) (plates A, C and D), or in CHCl₃-MeOH-CH₃COOH (190:9:1; v/v/v) (plate B). FA, fatty acids; Cer, ceramide; GlcCer, glucosylceramide; LacCer, lactosylceramide; So, sphingosine; Sa, Sphinganie; SM, sphingomyelin.
4.2 Arugosins G and H: Prenylated polyketides from the marine-derived fungus

Emericella nidulans var. *acristata* (Strain number 652)

4.2.1 Introduction

Emericella nidulans var. *acristata* was isolated from a green alga collected around Sardinia in the Mediterranean Sea. HPLC-MS and HPLC-DAD investigations of various extracts identified this fungus as a producer of several polyketide type metabolites. The crude extract also showed cytotoxicity toward six cultured tumour cell lines with a mean IC\(_{70}\) of 8.30 µg/mL. Two new compounds from the arugosin family, arugosins G (1) and H (2) were isolated together with the known arugosins A and B (3 and 4). Apart from arugosins, which possess a benzophenone skeleton, and the biosynthetically related (Scheme 4-2-1) xanthones 5, 6, 9 and 10, the indole alkaloid 7, and the furanone 8 were obtained. A prominent feature of most of these metabolites is their substitution with a prenyl moiety, with the isoprene unit being attached either to a carbon atom of the polyketide nucleus or connected via an ether bridge. The fungus *Emericella nidulans* var. *acristata* was cultivated on a solid biomalt medium with added artificial sea salt. Successive fractionation of the EtOAc extract by normal phase vacuum liquid chromatography (VLC), followed by separation over Sephadex, and normal and reversed phase HPLC yielded two new (1 and 2), and eight known (3 - 10) compounds. Arugosins A and B (3 and 4) were isolated as a mixture, as in all previous investigations (Ballantine *et al.*, 1970; Kawahara *et al.*, 1988). The structural elucidation of compounds 1 and 2 is based on NMR and MS data and on comparison of data with those of the known compounds 3 and 4.
Scheme 4-2-1. Proposed biosynthetic relationship of *Emericella nidulans* var. *acristata* secondary metabolites.
4.2.2 Cultivation, extraction and isolation

The fungus (*Emericella nidulans* var. *acristata*, strain number 620, Sar 14 15E) was cultivated at room temperature for one month in 32 x 8 L Fernbach flasks. The solid biomalt medium contained 20 g/L of Biomalt, 17 g/L agar and artificial seawater. The fungal biomass, including the medium, was homogenized using an Ultra-Turrax and the mixture was extracted with EtOAc (3 x 8 L). After evaporation of the organic phase 47 g of dark purple oil was obtained. The extract was fractionated by VLC (Si gel 60, 0.063-0.200 mm) with a CH$_2$Cl$_2$ - EtOAc - MeOH gradient, to yield 11 fractions. Of these, fractions 2 - 6, on the basis of TLC results, were combined and separated on a Sephadex LH-20 column, with MeOH as eluent to give 5 fractions (1-5). Sephadex fraction 2 was further separated on a normal phase HPLC column (Knauer Si Eurospher-100, 250 x 8 mm, 5 μm), eluting with petroleum ether/acetone 9:1 and yielded 10 fractions (S1-S10). Of these, fractions S3 was identified as a mixture of compounds 3 and 4, whereas fraction S7 contained compound 7, fraction S10 compound 2, and fraction S10 compound 10. Fraction S1 was separated into compounds 5 and 6 with hexane/EtOAc 20:1 using normal phase HPLC (Knauer Si Eurospher-100, 250 x 8 mm, 5 μm). Fraction S2 was eluted on reversed phase HPLC (Phenomenex Max C$_{12}$, 250 x 4.6 mm, 5 μm) with MeOH/H$_2$O 9:1 and yielded compound 1. Sephadex Fraction 5 gave compound 8 after fractionation on reversed phase (Knauer, Eurospher-100, C-8, 250 x 8 mm, 5 μm) HPLC with MeOH/H$_2$O 8:2. Sephadex fraction 3 was further fractionated using reversed phase HPLC (Knauer C$_8$ Eurospher-100, 250 x 8 mm, 5 μm) with gradient elution from MeOH/H$_2$O 7:3 to MeOH in 90 min, 1.5 mL/min, to afford compound 9.

4.2.3 Results and discussion

The molecular formula of compound 1 was established by high-resolution mass measurement (HREIMS) as C$_{30}$H$_{36}$O$_6$ implying 13 degrees of unsaturation. The 13C NMR spectrum showed 30 signals for 7 x CH$_3$, 3 x CH$_2$, 6 x CH and 14 x C. These data also revealed the presence of 10 double bonds (1 x CO, 9 x C=C) (Table 4-2-1). Thus, compound 1 was tricyclic. Considering the molecular formula and the IR data (ν_{max} 3438 cm$^{-1}$), it was obvious that three protons had to be present as hydroxyl groups. UV maxima at 305 and 366 nm pointed towards an extended aromatic moiety. This was supported by two singlet resonances in the 1H NMR spectrum at δ 7.26 and δ 6.89 for two aromatic protons. A 1H NMR resonance at δ 7.03 could be attributed to H-11, which is attached to a doubly oxygenated carbon resonating at 92.2
ppm, as evident from the 13C NMR and HSQC spectrum. These structural features suggested compound 1 to be an arugosin derivative, i.e. closely related to arugosin A (3) and B (4).

![Chemical structures](image)

The major difference between the NMR data for 3 and 4, and 1 was the presence of signals for nine additional protons (δ_H 1.70, 3.29, 5.30; H-1'' to H-5'') and five further carbons (δ_C 17.8, 25.8, 28.4, 123.4, 132.5; C-1'' to C-5'') (Table 4-2-2) in the case of 1.
Table 4-2-1. 1D and 2D NMR spectral data for compound 1

<table>
<thead>
<tr>
<th>Atom Number</th>
<th>$^{13}\text{C}^{a,b}$ (δ in ppm)</th>
<th>$^{1}\text{H}^{a,b}$ (δ ppm, mult., J in Hz)</th>
<th>Članak I. OSYa,b</th>
<th>Članak II. MBCa,c</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>160.5 (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>122.9 (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>138.8 (CH)</td>
<td>7.26 (s)</td>
<td>1d, 1$^{``d}$</td>
<td>1, 4a, 9ad, 1', 1$^{``}$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>122.9 (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>150.0 (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>120.9 (CH)</td>
<td>6.89 (s)</td>
<td>6-Me</td>
<td>7, 8d, 8a, 9d, 10a</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>141.8 (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-Me</td>
<td>16.9 (CH₃)</td>
<td>2.35 (s)</td>
<td></td>
<td>5, 6, 7, 8d</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>146.3 (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>133.2 (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8a</td>
<td>119.6 (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>199.4 (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9a</td>
<td>114.9 (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10a</td>
<td>157.6 (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>92.2 (CH)</td>
<td>7.03 (s)</td>
<td></td>
<td>7, 8a, 10ad</td>
<td></td>
</tr>
<tr>
<td>1'</td>
<td>29.4 (CH₂)</td>
<td>3.24 (brd, 7.32)</td>
<td>2', 3', 1', 2', 3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2'</td>
<td>123.8 (CH)</td>
<td>5.23 (t, 7.32)</td>
<td>1'</td>
<td>1'</td>
<td></td>
</tr>
<tr>
<td>3'</td>
<td>132.8 (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4'</td>
<td>25.8 (CH₃)</td>
<td>1.67 (s)</td>
<td>2', 3', 5'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5'</td>
<td>17.8 (CH₃)</td>
<td>1.70 (brs)</td>
<td>2', 3', 4'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1''</td>
<td>72.2 (CH₂)</td>
<td>4.42 (d, 7.32)</td>
<td>2''</td>
<td>2'', 3'', 7</td>
<td></td>
</tr>
<tr>
<td>2''</td>
<td>120.8 (CH)</td>
<td>5.59 (t, 7.32)</td>
<td>1''</td>
<td>1''</td>
<td></td>
</tr>
<tr>
<td>3''</td>
<td>138.9 (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4''</td>
<td>25.8 (CH₃)</td>
<td>1.78 (s)</td>
<td>2'', 3'', 5''</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5''</td>
<td>18.0 (CH₃)</td>
<td>1.69 (s)</td>
<td>2'', 3'', 4''</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1'''</td>
<td>28.4 (CH₂)</td>
<td>3.29 (d, 7.32)</td>
<td>2'''', 3'''</td>
<td>3, 4ad, 2'''', 3'''</td>
<td></td>
</tr>
<tr>
<td>2'''</td>
<td>123.4 (CH)</td>
<td>5.30 (t, 7.32)</td>
<td>1''''</td>
<td>1''''</td>
<td></td>
</tr>
<tr>
<td>3'''</td>
<td>132.5 (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4'''</td>
<td>25.8 (CH₃)</td>
<td>1.70 (brs)</td>
<td>2'''', 3'''''', 5''''</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5'''</td>
<td>17.8 (CH₃)</td>
<td>1.70 (brs)</td>
<td>2'''', 3'''''', 4''''</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-OH</td>
<td>13.21 (s)</td>
<td>3d</td>
<td>1, 2, 3d, 9d, 9a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10a-OH</td>
<td>10.59 (s)</td>
<td></td>
<td>5, 6d, 8a, 10a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-OH</td>
<td>6.73 (brs)</td>
<td></td>
<td>8d</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aAcetone-d$_6$, 300/75.5 MHz. bAssignments are based on extensive 1D and 2D NMR measurements (HMBC, HSQC, COSY). cNumbers refer to carbon resonances. dWeak signal.
The 1H-1H COSY correlation (Table 4-2-1) between H-2'''' and H$_2$-1'', and 1H-13C HMBC correlations between H$_2$-1'''' and C-2'''' and C-3'', and between both H$_3$-4'''' and H$_3$-5'''' and C-2'''' and C-3'', suggested compound 1 to contain a third 3-methylbut-2-enyl group, which was corroborated by the mass difference between 1 and 3 or 4. The position of this additional group in compound 1 was deduced from HMBC correlations between H$_2$-1'''' and both C-4a and C-3. Thus, it was evident that the 3-methylbut-2-enyl group replaced the aromatic proton H-4 of compound 3 (Table 4-2-2), a deduction supported by 1H NMR data, which showed the absence of the signal at δ_H 6.44 (H-4 in 3) (Kawahara et al., 1988). All other spin systems deduced from the 1H-1H COSY and HMBC correlations were consistent with the proposed structure for 1 (Figure 4-2-1). Thus, the new compound 1 is the 4-(3-methylbut-2-enyl) derivative of 3. Due to the similarity between compounds 1 and 3 or 4, we propose the name arugosin G.

As already stated by Gloer et al. for arugosin F (Hein et al., 1998), arugosin G also has a small negative optical rotation. Due to the small amount of compound isolated, we did not determine whether the hemiacetal function of arugosin G gives rise to an enantiomeric mixture. The stereochemistry of arugosins A-F has not been reported.

Figure 4-2-1. Significant HMBC (left, from H to C) and 1H-1H COSY (right) correlations for arugosin G (1).
Table 4-2-2. 1H and 13C NMR spectral data for compounds 3 and 4

<table>
<thead>
<tr>
<th>Atom Number</th>
<th>13C<sup>a,b</sup> (δ in ppm)</th>
<th>1H<sup>a,b</sup> (δ ppm, mult., J in Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>163.2 (C)</td>
<td>162.2 (C)</td>
</tr>
<tr>
<td>2</td>
<td>122.7 (C)</td>
<td>120.3 (CH)</td>
</tr>
<tr>
<td>3</td>
<td>138.0 (CH)</td>
<td>7.32 (d, 6.22)</td>
</tr>
<tr>
<td>4</td>
<td>119.6 (CH)</td>
<td>119.8 (C)</td>
</tr>
<tr>
<td>4a</td>
<td>153.3 (C)</td>
<td>152.0 (C)</td>
</tr>
<tr>
<td>5</td>
<td>120.7 (CH)</td>
<td>6.93-6.89 (brs)</td>
</tr>
<tr>
<td>6</td>
<td>141.9 (C)</td>
<td></td>
</tr>
<tr>
<td>6-Me</td>
<td>17.0 (CH<sub>3</sub>)</td>
<td>2.34 (s)</td>
</tr>
<tr>
<td>7</td>
<td>146.4 (C)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>133.1 (C)</td>
<td></td>
</tr>
<tr>
<td>8a</td>
<td>115.2 (C)</td>
<td>114.6 (C)</td>
</tr>
<tr>
<td>9</td>
<td>199.3 (C)</td>
<td></td>
</tr>
<tr>
<td>9a</td>
<td>111.6 (C)</td>
<td>111.4 (C)</td>
</tr>
<tr>
<td>10a</td>
<td>157.6 (C)</td>
<td>157.5 (C)</td>
</tr>
<tr>
<td>11</td>
<td>92.3 (CH)</td>
<td>92.0 (CH)</td>
</tr>
<tr>
<td>1<sup>+</sup></td>
<td>28.3 (CH<sub>2</sub>)</td>
<td>27.8 (CH<sub>2</sub>)</td>
</tr>
<tr>
<td>2<sup>+</sup></td>
<td>123.8 (CH)</td>
<td>123.5 (CH)</td>
</tr>
<tr>
<td>3<sup>+</sup></td>
<td>133.0 (C)</td>
<td></td>
</tr>
<tr>
<td>4<sup>+</sup></td>
<td>25.9 (CH<sub>3</sub>)</td>
<td>1.70-1.66 (brs)</td>
</tr>
<tr>
<td>5<sup>+</sup></td>
<td>18.0 (CH<sub>3</sub>)</td>
<td>1.70-1.66 (brs)</td>
</tr>
<tr>
<td>1<sup>``</sup></td>
<td>72.2 (CH<sub>2</sub>)</td>
<td>72.1 (CH<sub>2</sub>)</td>
</tr>
<tr>
<td>2<sup>``</sup></td>
<td>120.9 (CH)</td>
<td>5.56 (t, 7.32)</td>
</tr>
<tr>
<td>3<sup>``</sup></td>
<td>139.1 (C)</td>
<td>138.5 (C)</td>
</tr>
<tr>
<td>4<sup>``</sup></td>
<td>25.9 (CH<sub>3</sub>)</td>
<td>1.70-1.66 (brs)</td>
</tr>
<tr>
<td>5<sup>``</sup></td>
<td>18.0 (CH<sub>3</sub>)</td>
<td>1.70-1.66 (brs)</td>
</tr>
<tr>
<td>OH</td>
<td>13.37 (s)</td>
<td>12.77 (s)</td>
</tr>
<tr>
<td>OH</td>
<td>10.60 (s)</td>
<td>10.55 (s)</td>
</tr>
</tbody>
</table>

^aAcetone-d₆, 300/75.5 MHz. ^bAssignments are based on extensive 1D and 2D NMR measurements (HMBC, HSQC, COSY).

The molecular formula of compound 2 was found to be C₂₀H₂₀O₆ as deduced from HREIMS and NMR data, implying 11 degrees of unsaturation. The 13C NMR spectrum showed 20 carbon signals attributable to 3 x CH₃, 1 x CH₂, 5 x CH and 11 x C (Table 4-2-3). Considering
the molecular formula and according to the IR data (ν_{max} 3237 cm$^{-1}$), it was evident that the four remaining protons had to be part of hydroxyl groups. The 1H and 13C NMR chemical shifts and HSQC spectra, suggested the presence of one carbonyl (δ_C 200.4) and one aldehyde (δ_C 196.2, δ_H 9.86) group, a deduction supported by IR absorptions at ν_{max} 1698 and 1615 cm$^{-1}$, and seven C=C double bonds. These data, together with the number of unsaturations, required two rings within the molecule, both of which were aromatic.

Table 4-2-3. 1D and 2D NMR spectral data for compound 2

<table>
<thead>
<tr>
<th>Atom Number</th>
<th>13Ca,b (δ ppm)</th>
<th>1Ha,b (δ ppm, mult., J in Hz)</th>
<th>Članak III. OSYa,b</th>
<th>Članak IV. MBCa,c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>162.0 (C)</td>
<td></td>
<td>1d, 4</td>
<td>1, 1', 4a,</td>
</tr>
<tr>
<td>2</td>
<td>121.0 (C)</td>
<td></td>
<td></td>
<td>2, 4ad, 9d, 9a</td>
</tr>
<tr>
<td>3</td>
<td>138.4 (CH)</td>
<td>7.19 (d, 8.20)</td>
<td>6-Me</td>
<td>7, 8a, 9d, 10ad</td>
</tr>
<tr>
<td>4</td>
<td>106.8 (CH)</td>
<td>6.29 (d, 8.20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>159.4 (C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>127.5 (CH)</td>
<td>7.04 (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>128.6 (C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-Me</td>
<td>15.3 (CH$_3$)</td>
<td>2.07 (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>154.5 (C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>117.6 (C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8a</td>
<td>131.7 (C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>200.4 (C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9a</td>
<td>113.0 (C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10a</td>
<td>146.0 (C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>196.2 (CH)</td>
<td>9.86 (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1'</td>
<td>27.8 (CH$_2$)</td>
<td>3.24 (d, 7.32)</td>
<td>4', 5'</td>
<td>1, 2, 3, 2', 3', 4', 5', 5d</td>
</tr>
<tr>
<td>2'</td>
<td>123.1 (CH)</td>
<td>5.29 (t, 7.32)</td>
<td>1', 4', 5'</td>
<td>1', 4', 5'</td>
</tr>
<tr>
<td>3'</td>
<td>132.8 (C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4'</td>
<td>25.9 (CH$_3$)</td>
<td>1.69 (s)</td>
<td></td>
<td>3', 5'</td>
</tr>
<tr>
<td>5'</td>
<td>17.8 (CH$_3$)</td>
<td>1.69 (s)</td>
<td></td>
<td>3', 4'</td>
</tr>
<tr>
<td>OH</td>
<td></td>
<td>12.84 (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td></td>
<td>11.30 (s)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aAcetone-d_6, 300/75.5 MHz. bAssignments are based on extensive 1D and 2D NMR measurements (HMBC, HSQC, COSY). cNumbers refer to carbon resonances. dWeak signal.

The 1H NMR data showed three aromatic protons, two of them (H-3 and H-4) with an ortho coupling, and the third one (H-5) as a singlet. The 1H NMR spectrum also contained a
resonance for an aryl methyl group ($\delta 2.07$, H$_3$-6-Me), and two hydrogen-bonded phenolic OH groups ($\delta 12.84$ and 11.30). The location of the carbonyl group (C-9), as a link between two aromatic rings at the position C-8a and C-9a, was supported by weak HMBC correlations from both H-4 and H-5 to C-9. The 1H NMR signals observed at $\delta 1.69$ (CH$_3$-4’ and CH$_3$-5’), $\delta 3.24$ (CH$_2$-1’) and $\delta 5.29$ (CH-2’) were assigned to a 3-methylbut-2-enyl group, according to the 1H-1H COSY correlations between H$_2$-1’ and H-2’, and HMBC correlations between all H$_2$-1’, H$_3$-4’ and H$_3$-5’, to C-3’. The position of the 3-methylbut-2-enyl group was proven to be at C-2 by correlations in the 1H-1H COSY spectrum between H-3 and H$_2$-1’, and in the HMBC spectrum between H$_2$-1’ and C-1, C-2 and C-3. Carbon C-4a had to be hydroxylated due to its resonance in the 13C NMR spectrum ($\delta 159.4$). An ortho coupling between H-3 and H-4, and HMBC correlations between H$_3$-6Me and H-5 to C-7, C-8a, C-9 (weak), and C-9a and between H-3 and C-4a and C-1 confirmed the substitution pattern of the aromatic ring A.

The remaining two hydroxyls, the aldehyde, and the methyl group resided at the aromatic ring B. Correlations from the 1H-1H COSY between H-5 and H$_3$-6Me and HMBC correlations from H$_3$-6Me to C-5 and C-7, and from H-5 to C-7, C-8a, C-9 (weak), and C-10a (weak) indicated the position of the methyl group at C-6 and the positions of the carbons C-5 and C-7 in the aromatic ring B. Hydroxylation of C-7 was suggested by its 13C NMR chemical shift at δC 154.5. Although, the position of the aldehyde group showed no coupling with any of the neighboring carbons, its position was assigned to C-8 on the basis of C-8 being the only remaining nonprotonated carbon. These results are consistent with a bicyclic arugosin structure with the middle ring open. This deduction is supported by biosynthetic considerations (Scheme 4-2-1) (Holker et al., 1974; Chexal et al., 1975). For compound 2 the name arugosin H is proposed.

The structures of arugosin A and B (3 and 4) (Ballantine et al., 1973), shamixanthone (5) (Holker et al., 1974; Chexal et al., 1975), emericellin (6) (Kawahara et al., 1988), emindole DA (7) (Nozawa et al., 1987), microperfurane (8) (Fujimoto et al., 1998), sterigmatocystin (9) (Pachler et al., 1976; Cox et al., 1977), and averufin (10) (Gorst-Allman et al., 1977) were identified by comparing their spectroscopic data and optical rotations with published values.

Fungi of the genus Emericella (anamorph: Aspergillus) produce a great diversity of secondary metabolites (Hensens et al., 1991; Itabashi et al., 1992; Itabashi et al., 1996; Fujimoto et al., 2000). Among them is a family of compounds called arugosins which are of interest with regard to the biosynthesis of several structural types of fungal polyketides, e.g. anthrones,
anthraquinones, benzophenones, xanthones (Chexal et al., 1974; Holker et al., 1974; Chexal et al., 1975). Arugosin A and B, two substituted dibenz[b,e]oxepins, are the major metabolites of *Aspergillus rugulosus* (Ballantine et al., 1970), *A. variecolor* (Chexal et al., 1975), and *A. silvaticus* (Kawahara et al., 1988). Arugosin C (Ballantine et al., 1973), D (Chexal et al., 1975), and E (Kawahara et al., 1988) also occur in *Aspergillus* spp., whereas arugosin F was found in *Ascodesmis sphaerospora* (Hein et al., 1998). Biosynthetic studies (Chexal et al., 1974; Holker et al., 1974; Chexal et al., 1975) suggested that the bi- and tricyclic arugosins and compounds from xanthone family are biogenetically related. Arugosin H (2) may be derived from chrysophanol anthrone which undergoes oxidative cleavage to form the aldehyde function, followed by C-prenylation and hydroxylation (see Scheme 4-2-1). The aldehyde function can be converted to a hemiacetal function as seen in the further prenylated and tricyclic arugosins G, A, and B (1, 3 and 4). Alternatively, cyclodehydration of the benzophenone intermediate yields shamixanthone (5) and emericellin (6).

On the other hand, a member of indole diterpenes, emindole DA (7) is formed by epoxidation of a common intermediate, 3-geranylgeranyllindole and subsequent cyclization (Fueki et al., 2004), while sterigmatocystin (9) and averufin (10) as precursors of aflatoxins, toxic and carcinogenic fungal metabolites, are biosynthesized from norsolorinic acid which undergoes 12 to 17 enzymatic reactions (Yabe and Nakajima, 2004) to form 9 and 10. Thus, the isolation of compounds 1 – 10 testifies, once more, about a diversity of natural products and a complexity of metabolic pathways in one strain.

Compounds 1 – 10 were tested in antibacterial, antifungal and antialgal assays (Schultz et al., 1995) at the 50 μg/disk level. Compound 2 showed inhibition zones against *Mycotypha microspora* (3 mm) and *Chlorella fusca* (2 mm); compounds 3 and 4 (as a mixture) were active against *Bacillus megaterium* (4 mm), while compound 9 and 10 inhibited *M. microspora* (11 mm and 3.5 mm, respectively) and *C. fusca* (5 mm and 3 mm, respectively).

The effects of the crude extract as well as the pure compounds 1 – 8 on tumor growth in vitro were investigated in a survival and proliferation assay in a panel of 36 human tumor cell lines representing 11 different tumor types. Anti-tumor activity was defined as test/control value smaller than 50% compared to the untreated control cells. The crude extract effected antitumor activity in all 36 cell lines (100%) at 50 μg/mL, in 31 out of the 36 cell lines (86%) at 5 μg/mL, and in 2/36 (6%) cell lines at 0.5 μg/mL. This is indicative for a selective and concentration-dependent antitumor activity of this extract and one or more of its ingredients.
Among the pure compounds, compound 7 gave the highest activity score, exhibiting a mean \(\text{IC}_{50}\) value of 5.5 \(\mu\text{g/mL}\). At a concentration of 10 \(\mu\text{g/mL}\) 33 out of 36 cell lines (92%) were inhibited. As expected, the reference compound adriamycin tested in parallel in the same assays was more potent (\(\text{IC}_{50}\) 0.016 \(\mu\text{g/mL}\)). Compounds 3 and 4 were active in 7 out of the 36 cell lines (19%) at the highest concentration of 10 \(\mu\text{g/mL}\). The other five compounds showed either only marginal or no anti-tumour activity \textit{in vitro}.

Compounds 9 (sterigmatocystin) and 10 (averufin) are known from the literature (Wang and Groopman, 1999; Bunger \textit{et al.}, 2004) to be potent cytotoxic agents and were thus not evaluated in the current study.

The immunostimulating effects of compounds 1 - 8 were investigated by analysing the stimulation of cytokine production by PBMCs from two healthy donors. All compounds were tested at concentrations of 0.1 and 1 \(\mu\text{g/mL}\). These concentrations were not cytotoxic in the monolayer cytotoxicity and proliferation assay. LPS at 1 \(\mu\text{g/mL}\), PMA at 10 ng/mL, and ionomycin at 1 \(\mu\text{g/mL}\) were used as positive controls. Twenty-four hours after exposure of PBMCs to the test compounds, PBMC supernatants were quantitatively tested for IL-2, IL-4, IL-6, IL-10, TNF-\(\alpha\) and IFN-\(\gamma\) by flow cytometry with the Cytometric Bead Array (CBA) (Morgan \textit{et al.}, 2004). None of the compounds induced the production of any of the cytokines. Negative PI-staining of PBMCs after removal of the supernatant confirmed that the failure of the test compounds to induce cytokine production by PBMCs was not due to cytotoxicity.

Arugosin G (1) was isolated as bright yellow solid (2.8 mg). UV (MeOH) \(\lambda_{\text{max}}\) (log \(\varepsilon\)) 226 nm (sh) (4.20), 271 nm (3.84), 305 nm (3.82), 366 nm (3.75); IR (ATR) \(\nu_{\text{max}}\) 3438, 2920, 1608, 1477, 1422, 1344, 1213, 1115, 1071, 998; \(^1\text{H}\) and \(^{13}\text{C}\) NMR spectral data (see Table 4-2-1); HREIMS \(m/z\) 492.2517 (calcd for \(\text{C}_{30}\text{H}_{36}\text{O}_{6}\) 492.2512); \([\alpha]^{24}_{D}\) -1.1° (c 0.29, MeOH).

Arugosin H (2) was isolated as bright orange solid (10.8 mg). UV (MeOH) \(\lambda_{\text{max}}\) (log \(\varepsilon\)) 225 nm (4.50), 274 nm (4.33), 291nm (sh) (4.21), 382 nm (3.93); IR (ATR) \(\nu_{\text{max}}\) 3237, 2921, 1698, 1615, 1417, 1353, 1222, 1111, 1047, 982, 899, 816 cm\(^{-1}\); \(^1\text{H}\) and \(^{13}\text{C}\) NMR spectral data (see Table 4-2-3); HREIMS \(m/z\) 356.1266 (calcd for \(\text{C}_{20}\text{H}_{20}\text{O}_{6}\) 356.1260).

Arugosin A and B (3, 4) were isolated as a viscous, yellow oil (80.3 mg). \(^1\text{H}\) and \(^{13}\text{C}\) NMR spectral data (see Table 4-2-2).
Shamixanthone (5) was isolated as yellow needles (4.0 mg). 1H NMR (300 MHz, CDCl$_3$); δ 12.60 (1H, s, 1-OH), 7.44 (1H, d, $J = 8.42$, H-3), 7.30 (1H, s, H-5), 6.74 (1H, d, $J = 8.42$, H-2), 5.41 (1H, s, H-25), 5.31 (1H, t, $J = 7.32$, H-15), 4.80 (1H, s, H-22a), 4.59 (1H, s, H-22b), 4.45-4.32 (2H, m, H$_2$-19), 3.50 (2H, d, $J = 7.32$, H$_2$-14), 2.74 (1H, s, H-20), 2.36 (3H, s, H$_3$-24), 1.85 (3H, s, H$_3$-23), 1.80 (3H, s, H$_3$-17), 1.75 (3H, s, H$_3$-18); 13C NMR (75.5 MHz, CDCl$_3$) δ 184.5 (s, C-13), 159.7 (s, C-1), 152.8 (s, C-10), 152.2 (s, C-11), 149.4 (s, C-7), 142.6 (s, C-21), 138.3 (s, C-6), 136.5 (d, C-3), 133.3 (s, C-16), 121.7 (d, C-15), 121.0 (s, C-8), 119.3 (d, C-5), 118.9 (s, C-4), 116.9 (s, C-12), 112.3 (t, C-22), 109.7 (d, C-2), 109.2 (s, C-9), 64.6 (t, C-19), 63.2 (d, C-25), 45.0 (d, C-20), 27.5 (t, C-14), 25.8 (q, C-18), 22.6 (q, C-23), 17.9 (q, C-17), 17.4 (q, C-24); C$_{25}$H$_{26}$O$_5$ (406.18); $[\alpha]^{24}_D$ +10.0° (c 0.51, CHCl$_3$), (lit. (Chexal et al., 1974); $[\alpha]^{24}_D$ +11.9° (c 1.92, CHCl$_3$); (Bringmann et al., 2003); $[\alpha]^{24}_D$ +25.2° (c 0.33, CHCl$_3$)).

Emericellin (6) was isolated as yellow oil (5.1 mg). 1H NMR (300 MHz, CDCl$_3$); δ 12.51 (1H, s, 1-OH), 7.42 (1H, d, $J = 8.05$, H-3), 7.30 (1H, s, H-5), 6.70 (1H, d, $J = 8.05$, H-2), 5.60 (1H, t, $J = 6.95$, H-2$^\prime$), 5.28 (1H, t, $J = 6.95$, H-2$^\prime$), 5.06 (2H, s, H$_2$-11), 4.43 (2H, d, $J = 6.95$, H$_2$-1$^\prime$), 3.47 (2H, d, $J = 6.95$, H$_2$-1$^\prime$), 2.45 (3H, s, H$_3$-6Me), 1.80 (3H, s, H$_3$-5$^\prime$), 1.78 (3H, s, H$_3$-5$^\prime$), 1.74 (3H, s, H$_3$-4$^\prime$), 1.71 (3H, s, H$_3$-4$^\prime$); 13C NMR (75.5 MHz, CDCl$_3$) δ 184.6 (s, C-9), 159.9 (s, C-1), 154.0 (s, C-10a), 152.8 (s, C-4a), 152.6 (s, C-7), 142.6 (s, C-6), 139.1 (s, C-3$^\prime$), 136.9 (d, C-3), 134.2 (s, C-8), 133.3 (s, C-3$^\prime$), 121.6 (d, C-2$^\prime$), 119.6 (d, C-2$^\prime$), 119.4 (d, C-5), 119.0 (s, C-8a), 118.9 (s, C-4), 117.9 (s, C-9a), 110.0 (d, C-2), 72.2 (t, C-1$^\prime$), 57.1 (t, C-11), 27.4 (t, C-1$^\prime$), 25.9 (q, C-5$^\prime$), 25.8 (q, C-5$^\prime$), 18.1 (q, C-4$^\prime$), 17.9 (q, C-4$^\prime$), 17.7 (q, C-6Me); C$_{25}$H$_{28}$O$_5$ (408.19).

Emindole DA (7) was isolated as bright yellow solid (8.5 mg). 1H NMR (300 MHz, (CD$_3$)$_2$CO); δ 7.52 (1H, d, $J = 7.68$, H-5), 7.31 (1H, d, $J = 7.68$, H-7), 7.06-7.02 (1H, m, H-2), 6.98 (1H, d, $J = 6.95$, H-6), 6.96 (1H, d, $J = 6.95$, H-4), 5.15 (1H, t, $J = 6.95$, H-21), 4.43 (1H, s, H-27a), 4.09 (1H, s, H-27b), 3.63-3.58 (1H, brs, H-17), 3.15 (1H, dd, $J = 4.03$, 14.64, H-8a), 2.77 (1H, dd, $J = 10.25$, 14.64, H-8b), 2.38 (1H, dt, $J = 5.12$, 13.54, 27.08, H-11a), 2.16-2.06 (3H, m, H-11b, H-20), 2.08 (1H, s, H-9), 1.86-1.80 (1H, m, H-13), 1.75-1.70 (2H, m, H-26), 1.67 (3H, s, H$_3$-24), 1.65 (3H, s, H$_3$-23), 1.42 (2H, s, H-12), 1.31-1.27 (2H, m, H$_2$-19), 1.26-1.23 (2H, m, H-21), 0.99 (3H, s, H$_3$-26), 0.81 (3H, s, H$_3$-25); 13C NMR (75.5 MHz, (CD$_3$)$_2$CO) δ 149.6 (s, C-10), 137.6 (s, C-7a), 131.0 (s, C-22), 128.6 (s, C-3a), 126.3 (d, C-21), 123.5 (d, C-6), 121.6 (d, C-2), 119.3 (d, C-5), 119.0 (d, C-4), 115.3 (s, C-3), 112.0 (d, C-
Results

7), 110.0 (t, C-27), 73.4 (d, C-17), 59.7 (d, C-9), 41.8 (s, C-18), 39.5 (d, C-13), 38.6 (s, C-14), 38.1 (t, C-19), 35.3 (t, C-15), 31.5 (t, C-11), 28.6 (t, C-16), 25.9 (q, C-24), 24.1 (t, C-8), 23.8 (t, C-12), 23.7 (q, C-26), 22.5 (t, C-20), 17.8 (q, C-23, C-25); C₂₈H₃₉NO (405.30); [α]²⁴ _D -23.4° (c 0.86, MeOH), (lit. (Nozawa et al., 1988); [α]²⁴ _D -30.7° (c 2.32, MeOH).

Microperfuranone (8) was isolated as colorless solid (1.5 mg). ¹H NMR (300 MHz, (CD₃)₂CO); δ 7.53 (2H, d, J = 6.95, H-8, H-10), 7.46 (2H, d, J = 6.95, H-7, H-11), 7.44-7.41 (1H, m, H-9), 7.33-7.24 (5H, m, H-14, H-15, H-16, H-17, H-18), 5.96 (1H, s, H-5), 3.98 (2H, dd, J = 14.27, 71.35, H₂-12); ¹³C NMR (75.5 MHz, (CD₃)₂CO) δ 170.8 (s, C-2), 159.6 (s, C-4), 137.5 (s, C-13), 130.8 (s, C-6), 130.2 (s, C-3), 129.9 (s, C-8, C-10), 129.7 (s, C-15, C-17), 129.6 (s, C-9, C-14, C-18), 129.3 (s, C-7, C-11), 127.7 (s, C-16), 97.5 (d, C-5), 32.9 (t, C-12); C₁₇H₁₄O (266.09); [α]²⁴ _D -4.4° (c 0.27, MeOH), (lit. (Fujimoto et al., 1998); [α]²⁴ _D -6.8° (c 0.60, MeOH).

Sterigmatocystin (9) was isolated as white crystals (4.0 mg). ¹H NMR (300 MHz, (CD₃)₂CO); δ 13.41 (1H, s, 3-OH), 7.60 (1H, t, J = 8.42, H-5), 6.96 (1H, s, H-4), 6.93 (1H, s, H-14), 6.72-6.69 (1H, m, H-6), 6.65-6.63 (1H, m, H-17), 6.61 (1H, s, H-11), 5.54 (1H, q, J = 2.56, 5.12, 8.42, H-16), 4.93-4.89 (1H, m, H-15), 3.96 (3H, s, H-18); ¹³C NMR (75.5 MHz, (CD₃)₂CO) δ 181.7 (s, C-1), 165.7 (s, C-10), 164.4 (s, C-12), 163.2 (s, C-7), 156.0 (s, C-3), 154.9 (s, C-8), 146.2 (d, C-17), 136.7 (d, C-5), 114.5 (d, C-14), 111.6 (d, C-6), 109.6 (s, C-2), 107.7 (s, C-9), 106.9 (d, C-4), 106.4 (s, C-13), 103.4 (d, C-16), 91.5 (d, C-11), 57.0 (q, C-18), 48.7 (d, C-15); C₁₇H₁₄O₃ (324.06); [α]²⁴ _D -106.2° (c 0.25, CHCl₃).

Averufin (10) was isolated as orange solid (11.5 mg). ¹H NMR (300 MHz, THF); δ 7.31 (1H, d, J = 2.20, H-7), 7.27 (1H, s, H-4), 6.68 (1H, d, J = 2.20, H-5), 5.43-5.41 (1H, brs, H-1’), 2.18-2.13 (2H, m, H-2’a, H-4’a), 2.00-1.92 (2H, m, H-2’a, H-4’a), 1.73-1.67 (2H, m, H-2’), 1.65 (3H, s, H-3’); ¹³C NMR (75.5 MHz, THF) δ 192.0 (s, C-9), 182.9 (s, C-10), 167.9 (s, C-6), 167.5 (s, C-8), 162.7 (s, C-3), 161.2 (s, C-1), 137.6 (s, C-14), 135.9 (s, C-11), 118.3 (s, C-2), 111.2 (s, C-12), 111.0 (s, C-13), 110.9 (d, C-7), 110.1 (d, C-5), 109.8 (d, C-4), 103.3 (s, C-5’), 68.6 (d, C-1’), 37.8 (t, C-4’), 29.4 (t, C-2’), 29.2 (q, C-6’), 17.5 (t, C-3’); C₂₀H₁₆O₇ (368.09); [α]²⁴ _D -26.6° (c 1.0, CHCl₃).
4.3 Two New Depsipeptides from the Marine Fungus *Spicellum roseum* (Strain number 74)

4.3.1 Introduction

Cyclic peptides and depsipeptides are of special interest due to their potent biological activities. Cyclodepsipeptides like beauvericin and enniatins are secondary metabolites from different species of *Fusarium* with cytotoxic (Calo *et al.*, 2004), antibiotic (Dobler *et al.*, 1969) and insecticidal effects (Gupta *et al.*, 1991). Moreover, beauvericin was reported to be an inhibitor of acyl-CoA: cholesterol acyltransferase (Tomoda *et al.*, 1992).

In our continuing research on novel bioactive fungal metabolites, we have examined a fungal strain whose extract inhibited the growth of *Eurotium rubrum* and *Mycotypha microspora* in agar diffusion assays, and showed the alternations in sphingolipid metabolism (Chapter 4.6). The bioassay-guided isolation revealed the presence of two known compounds belonging to the trichothecenes, i.e. trichodermol and 8-deoxy-trichothecin (Chapter 4.6) which were responsible for the activity. Further investigations of the crude extract gave two new depsipeptides (11 and 12) containing 2-hydroxyisovaleric acid and N-methylphenylalanine. The latter two units are also present in beauvericin (Dobler *et al.*, 1969). The structure elucidation and absolute configuration of the beauvericin analogs 11 and 12 are based on NMR and MS data, chiral HPLC and computer modeling.
4.3.2 Cultivation, extraction and isolation

The fungal strain (Spicellum roseum, strain number 74, 193 H 15) was cultivated at room temperature for one month in 4 L (16 Fernbach flasks) in solid peptone biomalt medium containing 20 g/L of Biomalt, 10 g/L of peptone from Soya, 17 g/L of agar and artificial seawater. The fungal biomass, including the medium, was homogenized using an Ultra-Turrax and the mixture was extracted with EtOAc (4 x 4 L). After evaporation of the organic phase 1.8 g of dark brown oil was obtained. The extract was fractionated by VLC (Si gel 60, 0.063-0.200 mm) with a petroleum ether – EtOAc – MeOH gradient, to yield 8 fractions. Fraction 5 contained depsipeptides and was subjected to HPLC using a reversed-phase column (Phenomenex Synergi Hydro-RP, 250 x 4.60 mm, 4 µm) with MeOH/H$_2$O gradient as eluant at a flow rate of 1 mL/min to obtain compounds 11 and 12.

4.3.3 Absolute configuration of spicellamide A (11) and spicellamide B (12)

Spicellamide A (11, 0.4 mg) and spicellamide B (12, 0.4 mg) were hydrolyzed with 6 M HCl (0.5 mL) at 110 °C for 16 h. After concentration to dryness, the residues were dissolved in H$_2$O (50 µL). A 1 % 1-fluoro-2,4-dinitrophenyl-5-L-alaninamide solution in acetone (Marfey’s reagent, 100 µL) and 1 M NaHCO$_3$ (20µL) were added. The mixtures were incubated at 80 °C for 40 min, cooled down to room temperature, neutralized with 2 M HCl (10 µL), and evaporated to dryness. The residues were resuspended in DMSO (100 µL) and subjected to HPLC-MS using a reversed-phase C$_{18}$ column (Macherey-Nagel Nucleodur 100, 125 x 2 mm, 5 µm) and gradient elution (from MeOH/H$_2$O 10/90 to MeOH/H$_2$O 100/0 in 20 min, MeOH 100% for 10 min, with added NH$_4$Ac, 2 mmol). The retention times of the FDAA derivatives of standards were at 8.77 min (L-Ala), 11.47 min (D-Ala), 9.73 min (N-Me-L-Ala), 10.84 min (N-Me-D-Ala), 13.17 min (N-Me-L-Phe) and 13.74 min (N-Me-D-Phe). Thus, the presence of N-Me-D-Phe, N-Me-L-Ala and both D- and L-Ala was determined for both spicellamide A and spicellamide B.

The configuration of hydroxycarboxyl acids was determined by chiral HPLC. Portions of hydrolysate were evaporated to dryness and resuspended in solution which was used as mobile phase (100 µL). Chiral HPLC analyses were carried out using a Phenomenex Chirex 3126 (D), 4.6 x 50 mm column; detection at 254 nm, with 2 mM CuSO$_4$ in MeCN/H$_2$O (15:85) as eluant at a flow rate of 1 mL/min. The retention times of authentic standards were at 8.05 min (L-2-hydroxyisovaleric acid), 11.57 min (D-2-hydroxyisovaleric acid), 24.05 min (L-2-hydroxyisocaproic acid), 27.12 min (D-2-hydroxyisocaproic acid). These analyses revealed that the hydrolysate of 11 consisted of L-2-hydroxyisovaleric and L-2-
Results

For hydrolysate of 12 the configuration of 2-hydroxyisocaproic acid was determined as L-form.

4.3.4 Results and discussion

The molecular formula of compound 11 was determined by HREIMS and \(^{13}\)C NMR as C\(_{31}\)H\(_{46}\)N\(_4\)O\(_8\) implying 11 elements of unsaturation. The \(^1\)H and \(^{13}\)C NMR spectral data (Table 4-3-1) revealed six carbonyl carbon signals at \(\delta\)C 173.2, 172.9, 172.3, 170.5, 168.9, and 168.7 and six \(\alpha\)-proton signals at \(\delta\)H 5.62, 5.15, 5.09, 4.87, 4.79, and 3.99 suggesting compound 11 to a peptide-like metabolite composed of six subunits. The \(^1\)H NMR spectrum showed two signals (\(\delta\)H 6.98 and 7.92) characteristic for amide protons and two signals (\(\delta\)H 3.28 and 2.99) characteristic for N-methyl protons. The chemical shifts of C-19 (\(\delta\)C 71.2) and C-28 (\(\delta\)C 78.1) clearly demonstrated that these carbons are oxygenated, proposing that two of the six carbonyl groups belonged to hydroxycarboxylic acids. Thus, compound 11 was a hexadepsipeptide consisting of four amino acid and two hydroxyoarboxylic acid residues. Absorption bands at 1638 cm\(^{-1}\) (amide carbonyls) and 1742 cm\(^{-1}\) (ester carbonyls) in the IR spectrum supported this deduction. Analyses of \(^1\)H-\(^1\)H COSY and HMBC spectroscopic data disclosed the structures of hydroxycarboxylic and amino acid residues (Table 4-3-1). The presence of an aromatic moiety was clearly visible from \(^1\)H and \(^{13}\)C NMR spectra. \(^1\)H-\(^1\)H COSY correlations between all five aromatic methine groups (CH-12 to CH-16) and H\(_2\)-10, and \(^1\)H-\(^{13}\)C HMBC couplings between \(\alpha\)-CH-9 and H\(_2\)-10, assigned the aromatic ring to a phenylalanine residue. HMBC correlations from amide methyl protons (\(\delta\)H 2.99) to \(\alpha\)-CH-9 indicated the N-phenylalanine residue to be N-methylated. Furthermore, three spin systems typical for alanine moieties were found, i.e. \(^1\)H-\(^1\)H COSY correlations between H-2 and H\(_3\)-3, between H-6 and H\(_3\)-7, and between H-25 and H\(_3\)-26. As deduced from the \(^1\)H-\(^{13}\)C HMBC correlations between \(\alpha\)-CH-2 and CH\(_3\)-4 (\(\delta\)H 3.28), one of the alanine moieties had a methylated amino group. The other two \(\alpha\)-protons, \(\alpha\)-CH-6 and \(\alpha\)-CH-25, showed couplings to their adjacent amide NH protons, NH (1) (\(\delta\)H 6.98) and NH (2) (\(\delta\)H 7.92), respectively. \(^1\)H-\(^1\)H couplings between \(\alpha\)-CH-19 and H\(_2\)-20 and between H\(_2\)-20 and H-21, H\(_3\)-22 and H\(_3\)-23 revealed a 2-hydroxyisocaproic acid partial structure. Finally, the last residue of the hexadepsipeptide 11 was evident from \(^1\)H-\(^1\)H COSY correlations between \(\alpha\)-CH-28 and H-29 and between H-29 and CH\(_3\)-30 and CH\(_3\)-31, and identified as a 2-hydroxyisovaleric acid residue. Determination of the sequence and connection of the six residues (two alanine, N-methylalanine, N-methylphenylalanine, 2-hydroxyisocaproic acid and 2-hydroxyisovaleric acid moieties) was accomplished from HMBC and NOESY correlations.
<table>
<thead>
<tr>
<th>Carbon</th>
<th>δ_c</th>
<th>δ_h</th>
<th>COSY</th>
<th>HMBC</th>
<th>NOESY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>168.9</td>
<td>61.1</td>
<td>3</td>
<td>1, 3, 4, 5</td>
<td>3, 4</td>
</tr>
<tr>
<td>2</td>
<td>61.1</td>
<td>3.99 (q; 6.59)</td>
<td>2</td>
<td>1, 2</td>
<td>NH$_2^w$, 2, 4w</td>
</tr>
<tr>
<td>3</td>
<td>13.9</td>
<td>1.53 (d; 6.59)</td>
<td></td>
<td>2, 5</td>
<td>2, 3w, 6, 7</td>
</tr>
<tr>
<td>4</td>
<td>37.3</td>
<td>3.28 (s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>172.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>46.9</td>
<td>4.79 (quint; 6.95)</td>
<td>NH$_1$, 7</td>
<td>5, 7, 8</td>
<td>NH$_1$, 4, 7</td>
</tr>
<tr>
<td>7</td>
<td>18.2</td>
<td>1.32 (d; 6.95)</td>
<td>6</td>
<td>5, 6</td>
<td>NH$_1$, 6, 17w</td>
</tr>
<tr>
<td>8</td>
<td>168.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>57.5</td>
<td>5.62 (dd; 5.12, 11.71)</td>
<td>10</td>
<td>8, 10, 17, 18</td>
<td>NH$_1$, 10</td>
</tr>
<tr>
<td>10</td>
<td>33.6</td>
<td>3.32 (dd; 5.12, 15.0)</td>
<td>9</td>
<td>8, 9, 11-16, 17</td>
<td>12-16, 9</td>
</tr>
<tr>
<td>11</td>
<td>138.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>129.7</td>
<td>7.23 (m)</td>
<td>10, 13-16</td>
<td>10</td>
<td>10, 17, 20w, 22w, 23w</td>
</tr>
<tr>
<td>13</td>
<td>129.0</td>
<td>7.26 (m)</td>
<td>10, 12, 14-16</td>
<td>10</td>
<td>10, 17, 20w, 22w, 23w</td>
</tr>
<tr>
<td>14</td>
<td>127.1</td>
<td>7.19 (m)</td>
<td>10, 12, 13, 15, 16</td>
<td>10</td>
<td>10, 17</td>
</tr>
<tr>
<td>15</td>
<td>129.0</td>
<td>7.26 (m)</td>
<td>10, 12-14, 16</td>
<td>10</td>
<td>10, 17, 20w, 22w, 23w</td>
</tr>
<tr>
<td>16</td>
<td>129.7</td>
<td>7.23 (m)</td>
<td>10, 12-15</td>
<td>10</td>
<td>10, 17, 20w, 22w, 23w</td>
</tr>
<tr>
<td>17</td>
<td>29.5</td>
<td>2.99 (s)</td>
<td>10</td>
<td>9, 18</td>
<td>NH$_1$, 7w, 12-16, 19, 20w, 22w, 23w</td>
</tr>
<tr>
<td>18</td>
<td>173.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>71.2</td>
<td>5.15 (q; 5.49)</td>
<td>20</td>
<td>18, 20, 21</td>
<td>17, 20, 21, 22, 23</td>
</tr>
<tr>
<td>20</td>
<td>39.9</td>
<td>1.47 (m); 1.13 (m)</td>
<td>19, 21, 22, 23</td>
<td>19, 21, 22, 23</td>
<td>19, 22, 23</td>
</tr>
<tr>
<td>21</td>
<td>24.6</td>
<td>1.17 (m)</td>
<td>20</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>22</td>
<td>22.8</td>
<td>0.78 (d; 6.22)</td>
<td>20</td>
<td>23</td>
<td>17w, 19, 20, 26w</td>
</tr>
<tr>
<td>23</td>
<td>23.2</td>
<td>0.75 (d; 6.22)</td>
<td>20</td>
<td>22</td>
<td>17w, 19, 20, 26w</td>
</tr>
<tr>
<td>24</td>
<td>172.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>47.5</td>
<td>4.87 (dq; 8.78, 7.32)</td>
<td>NH$_2$, 26</td>
<td>24, 26, 27</td>
<td>NH$_2$, 26</td>
</tr>
<tr>
<td>26</td>
<td>19.7</td>
<td>1.42 (d; 7.32)</td>
<td>25</td>
<td>24, 25</td>
<td>NH$_2$, 22-23w, 25, 30-31w</td>
</tr>
<tr>
<td>27</td>
<td>170.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>78.1</td>
<td>5.09 (d; 2.56)</td>
<td>29</td>
<td>1, 27, 29, 30, 31</td>
<td>NH$_2$, 29, 30, 31</td>
</tr>
<tr>
<td>29</td>
<td>29.2</td>
<td>2.50 (hept d; 7.32, 2.56)</td>
<td>28, 30, 31</td>
<td>30, 31</td>
<td>28, 30, 31</td>
</tr>
<tr>
<td>30</td>
<td>19.3</td>
<td>0.92 (d; 7.32)</td>
<td>29</td>
<td>28, 31</td>
<td>26w, 28, 29</td>
</tr>
<tr>
<td>31</td>
<td>16.2</td>
<td>0.84 (d; 7.32)</td>
<td>29</td>
<td>28, 30</td>
<td>NH$_2^w$, 26w, 28, 29</td>
</tr>
<tr>
<td>NH (1)</td>
<td>6.98</td>
<td>6</td>
<td></td>
<td></td>
<td>6, 7, 9, 17</td>
</tr>
<tr>
<td>NH (2)</td>
<td>7.92</td>
<td>8.78</td>
<td>25</td>
<td></td>
<td>3w, 25, 26, 28, 31w</td>
</tr>
</tbody>
</table>

*Acetone-d$_6$, 300 MHz. *Acetone-d$_6$, 500 MHz. *Assignments are based on extensive 1D and 2D NMR measurements (HMBC, HSQC, COSY, NOESY). *Numbers refer to carbon resonances. *Weak signal.
The position of the N-methylphenylalanine residue was established by 1H-13C HMBC correlations between α-H-9 and both C-8 and C-18 and between H$_3$-17 and C-18. The α-proton H-6 showed 1H-13C long range coupling with carbonyl carbon C-8 which connected N-methylphenylalanine with one of the alanine residues (Ala-1). These data together with heteronuclear long range couplings of α-H-6, H$_3$-7, α-H-2 and H$_3$-4 with carbonyl carbon C-5 disclosed the location of this alanine residue between N-methylphenylalanine and N-methylalanine. N-methylalanine was further linked to the 2-hydroxyisovaleric acid residue as deduced from HMBC correlations between α-H-2 and C-1, between H$_3$-3 and C-1, and between α-H-28 and C-1. The carbonyl carbon C-27 showed long range correlations with both α-H-28 and α-H-25 which connected the second alanine moiety (Ala-2) to the 2-hydroxyisovaleric acid residue. The α-proton of the 2-hydroxyisocaproic acid residue H-19 did not show clear HMBC correlations with carbonyl groups but NOESY data suggested that α-H-19 was bound to C-18. Thus, NOESY correlations were detected between α-H-19 and CH$_3$-17, and between CH$_3$-26 and both CH$_3$-22 (weak) and CH$_3$-23 (weak). This allowed to position the 2-hydroxyisocaproic acid moiety, the last moiety of compound 11, between N-methylphenylalanine and an alanine residue (Ala-2).

To establish the absolute configuration of the four amino acids, compound 11 was hydrolyzed, derivatized with Marfey’s reagent and analyzed by HPLC-MS. Comparison of retention times and mass spectral data of hydrolysed products of 11 with those of standards, allowed to deduced the configuration of the amino acids as N-Me-D-Phe, N-Me-L-Ala, L-Ala and D-Ala. The configuration of the hydroxycarboxylic acids was determined by chiral HPLC analysis of the acid hydrolysate, and determined as L for both, 2-hydroxyisocaproic and 2-hydroxyisovaleric acid.

At this point of the structure elucidation the position of D- and L-alanine had to be solved. Molecular modeling calculations were used to address this problem. Minimum energy conformations of the two possible isomers of 11 (6S, 25R and 6R, 25S) were calculated (Figure 4-3-1) and analyzed with regard to the NOESY correlations observed. The most conspicuous difference between the two models was the spatial orientation of proton H-6 and the amide methyl protons (H$_3$-4). H-6 and CH$_3$-4 showed NOESY correlations, which seemed only possible in the 6R, 25S isomer. In the model with 6S, 25R configuration H-6 is positioned below and H$_3$-4 above the plane of the depsipeptide ring with a distance of approx. 4.0 Å to each other, while in the model with 6R, 25S configuration they are on the same side of the plane with a distance of approx. 2.2 Å. Thus, the 6R, 25S configuration is suggested for compound 11, for which we propose the trivial name spicellamide A.
HREIMS and NMR data of compound 12 imparted a molecular formula of C\textsubscript{31}H\textsubscript{46}N\textsubscript{4}O\textsubscript{9}. The 1H and 13C NMR spectral data indicated high structural similarity between compounds 12 and 11. The only difference was evident from 1H and 13C NMR chemical shifts of the 2-hydroxyisovaleric acid residue (Table 4-3-2). Hydroxylation of C-29 in 12 was suggested due to its 13C NMR chemical shift at δ\textsubscript{C} 72.2 and due to the missing signal for proton H-29 in the 1H NMR spectrum of 12. Thus, 2-hydroxyisovaleric acid was replaced with 2,3-dihydroxyisovaleric acid moiety in compound 2. All other COSY, HMBC and NOESY correlations were the same as for compound 11.

The absolute configuration of spicellamide B was also determined by Marfey’s method. The HPLC-MS analysis gave the same configurations for the amino acid residues as deduced for 11 (N-Me-D-Phe, N-Me-L-Ala, L-Ala and D-Ala). Analysis by chiral HPLC revealed the configuration of the 2-hydroxyisocaproic acid residue as L, whereas 2,3-dihydroxyisovaleric acid, however could not be detected after acid hydrolysis due to its instability under acidic conditions. Literature reports proposed that during acidic hydrolysis 2,3-dihydroxy acids dehydrate and decarboxylate (Luesch et al., 2000). Therefore, the configuration of 2,3-dihydroxyisovaleric acid in 12 could not be determined. However, due to the high structural homology of depsipeptides 11 and 12 and the close to identical spectroscopic data we suggested the same configuration for both compounds. For compound 12 the trivial name spicellamide B is proposed.
Table 4-3-2. 1D and 2D NMR spectral data for compound 2 (δ in ppm; J in Hz)

<table>
<thead>
<tr>
<th>Carbon</th>
<th>$\delta_c^{a,c}$</th>
<th>$\delta_H^{a,c}$</th>
<th>COSY bc</th>
<th>HMBC bd</th>
<th>NOESY bc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>170.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>60.9</td>
<td>4.04 (q; 6.71)</td>
<td>3</td>
<td>1, 3, 4, 5</td>
<td>3, 4</td>
</tr>
<tr>
<td>3</td>
<td>13.7</td>
<td>1.53 (d; 6.71)</td>
<td>2</td>
<td>1, 2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>37.3</td>
<td>3.29 (s)</td>
<td></td>
<td>2, 5</td>
<td>2, 6, 7w</td>
</tr>
<tr>
<td>5</td>
<td>172.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>46.8</td>
<td>4.81 (quint; 6.71)</td>
<td>7</td>
<td>5, 7, 8</td>
<td>4, 7, 9w</td>
</tr>
<tr>
<td>7</td>
<td>18.2</td>
<td>1.32 (d; 6.71)</td>
<td>6</td>
<td>5, 6</td>
<td>6, 1717w</td>
</tr>
<tr>
<td>8</td>
<td>168.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>57.5</td>
<td>5.62 (dd; 5.19, 11.60)</td>
<td>10</td>
<td>8, 10, 17, 18</td>
<td>10, 12, 13, 15-17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.34 (dd; 5.19, 14.95)</td>
<td>10</td>
<td>8, 9, 11-16</td>
<td>9, 12, 13, 15, 16</td>
</tr>
<tr>
<td>10</td>
<td>33.6</td>
<td>2.93 (dd; 11.60, 14.95)</td>
<td>10</td>
<td>8, 9, 11-16</td>
<td>9, 12, 13, 15, 16</td>
</tr>
<tr>
<td>11</td>
<td>138.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>129.7</td>
<td>7.23 (m)</td>
<td>10, 13-16</td>
<td>10, 11</td>
<td>9, 10, 17, 19, 21-23w</td>
</tr>
<tr>
<td>13</td>
<td>129.0</td>
<td>7.25 (m)</td>
<td>10, 12, 14-16</td>
<td>10, 11</td>
<td>9, 10, 17, 19, 21-23w</td>
</tr>
<tr>
<td>14</td>
<td>127.1</td>
<td>7.18 (m)</td>
<td>10, 12, 13, 15, 16</td>
<td>10, 11</td>
<td>21-23w</td>
</tr>
<tr>
<td>15</td>
<td>129.0</td>
<td>7.25 (m)</td>
<td>10, 12-14, 16</td>
<td>10, 11</td>
<td>9, 10, 17, 19, 21-23w</td>
</tr>
<tr>
<td>16</td>
<td>129.7</td>
<td>7.23 (m)</td>
<td>10, 12-15</td>
<td>10, 11</td>
<td>9, 10, 17, 19, 21-23w</td>
</tr>
<tr>
<td>17</td>
<td>29.5</td>
<td>3.0 (s)</td>
<td>10, 12-15</td>
<td>10, 11</td>
<td>9, 10, 17, 19, 21-23w</td>
</tr>
<tr>
<td>18</td>
<td>172.9</td>
<td></td>
<td></td>
<td></td>
<td>7w, 9, 12-16, 19, 2222w, 2323w</td>
</tr>
<tr>
<td>19</td>
<td>71.4</td>
<td>5.18 (dd; 5.49, 8.54)</td>
<td>20, 21</td>
<td>18, 20, 21</td>
<td>17, 21-23, 26w</td>
</tr>
<tr>
<td>20</td>
<td>39.8</td>
<td>1.48 (m)</td>
<td>19, 21</td>
<td>21, 22, 23</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>24.5</td>
<td>1.16 (m)</td>
<td>19, 20, 22, 22, 23</td>
<td>23</td>
<td>12-16w, 19, 22, 23</td>
</tr>
<tr>
<td>22</td>
<td>22.8</td>
<td>0.75 (d; 6.41)</td>
<td>21</td>
<td></td>
<td>12-16w, 19, 21</td>
</tr>
<tr>
<td>23</td>
<td>23.2</td>
<td>0.79 (d; 6.41)</td>
<td>21</td>
<td></td>
<td>12-16w, 19, 21</td>
</tr>
<tr>
<td>24</td>
<td>172.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>47.6</td>
<td>4.89 (dq; 8.59, 7.32)</td>
<td>26</td>
<td>24, 26, 27</td>
<td>26</td>
</tr>
<tr>
<td>26</td>
<td>19.5</td>
<td>1.45 (d; 7.32)</td>
<td>25</td>
<td>24, 25</td>
<td>19w, 22w, 23w, 25, 30w</td>
</tr>
<tr>
<td>27</td>
<td>170.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>77.3</td>
<td>5.04 (s)</td>
<td>30, 31</td>
<td>1, 27, 29, 30, 31</td>
<td>30, 31</td>
</tr>
<tr>
<td>29</td>
<td>72.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>25.0</td>
<td>1.21 (s)</td>
<td>28</td>
<td>28, 29</td>
<td>26w, 28</td>
</tr>
<tr>
<td>31</td>
<td>26.9</td>
<td>1.11 (s)</td>
<td>28</td>
<td>28, 29</td>
<td>26w, 28</td>
</tr>
<tr>
<td>NH (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH (2)</td>
<td></td>
<td>6.98 (d; 6.71)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.23 (d; 8.59)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Acetone-d$_6$, 300 MHz.
b Acetone-d$_6$, 500 MHz.
c Assignments are based on extensive 1D and 2D NMR measurements (HMBC, HSQC, COSY, NOESY).
d Numbers refer to carbon resonances.
w Weak signal.
Cytotoxicity of both compounds was tested in neuroblastoma cells. Compound 12 exhibited an IC$_{50}$ value of 6.2 µg/mL while compound 11 was less cytotoxic with an IC$_{50}$ value of 30 µg/mL. In agar diffusion assay both depsipeptides were inactive up to a concentration of 50 µg/plate.

Spicellamide A (11): colorless solid (1.5 mg); [α]$^D_{24}$ – 59.5° (c 0.12 MeOH); UV(MeOH) λ 250-300 nm (br); λ$_{max}$ (log ε) 203 (4.64), 205 (4.62), 208 (4.60), 227 sh (4.45) nm; IR (ATR) γ$_{max}$ 3364, 2925, 2457, 2361, 1742, 1638, 1454, 1236 cm$^{-1}$; 1H and 13C NMR spectral data (see Table 4-3-1); HREIMS m/z 602.3312 (calcd for C$_{31}$H$_{46}$N$_4$O$_6$ 602.3316).

Spicellamide B (12): colorless solid (1.0 mg); [α]$^D_{24}$ – 19.04° (c 0.11 MeOH); UV(MeOH) λ$_{max}$ (log ε) 203 (4.26), 205 (4.15), 208 (4.04); IR (ATR) γ$_{max}$ 3323, 2926, 2359, 1745, 1638, 1456, 1417, 1230 cm$^{-1}$; 1H and 13C NMR spectral data (see Table 4-3-2); HREIMS m/z 618.3256 (calcd for C$_{31}$H$_{46}$N$_4$O$_9$ 618.3265).
4.4 Lipopeptides from the strain *Fusarium dimerum* complex (Strain number 18)

4.4.1 Introduction

Microorganisms are well known producers of biosurfactants that attracted researchers attention in the last 20 years (Cameotra and Makkar, 2004; Singh and Cameotra, 2004). Surfactants are amphiphilic compounds which can reduce surface and interfacial tensions. Due to these properties they increase the solubility, mobility, bioavailability of hydrophobic or insoluble organic compounds. Biosurfactants play an important role in motility of microorganisms and take part in cellular signalling and differentiation as well as in biofilm formation (antibiotic resistance by bacteria) (Van Hamme et al., 2006). Literature distinguishes high- and low-molecular mass surfactants (Rosenberg and Ron, 1999). The high-molecular mass surfactants are proteins, lipopolysaccharides and lipoproteins, while the low-molecular mass surfactants are glycolipids and lipopeptides. The most active and the most investigated cyclic lipopeptide is surfactin. Natural surfactin, produced by bacterial strain *Bacillus subtilis* (Arima et al., 1968), includes a mixture of lipopeptides which differ in chain length of hydroxyl fatty acid residue and in amino acid substitutions of the peptide ring (Figure 4-4-1) (Kowall et al., 1998). A similar surface-active compound, described as lichenysin A, was isolated from *Bacillus licheniformis* by Yakimov et al. (Yakimov et al., 1995).

Fungal strain number 18 was identified as *Fusarium dimerum* complex that contains many *Fusarium* species (Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands). *Fusarium* is a large genus of filamentous fungi distributed in soil and in association with plants and marine organisms. Some species produce mycotoxins that can contaminate food and affect human and animal health (Gelderblom et al., 1998; Creppy, 2002). The *Fusarium* extract inhibited the growth of 6 cancer cell lines at the concentration of 30 µg/mL and exhibited an IC\textsubscript{50} value of 9.4 µg/mL. Mass spectra of the crude extract showed series of ions at \textit{m/z} [M]+ 951 to 1008, evidencing the presence of a peptide mixture.

4.4.2 Cultivation, extraction and isolation

The fungal strain (*Fusarium dimerum* complex, strain number 18, 193A 28) was cultivated on a solid biomalt medium containing antibiotics (benzyl penicillin and streptomycin sulphate, 250 mg / L). After the colonies were grown, the strain was transferred to a solid malt-yeast agar medium and cultivated in a big scale (10 L) for two months at room temperature. The fungal biomass and the media were homogenized using an Ultra-Turrax and the mixture was
extracted with EtOAc (4 x 8 L). After filtration, the filtrate was dried under reduced pressure to yield 2.5 g of orange extract. The fractionation of the extract by VLC (Si gel 60, 0.063-0.200 mm) with a petroleum ether - DCM - EtOAc - MeOH gradient yielded 11 fractions. In the cytotoxic assay fraction 8 was the most active with an IC$_{50}$ value of 8.5 µg/mL. Thus, it was further fractionated by reversed-phase VLC (Polygoprep 60 C$_{18}$, 0.05 mm) with a MeOH – H$_2$O gradient into 8 fractions. Of these, the last VLC fraction (eluted only with MeOH) was elucidated as a mixture of lipopeptides (13, 400 mg) which could not be further separated.

4.4.3 Results and discussion

The 1H NMR spectrum of fraction 13 displayed proton signals characteristic for α- and β-protons of a peptide structure, in the regions from 4.0 to 5.3 ppm and from 2.3 to 3.5 ppm, respectively. Also, the 13C NMR spectrum showed carbonyl carbon signals between 168 and 177 ppm and α-carbon signals between 50 and 63 ppm. The DEPT spectrum revealed signals in the region from 24 to 31 ppm typically for alkyl groups. Taken together, 1H and 13C NMR data implied fraction 13 to be a mixture of chemically similar lipopeptides. Literature and data base search indicated similarities to biosurfactants, lichenysins and surfactins, isolated from different species of Bacillus (Bonmatin et al., 1995; Yakimov et al., 1995; Kowall et al., 1998).

Surfactin, lichenysin A, B, C are mixtures of cyclic lipopeptides built from variants of a heptapeptide and β-hydroxy fatty acids with different chain lengths. The peptide moiety of surfactin contains two acidic residues (aspartate and glutamate) and five (four leucine and one valine) hydrophobic residues (Bonmatin et al., 1995), whereas in lichenysin A either aspartate or glutamate are present in their amide form (Yakimov et al., 1995) (Figure 4-4-1).

Figure 4-4-1. Structures of surfactin and lichenysin

The molecular weights of surfactin and lichenysin of different chain length are calculated considering suggested amino acid residues by Yakimov et al., 1995. In the case when leucine is replaced with valine there is a difference of 14 Da.
Figure 4-4-2. EIMS spectra of mixture 13.
Figure 4-4-3. EIMS spectra of lichenysin A (A) and surfactin (B) in positive mode.
The comparison of EIMS spectra of fraction 13 (Figure 4-4-2) to the spectra of both surfactin and lichenysin A (Figure 4-4-3) pointed to the resemblance of fraction 13 to both of them. As seen from mass spectra (Figure 4-4-3), lichenysin A consists of structural analogs that have even-numbered molecular weights ranging from 992 to 1034, while surfactin has odd-numbered molecular weights in the range from 979 to 1035. The difference of 1 Da in molecular weight is due to the presence of the amide form of either glutamic or aspartic acid in lichenysin A. The EIMS analysis of fraction 13 revealed series of ions at \(m/z \) 951 to 1008 in the positive-ion mode and at \(m/z \) 949 to 1006 in the negative-ion mode, implying a mixture of even- (950, 964, 978) and odd-numbered (979, 993, 1007) molecular weights. Mass shifts of 14 Da between structural analogs come from variations of fatty acid chain, or from replacement of leucine or isoleucine by valine (Horowitz and Griffin, 1991; Peypoux et al., 1991). Literature describes surfactins and lichenysins as mixtures of lipopeptides which alter in lengths of fatty acid chain from \(C_8 \) to \(C_{15} \) and in number of leucine and valine residues, e.g. in molecular weights from 979 to 1035 for surfactin and from 978 to 1034 for lichenysin A (Yakimov et al., 1995; Kowall et al., 1998). Analysis of mass spectra imparted fraction 13 (Figure 4-4-2) as a mixture of lichenysin and surfactin analogs. To confirm the exact structures of lipopeptide analogs further structural elucidation should be performed.

In antimicrobial tests fraction 13 exhibited an antibacterial activity inhibiting growth of Bacillus megaterium (2 mm) and Microbotryum violaceum (5 mm) at a concentration of 1 µg/µL. The antibacterial activity of surfactins and lichenysins was described previously (Yakimov et al., 1995). \textit{In vitro} antitumor assay revealed an IC\(_{50}\) value of 7.7 µg/mL (see Appendix).

Since the isolation of surfactins and lichenysins has been reported only from bacteria, mostly from different species of Bacillus (Bonmatin et al., 1995; Yakimov et al., 1995; Kowall et al., 1998), Fusarium dimerum was cultivated on media supplemented with antibiotics. Although classical microscopic studies did not reveal the presence of bacteria, it is possible that bacteria exist as endosymbionts in the fungus. Thus, further studies are necessary to shed light on the genuine producer organism of the lipopeptides.
4.5 Secondary metabolites from selected marine fungi

4.5.1 *Arthrinium sacchari*

In the preliminary screening for antitumor activity in a 6 cell line panel, the extract of the fungus *Arthrinium sacchari* showed antitumor activity in 2 out of 6 cell lines (33%) and in 5 out of 6 cell lines (83%) at a concentrations of 3 µg/mL and 30 µg/mL, respectively. In agar diffusion assay the crude extract displayed inhibition zone against *Mycotypha microspora* of 4 cm at 250 µg/disc. The biological activity in the mentioned assays and 1H NMR data addressed the fungus for detailed investigations.

The fungal strain (*Arthrinium sacchari*, strain number 727, Cro2 CA EtOHb) was cultivated at room temperature for one and a half month in Fernbach flasks. The solid biomalt medium (11 L) contained 20 g/L of Biomalt, 17 g/L agar and artificial seawater. Mycelia and medium were homogenized using an Ultra-Turrax®, and the mixture was extracted with EtOAc (3 x 8 L). After the evaporation of the organic phase, 4.6 g of dark red oil was obtained. The extract was applied on VLC (Si gel 60, 0.063-0.200 mm), with a CH$_2$Cl$_2$/acetone/MeOH gradient, to bring 11 fractions. In cytotoxic assay VLC fraction 3 revealed the highest activity with a mean IC$_{50}$ value of 3.3 µg/mL while all other fractions did not show desirable activity in concentration less than 30 µg/mL. VLC fraction 3 was fractionated by another VLC (Si gel 60, 0.063-0.200 mm), with a CH$_2$Cl$_2$/EtOAc/MeOH gradient, into 10 further fractions. The cytotoxic activity was indicated to subfraction 3.5 (a mean IC$_{50}$ value of 0.17 µg/mL) which was separated on reversed-phase HPLC (Macherey-Nagel Nucleodur 100-5 C$_{18}$, 250 x 4.6 mm, 5 µm) with MeOH/H$_2$O (6:4; flow 0.8 mL/min) and yielded compounds 14 and 15. Subfraction 3.2 was eluted with petroleum ether/acetone (8:2; flow 1.5 mL/min) on normal-phase HPLC column (Knauer Eurospher-100, C-8, 250 x 8 mm, 5 µm) and gave compounds 16 and 17.

Structure elucidation of compounds 14-17 was accomplished with 1D and 2D NMR data, mass spectrometry and data base search. The structure of compounds 14 and 15 was assigned to group of cytochalasins, structure of 16 to coumarins and of 17 to sterols.
Cytochalasin K (14) and its $\Delta^6,12$ isomer (15) are formally isolated from *Aspergillus clavatus* by Steyn and van Heerden (Steyn and van Heerden, 1982). In antitumor activity assay compounds 14 and 15 displayed a mean IC$_{50}$ value of 1.59 µg/mL and 0.014 µg/mL, respectively. At a concentration of 1 µg/mL compound 15 showed higher activity inhibiting growth of 30 cell lines out of 36 (83 %), and at a concentration of 10 µg/mL growth of 34 out
of 36 cell lines (94%), while compound 14 inhibited 6% (2/36) cell lines at 1 µg/mL and 23/36 cell lines (64%) at 10 µg/mL (see Appendix).

Sclerotinin B (16) was first isolated by Sassa et al. (Sassa et al., 1968) as plant growth promoting metabolite. In an antitumor assay compound 16 did not affect the growth of any cell type.

Ergosterol (17) is a common lipid produced by most of the fungi (Shirane et al., 1996). Ergosterol showed a mean IC\textsubscript{50} value of 4.67 µg/mL inhibiting growth of 27 out of 36 cell lines (75%) at a concentration of 10 µg/mL without selectivity on a specific tumor type.

None of the compounds showed any activity in the agar diffusion assay.

Cytochalasin K (14) was isolated as white crystals (14.6 mg). 1H NMR (300 MHz, CDCl\textsubscript{3}); \textdelta 7.31 (2H, d, \textit{J} = 6.95, H-3', H-5'), 7.28 (1H, s, H-4'), 7.15 (2H, d, \textit{J} = 6.95, H-2', H-6'), 6.64 (1H, d, \textit{J} = 11.34, H-20), 6.23-6.15 (1H, m, H-13), 5.65 (1H, d, \textit{J} = 11.34, H-19), 5.43-5.33 (1H, m, H-14), 3.93-3.89 (2H, m, H-4, H-7), 3.52-3.48 (1H, m, H-3), 2.98-2.90 (1H, m, H-16), 2.84-2.66 (4H, m, H-8, H-20, H-15a), 2.17 (1H, s, H-15b), 1.67 (3H, s, H-3, H-11), 1.50 (3H, s, H-3-18Me), 1.48 (3H, s, H-3-12), 1.17 (3H, d, \textit{J} = 6.59, H-3-16Me); 13C NMR (75.5 MHz, CDCl\textsubscript{3}) \textdelta 211.5 (s, C-17), 170.2 (s, C-1), 149.0 (s, C-22), 142.4 (d, C-20), 136.6 (s, C-1'), 133.6 (d, C-14), 131.7 (s, C-5), 129.3 (d, C-2', C-6', C-13), 128.9 (d, C-3', C-5'), 127.1 (d, C-4'), 125.2 (s, C-6), 120.4 (d, C-19), 86.3 (s, C-9), 77.2 (s, C-18), 70.0 (d, C-7), 59.1 (d, C-3), 49.9 (d, C-8), 48.2 (d, C-4), 44.0 (t, C-10), 40.9 (d, C-16), 39.0 (t, C-15), 24.6 (q, C-18Me), 20.2 (q, C-16Me), 17.6 (q, C-12), 14.0 (q, C-11); C\textsubscript{28}H\textsubscript{33}NO\textsubscript{7} (495.23); [\alpha]^{24}\textsubscript{D} +23.8\degree (c 0.45, MeOH).

\textDelta^{6,12} isomer of Cytochalasin K (15) was isolated as white crystals (9.7 mg). 1H NMR (300 MHz, CDCl\textsubscript{3}); \textdelta 7.32-7.29 (3H, brs, H-3', H-4', H-5'), 7.15-7.12 (2H, brs, H-2', H-6'), 6.54 (1H, d, \textit{J} = 11.34, H-20), 5.77-5.68 (1H, m, H-13), 5.62 (1H, d, \textit{J} = 11.34, H-19), 5.37 (1H, s, H-12a), 5.33-5.29 (1H, brs, H-14), 5.16 (1H, s, H-12b), 3.81 (1H, brs, H-7), 3.33 (2H, brs, H-3, H-5), 3.04-2.86 (4H, brs, H-4, H-8, H-10a, H-16), 2.73-2.58 (2H, brs, H-10b, H-15a), 2.17 (1H, s, H-15b), 1.50 (3H, s, H-3-24), 1.16 (3H, s, H-3-23), 1.11 (3H, s, H-3-11); 13C NMR (75.5 MHz, CDCl\textsubscript{3}) \textdelta 211.8 (s, C-17), 169.2 (s, C-1), 152.7 (s, C-22), 149.5 (s, C-6), 142.2 (d, C-20), 136.6 (s, C-1'), 133.8 (d, C-14), 129.3 (d, C-2', C-6'), 128.9 (d, C-3', C-5'), 128.2 (d, C-
Sclerotinin B (16) was isolated as a pale brown solid (3.1 mg). 1H NMR (300 MHz, (CD$_3$)$_2$CO); δ 3.85 (2H, s, H$_2$-4), 2.57 (3H, s, H$_3$-11), 2.14 (3H, s, H$_3$-12), 2.13 (3H, s, H$_3$-13); 13C NMR (75.5 MHz, (CD$_3$)$_2$CO) δ 172.2 (s, C-1), 158.2 (s, C-6), 158.0 (s, C-8), 132.4 (s, C-10), 120.0 (s, C-7), 118.1 (s, C-5), 110.8 (s, C-3, C-9), 37.3 (t, C-4), 32.1 (q, C-11), 12.1 (q, C-12), 8.8 (q, C-13); C$_{12}$H$_{14}$O$_5$ (238.08); $[\alpha]_{D}^{24}$ -15.1° (c 0.28, MeOH).

Ergosterol (17) was isolated as amorphous white powder (2.8 mg). 1H NMR (300 MHz, (CD$_3$)$_2$CO); δ 5.52 (1H, dd, $J = 2.20, 5.85$, H-6), 5.38-5.34 (1H, m, H-7), 5.26-5.22 (2H, m, H-22, H-23), 3.55-3.43 (1H, m, H-3), 2.39 (1H, d, $J = 14.27$, H-4a), 2.23 (1H, d, $J = 14.27$, H-4b), 2.09 (1H, s, H-20), 1.98-1.83 (5H, m, H$_2$-2, H-9, H-16a, H-17), 1.81-1.75 (2H, m, H-1, H-24), 1.71-1.62 (3H, m, H$_2$-11, H-15a), 1.50-1.45 (1H, m, H-25), 1.43-1.34 (2H, m, H-14, H-16b), 1.33-1.29 (1H, m, H-15b), 1.28 (2H, s, H$_2$-12), 1.05 (3H, d, $J = 6.59$, H$_3$-21), 0.93 (3H, s, H$_3$-19), 0.91 (3H, s, H$_3$-28), 0.85 (3H, d, $J = 5.12$, H$_3$-27), 0.82 (3H, d, $J = 5.12$, H$_3$-26), 0.66 (3H, s, H$_3$-18); 13C NMR (75.5 MHz, (CD$_3$)$_2$CO) δ 141.6 (s, C-5), 141.3 (s, C-8), 136.6 (d, C-23), 132.7 (d, C-22), 119.9 (d, C-6), 117.4 (d, C-7), 70.2 (d, C-3), 56.5 (d, C-14), 55.2 (d, C-17), 47.1 (d, C-9), 43.7 (d, C-24), 53.5 (s, C-13), 41.8 (t, C-4), 41.3 (d, C-20), 39.9 (t, C-12), 39.2 (t, C-1), 37.8 (s, C-10), 33.8 (d, C-25), 32.8 (t, C-2), 29.0 (t, C-16), 23.7 (t, C-15), 21.7 (t, C-11), 21.5 (q, C-21), 20.3 (q, C-27), 19.9 (q, C-26), 18.1 (q, C-28), 16.6 (q, C-19), 12.3 (q, C-18); C$_{28}$H$_{44}$O (396.34); $[\alpha]_{D}^{24}$ -51.0° (c 0.19, MeOH).

4.5.2 *Aspergillus terreus*

Aspergillus species are highly aerobic and are found in almost all oxygen-rich environments. Some of the metabolites produced by *Aspergillus terreus*, like lovastatin – inhibitor of cholesterol synthesis, are of great clinical importance (Manzoni *et al.*, 1998). On the basis of the interesting 1H NMR spectrum of the crude extract, the strain was chosen for further analysis.

Mycelia and 4L of solid biomalt medium were diluted with water (100 mL/L) and homogenized using an Ultra-Turrax® T25 at 5000 rpm for 2 minutes. The resulting mixture was exhaustively extracted with EtOAc (3 x 4 L), filtrated and evaporated under reduced pressure to give a final yield of 3 mg. The crude extract was analyzed by 1H and 13C NMR spectroscopy which provided important information about the structure of the metabolites. The results are presented in the following sections.
pressure to yield 2.0 g of dark red extract. The EtOAc extract was fractionated by VLC (Si gel 60, 0.063-0.200 mm), normal-phase silica (gradient dichomethane – EtOAc - methanol) to give 16 fractions. According to 1H NMR spectral data fractions 4, 5 and 7 were further fractionated on normal-phase HPLC column (Knauer Si Eurospher-100, 250 x 8 mm, 5µm) using different mixtures of petroleum ether and acetone. VLC fraction 4 was separated into compounds 18 (butyrolactone I) and 19 (butyrolactone II) with petroleum ether/acetone (7:3; flow 2.0 mL/min). VLC fraction 7 yielded terrein (20) with petroleum ether/acetone (1:1; flow 2.0 mL/min). And finally, elution of VLC fraction 5 with petroleum ether/acetone (7:3; flow 2.0 mL/min) afforded itaconic acid (21).

All compounds were previously isolated also from Aspergillus terreus. Butyrolactone I (18) and II (19) are first time described in 1983 (Nitta et al., 1983), terrein (20) and itaconic acid (21) in 1935 (Raistrick and Smith, 1935).

In a cytotoxic assay and agar diffusion tests none of the compounds show significant activity (see Appendix).

Butyrolactone I (18) was isolated as red solid (73.2 mg). 1H NMR (300 MHz, (CD$_3$)$_2$CO); δ 9.06 (1H, s, 2-OH), 8.88 (1H, s, 7-OH), 8.08 (1H, s, 17-OH), 7.64 (2H, d, $J = 8.78$, H-5, H-9),
6.97 (2H, d, J = 8.78, H-6, H-8), 6.56 (2H, brs, H-16, H-19), 6.49 (1H, s, H-15), 5.07 (1H, t, J = 6.95, H-2’), 3.72 (3H, s, H-3'), 1.61 (3H, s, H-3"), 1.54 (3H, s, H-3'); \(^{13}C\) NMR (75.5 MHz, (CD\(_3\))\(_2\)CO) δ 170.9 (s, C-11), 168.6 (s, C-1), 158.8 (s, C-7), 154.7 (s, C-17), 139.0 (s, C-3), 132.4 (s, C-3’), 132.3 (d, C-15), 130.1 (d, C-5, C-9), 129.5 (d, C-19), 128.1 (s, C-2), 127.9 (s, C-14), 124.9 (s, C-18), 123.3 (d, C-2’), 122.8 (s, C-4), 116.6 (d, C-6, C-8), 115.0 (d, C-16), 85.9 (s, C-10), 53.7 (q, C-12), 39.2 (t, C-13), 28.5 (t, C-1’), 25.9 (q, C-4'); C\(_{24}\)H\(_{24}\)O\(_7\) (424.15); [\(\alpha\)]\(^{24}\)_D +55.4° (c 1.0, EtOH), (lit. (Nitta \textit{et al.}, 1983); [\(\alpha\)]\(^{24}\)_D +86.0° (c 0.5, EtOH)).

Butyrolactone II (19) was isolated as dark orange solid (37.8 mg). \(^1\)H NMR (300 MHz, (CD\(_3\))\(_2\)CO); δ 7.69 (2H, d, J = 8.78, H-5, H-9), 7.01 (2H, d, J = 8.78, H-6, H-8), 6.72 (2H, d, J = 8.78, H-15, H-19), 6.62 (2H, d, J = 8.78, H-16, H-18), 3.83 (3H, s, H-3'), 3.53 (2H, s, H-2'); \(^{13}C\) NMR (75.5 MHz, (CD\(_3\))\(_2\)CO) δ 170.8 (s, C-11), 168.6 (s, C-1), 158.9 (s, C-7), 157.3 (s, C-17), 139.0 (s, C-3), 132.2 (d, C-15, C-19), 130.0 (d, C-5, C-9), 128.2 (s, C-2), 124.8 (s, C-14), 122.7 (s, C-4), 116.6 (d, C-6, C-8), 115.4 (d, C-16, C-18), 85.9 (s, C-10), 53.7 (q, C-12), 39.1 (t, C-13); C\(_{19}\)H\(_{16}\)O\(_7\) (356.09); [\(\alpha\)]\(^{24}\)_D +42.5° (c 1.4, EtOH), (lit. (Nitta \textit{et al.}, 1983); [\(\alpha\)]\(^{24}\)_D +85.0° (c 1.0, EtOH)).

Terrein, 5,6-dihydroxy-4-(1-propenyl)cyclopent-4-en-7-one (20) was isolated as white crystals (140.7 mg). \(^1\)H NMR (300 MHz, (CD\(_3\))\(_2\)CO); δ 6.87-6.75 (1H, m, H-7), 6.42 (1H, d, J = 15.73, H-5), 5.95 (1H, m, H-5), 4.72 (1H, m, H-2), 4.07 (1H, d, J = 2.20, H-3), 1.89 (3H, dd, J = 1.46, 6.95, H-3'); \(^{13}C\) NMR (75.5 MHz, (CD\(_3\))\(_2\)CO) δ 203.6 (s, C-1), 169.1 (s, C-4), 140.1 (d, C-7), 126.3 (d, C-6), 125.7 (s, C-5), 82.2 (d, C-2), 77.8 (d, C-3), 19.3 (q, C-8); C\(_8\)H\(_{10}\)O\(_3\); (154.06); [\(\alpha\)]\(^{24}\)_D +168.0° (c 1.2, H\(_2\)O), (lit. (Grove, 1954); [\(\alpha\)]\(^{24}\)_D +192.0° (c 0.2, H\(_2\)O)).

Itaconic acid (21) was isolated as white crystals (132.6 mg). \(^1\)H NMR (300 MHz, (CD\(_3\))\(_2\)CO); δ 6.26 (1H, d, J = 1.10, H-5a), 5.80 (1H, d, J = 1.10, H-5b), 3.34 (2H, d, J = 1.10, H-2'), \(^{13}C\) NMR (75.5 MHz, (CD\(_3\))\(_2\)CO) δ 172.2 (s, C-1), 167.8 (s, C-4), 135.8 (s, C-2), 128.4 (t, C-5), 37.6 (t, C-3); C\(_5\)H\(_6\)O\(_4\) (130.03).

4.5.3 \textit{Fusarium oxysporum}

The extract of the fungus \textit{Fusarium oxysporum} exhibited an IC\(_{50}\) value of 6.5 µg/mL in \textit{in vitro} antitumor assay inhibiting growth of 5 out of 6 cell lines in a concentration of 30 µg/mL. Moreover, the screening tests in sphingolipid metabolism assay revealed an accumulation of
glucosylceramide (Figure 4-1-2). Therefore, the strain *Fusarium oxysporum* (strain number 588, Fr S1 5N) was selected for mass-cultivation (10 L (40 Fernbach flasks) of solid malt-yeast agar medium, room temperature for 3 months). The fungal biomass, including the medium, was homogenized using an Ultra-Turrax and the mixture was extracted with EtOAc (4 x 8 L). After evaporation of the organic phase 1.5 g of brown oil was obtained. The extract was fractionated by VLC (Si gel 60, 0.063-0.200 mm) with a petroleum ether - EtOAc - MeOH gradient, to yield 8 fractions. Fractions 3 and 4 were combined together according to 1H NMR and LC/MS data, and the cytotoxic assay in which they exhibited an IC$_{50}$ value of 2.4 µg/mL in a 6 cell line panel. In addition, both fractions induced an accumulation of glucosyceramide along with reduction of downstream glycosphingolipids. Thus, they were further fractionated by reversed-phase VLC (Polygoprep 60 C$_{18}$, 0.05 mm) with a MeOH – H$_2$O gradient to give 5 fractions. Of these, fraction 2 was eluted with MeOH/H$_2$O (9:1) on reversed-phase HPLC (Macherey-Nagel Nucleodur 100-5 C$_{18}$, 250 x 4.6 mm, 5 µm, flow 2.5 mL) to yield compound 22.

![Structure of compound 22](image)

Structure elucidation of compound 22 was achieved with 1H and 13C NMR spectra, mass spectrometry and literature search. Equisetin was isolated previously by Phillips et al. (Phillips et al., 1989) from *Fusarium equiseti*. In agar diffusion assay equisetin exhibited an antibacterial and antifungal activity inhibiting growth of *Bacillus megaterium* (11 mm), *Microbotryum violaceum* (5 mm), *Eurotium rubrum* (4 mm) and *Mycotypha microspora* (5 mm).
Compound 22 also exhibited an IC$_{50}$ value of 4.8 µg/mL in in vitro antitumor activity assay.

The influence of equisetin on sphingolipid metabolism was studied by following the incorporation of L-[3-14C] serine into cellular sphingolipids of cerebellar neurons and neuroblastoma B104 cells. Incubation of neuroblastoma cells with 5 µM and 10 µM of equisetin revealed a 3fold increased content of GlcCer along with the reduced levels of...
LacCer and complex gangliosides (Figure 4-5-1A), whereas in primary cultured neurons levels of glycosphingolipids in cell treated with compound 22 (10 µM) were comparable with the control cells (Figure 4-5-1B). However, further experiments in neuroblastoma cells showed that the potency of equisetin to alter glycosphingolipid metabolism is dependent on cell confluence and the passage number of cell line. Thus, the experiments could not give reliable results and, for that reason, no further investigations were conducted.

Equisetin (22) was isolated as colourless oil (65 mg). 1H NMR (300 MHz, (CD$_3$)$_2$CO); δ 5.40-5.39 (2H, brs, H-4, H-5), 5.23-5.21 (2H, brs, H-13, H-14), 4.00 (2H, dd, J = 3.50, 12.00, H$_2$-6’), 3.70 (1H, t, J = 3.50, 7.00, H-5’), 3.37 (1H, s, H-3), 3.06 (3H, s, H$_2$-7’), 2.08 (1H, s, H-10a), 1.85-1.79 (6H, m, H-6, H$_2$-7, H$_2$-9, H-11), 1.52 (1H, s, H-8), 1.56 (3H, d, J = 6.50, H$_2$-15), 1.46 (3H, s, H$_3$-12), 1.09 (1H, s, H-10b), 0.94 (3H, d, J = 6.50, H$_3$-16); 13C NMR (75.5 MHz, (CD$_3$)$_2$CO) δ 197.1 (s, C-4’), 191.0 (s, C-1), 177.8 (s, C-2), 132.0 (d, C-5), 130.6 (d, C-13), 127.4 (d, C-4), 127.3 (d, C-14), 101.6 (s, C-3’), 68.8 (d, C-5’), 60.0 (t, C-6’), 45.7 (s, C-2), 49.0 (d, C-3), 43.0 (t, C-7), 39.4 (d, C-11), 39.2 (d, C-6), 36.4 (t, C-9), 34.1 (d, C-8), 28.7 (t, C-10), 27.5 (q, C-7’), 22.8 (q, C-16), 17.7 (q, C-15), 15.2 (q, C-12); C$_{22}$H$_{31}$NO$_4$ (373.23); [α]$_D^{24}$ -99° (c 1.13 CHCl$_3$).

4.5.4 Paecilomyces lilacinus

The extract of the fungus Paecilomyces lilacinus inhibited growth of 2 out of 6 cancer cell lines at the concentration of 3 µg/mL exhibiting an IC$_{50}$ value of 0.09 µg/mL. Also, preliminary tests on sphingolipid metabolism showed reduced levels of ceramide and glycosphingolipids (Figure 4-1-2) which addressed the fungus for detailed studies.

The fungus (Paecilomyces lilacinus, strain number 193, 195 21 W) was cultivated at room temperature for one month in 4 L of solid biomalt agar medium containing 20 g/L Biomalt, 17 g/L agar and artificial sea water. Mycelia and medium were homogenized using an Ultra-Turrax and the resulting mixture was exhaustively extracted with EtOAc and filtrated. The filtrate was evaporated under reduced pressure to yield 0.8 g of dark brown gum. The extract was fractionated by VLC (Si gel 60, 0.063-0.200 mm), with a hexane - petroleum ether – EtOAc – MeOH gradient, to yield 10 fractions. Unfortunately, none of the fractions and the extract by its self showed any alterations in sphingolipid metabolism. Thus, a bioassay-guided isolation was done according to the cytotoxic activity. Fractions 7 and 8 showed an IC$_{50}$ value of 0.01 µg/mL and of 0.9 µg/mL, respectively, in a 6 cell line panel cytotoxic assay. Both fractions displayed similar 1H NMR and LC/MS spectra and, thus, were combined to be
fractionated by reversed-phase VLC (Polygoprep 60 C18, 0.05 mm) with a MeOH – H2O gradient to give 5 fractions. Of these, fraction 3 was purified on reversed-phase (Phenomenex Synergi Hydro-RP, 250 x 4.60 mm, 4 µm, flow 1.0 mL/min) HPLC with MeOH - H2O gradient into compound 23.

Gregatin D was first isolated in 1975 by Kobayashi and Ui (Kobayashi and Ui, 1975) as phytotoxic substance. In our antitumor assay in a panel of 36 human tumor cell lines gregatin D displayed an IC50 value of 9.4 µg/mL inhibiting growth of 3 out of 36 cell lines in a concentration of 30 µg/mL. Compound 23 and the extract from mass cultivation did not show any effect on sphingolipid metabolism.

Gregatin D (23) was isolated as orange oil (14.8 mg). 1H NMR (300 MHz, MeOD); δ 6.45-6.35 (1H, m, H-5), 6.03 (1H, t, J = 14.64, H-4), 5.90-5.82 (1H, m, H-3), 5.58 (1H, d, J = 14.64, H-6), 4.29 (1H, brs, H-13), 3.95-3.83 (5H, m, H2-12, H3-15), 2.14 (2H, t, J = 7.32, H2-2), 1.52 (3H, s, H3-16), 1.29 (3H, d, J = 5.85, H3-14), 1.04 (3H, t, J = 7.32, H3-1); 13C NMR (75.5 MHz, MeOD) δ 206.4 (s, C-10), 197.5 (s, C-11), 170.0 (s, C-8), 140.3 (d, C-3), 133.4 (d, C-5), 129.2 (d, C-4), 126.7 (d, C-6), 112.4 (s, C-9), 92.1 (s, C-7), 66.9 (d, C-13), 56.7 (q, C-15), 49.5 (t, C-12), 26.7 (t, C-2), 24.0 (q, C-14), 22.7 (q, C-16), 13.8 (q, C-1); C16H22O5 (294.15); [α]24D +102° (c 0.99 CHCl3), (lit. (Kobayashi and Ui, 1975); [α]24D +152.0° (c 0.93 CHCl3)).
4.6 Influence of fungal metabolites from the strain *Spicellum roseum* on sphingolipid metabolism

4.6.1 Alterations of glycosphingolipid profile by the extract of *Spicellum roseum*

Preliminary screening studies for the influence of fungal extracts on sphingolipid metabolism imparted the extract of fungal strain *Spicellum roseum* as a producer of metabolites with potential impact on SLs.

The effect of the fungal extract (FE) on de novo sphingolipid biosynthesis of cerebellar neurons was studied by following the incorporation of L-[3-\(^{14}\)C] serine into cellular sphingolipids. Cells incubated with 10 µg/mL of FE exhibited an accumulation of GlcCer, GM3 and GD3 while the formation of LacCer and more complex gangliosides was reduced (Figure 4-6-1). These observations were similar to the effects of fungal metabolite brefeldin A (BFA), previously published by van Echten *et al.* (van Echten *et al.*, 1990b), with the exception concerning LacCer formation. In contrast to BFA that was shown to induce accumulation of newly formed LacCer (van Echten *et al.*, 1990b), the fungal extract clearly reduced its formation. Therefore, the extract of fungal strain *Spicellum roseum* was subjected to further investigation.

Figure 4-6-1. Influence of the fungal extract of strain *Spicellum roseum* on \(^{14}\)C] serine incorporation into sphingolipids of primary cultured neurons.

Cells were incubated in the absence (C, control) or presence of fungal extract (FE, 10 µg/mL). After 4 h 1µCi of \(^{14}\)C]serine was added to the medium. Twenty hours later cells were harvested and lipids were extracted, isolated, separated by TLC, and detected as described in Materials and Methods. TLC plates were developed in chloroform-methanol-0.22 % aqueous CaCl\(_2\) (60:35:8; v/v/v). The terminology of gangliosides (GQ1b, GT1b, GD1b, GD1a, GD3, GM1 and GM3) is according to Svennerholm (Svennerholm, 1963). GlcCer, glucosylceramide; LacCer, lactosylceramide; So, sphingosine; Sa, sphinganine; SM, sphingomyelin; *, unidentified bands.
4.6.2 Cultivation, extraction and bioassay-guided isolation

The fungal strain *Spicellum roseum* (strain number 74; 193 H 15) was isolated from the sponge *Ectyplasia perox* as previously described (Höller et al., 2000). The strain was cultivated on a solid biomalt medium (10 L) for two months. The fungal biomass, together with media, was homogenized using an Ultra-Turrax® and extracted with EtOAc (3x8L).

After the evaporation of the organic phase 4.0 g of dark brown extract was obtained. The extract was fractionated by VLC with a petroleum ether-acetone-methanol gradient into four fractions.

Primary cultured neurons were incubated with different VLC fractions and their influence on *de novo* SL synthesis was followed by incorporation of L-[3-14C] serine into cellular sphingolipids. Figure 4-6-2 clearly shows that cells treated with fractions 1 and 2 exhibited alterations of glycosphingolipids while cells treated with fractions 3 and 4 showed no difference in expression of SLs when compared to control cells. As seen on Figure 4-6-2, both fractions (1 and 2) increased the levels of GlcCer and reduced the levels of LacCer. Additionally, fraction 1 reduced the expression of all gangliosides which was less in the case for fraction 2. Therefore, VLC fractions 1 and 2 were addressed for further investigation and isolation of the compounds responsible for exhibited activity.

Figure 4-6-2. Influence of VLC fractions of the extract from *Spicellum roseum* on sphingolipid metabolism of primary cultured neurons.

Cells were incubated in the absence (C, control) or presence of VLC fractions (1, 2, 3, 4; 10 µg/mL). After 4 h 1µCi of [14C]serine was added to the medium. Twenty hours later cells were harvested and lipids were extracted, isolated, separated by TLC, and detected as described in Materials and Methods. TLC plates were developed in chloroform-methanol-0.22 % aqueous CaCl₂ (60:35:8; v/v/v). The terminology of gangliosides (GQ1b, GT1b, GD1b, GD1a, GD3, GM1 and GM3) is according to Svennerholm (Svennerholm, 1963). FA, fatty acids; Cer,
ceramide; SM, sphingomyelin; So, sphingosine; Sa, sphinganine; GlcCer, glucosylceramide; LacCer, lactosylceramide; *, unidentified bands.

The fractionation of VLC fractions and the isolation of the compounds 24 – 29 are shown in Scheme 4-6-1.

Scheme 4-6-1. Extract fractionation and the isolation of compounds 24–29.

Structure elucidation of compounds 24-29 was accomplished with 1D and 2D NMR data, mass spectrometry and data base search. Compounds 24, 25, 27 and 28 are sesquiterpenoid metabolites that belong to the family of trichotheccenes. Trichotheccenes have various effects on eukaryotic cells. Their biological activity will be discussed later (Chapter 4.6.4). Isolation, chemical characteristics and biosynthetic studies of trichotheccenes are well described in literature – compounds 25, 27, 28 (Hanson et al., 1974), compound 24 (Plattner et al., 1988; Tanaka et al., 2001). The 1H and 13C NMR data of brefeldin A (26) were similar with those published by Glaser et al. (Glaser et al., 2000). Compound 29 was described previously (Achenbach et al., 1985).
8-deoxy-trichothecin (24) was isolated as colorless oil (400 mg). 1H NMR (300 MHz, (CD$_3$)$_2$CO); δ 6.45-6.34 (1H, m, H-3`), 5.77 (1H, dd, $J = 1.83$, 11.34, H-2`), 5.63 (1H, dd, $J = 3.66$, 7.68, H-4), 5.33 (1H, d, $J = 5.12$, H-10), 3.66-3.62 (2H, m, H-2, H-11), 3.00 (1H, d, $J = 4.39$, H-13a), 2.80 (1H, d, $J = 4.39$, H-13b), 2.48 (1H, dd, $J = 8.05$, 15.32, H-3a), 2.11 (3H, dd, $J = 1.83$, 6.95 H$_3$-4`), 1.96-1.85 (4H, m, H-3b, H-7a, H-7b), 1.66 (3H, s, H$_3$-16), 1.45-1.41 (1H, m, H-7b), 0.93 (3H, s, H$_3$-15), 0.67 (3H, s, H$_3$-14); 13C NMR (75.5 MHz, (CD$_3$)$_2$CO) δ 166.5 (s, C-1`), 145.9 (d, C-3`), 139.3 (s, C-9), 121.4 (d, C-2`), 120.4 (d, C-10), 79.6 (d, C-2), 75.3 (d, C-4), 71.1 (d, C-11), 66.0 (s, C-12), 49.8 (s, C-5), 47.8 (t, C-13), 41.1 (s, C-6), 37.3 (t, C-3), 28.6 (t, C-8), 25.1 (t, C-7), 23.3 (q, C-16), 16.2 (q, C-15), 15.5 (q, C-4`), 6.2 (q, C-14); C$_{19}$H$_{26}$O$_4$ (318.18); [α]$^{24}_D$ -5.5° (c 1.0, MeOH).

Trichodermol (25) was isolated as white crystals (500 mg). 1H NMR (300 MHz, (CD$_3$)$_2$CO); δ 5.29 (1H, d, $J = 5.49$, H-10), 4.38 (1H, dd, $J = 3.29$, 7.32, H-4), 3.55 (1H, d, $J = 5.12$, H-2), 3.49 (1H, d, $J = 5.49$, H-11), 2.91 (1H, d, $J = 4.76$, H-13a), 2.70 (1H, d, $J = 4.76$, H-13b),
Results

2.39 (1H, dd, J = 7.32, 15.37, H-3a), 1.93-1.90 (3H, m, H-7a, H-8), 1.77-1.75 (1H, m, H-3b),
1.63 (3H, s, H-16), 1.42-1.39 (1H, m, H-7b), 0.81 (3H, s, H-15), 0.73 (3H, s, H-14); \(^{13}\)C NMR (75.5 MHz, (CD\(_3\))\(_2\)CO) \(\delta\) 198.7 (s, C-8), 166.2 (s, C-1'), 146.2 (d, C-3'), 138.2 (s, C-9), 137.1 (d, C-10), 120.3 (d, C-2'), 79.6 (d, C-2), 73.3 (d, C-4), 70.1 (d, C-11), 65.5 (s, C-12), 47.5 (s, C-5), 47.5 (t, C-13), 43.7 (s, C-6), 42.1 (t, C-7),
37.0 (t, C-3), 18.5 (q, C-16), 15.5 (q, C-4'), 15.4 (q, C-15), 5.7 (q, C-14); C\(_{19}\)H\(_{20}\)O\(_5\) (332.16); [\(\alpha\)]\(_{D}^{24}\) +22.0° (c 0.1, CH\(_2\)Cl\(_2\)), (lit. (Loukaci et al., 2000); [\(\alpha\)]\(_{D}^{24}\) +29.3° (c 1.59, CH\(_2\)Cl\(_2\))).

Trichothecolone (28) was isolated as amorphous white solid (2.3 mg). \(^1\)H NMR (500 MHz, (CD\(_3\))\(_2\)CO); \(\delta\) 6.47 (1H, dd, J = 1.46, 5.85, H-10), 4.42 (1H, dd, J = 3.29, 7.32, H-4), 3.94 (1H, d, J = 5.85, H-11), 3.72 (1H, d, J = 5.12, H-2), 2.98 (1H, d, J = 4.03, H-13a), 2.86-2.81 (2H, m, H-7a, H-13b), 2.52 (1H, dd, J = 7.32, 15.37, H-3a), 2.17 (1H, dd, J = 1.46, 15.37, H-7b), 1.93-1.85 (1H, m, H-3b), 1.71 (3H, s, H-16), 0.92 (3H, s, H-15), 0.75 (3H, s, H-14);
\[^{13}\text{C}\text{ NMR (125 MHz, (CD}_3)_2\text{CO) }\delta 199.1\text{ (s, C-8), 138.7\text{ (d, C-10), 137.6\text{ (s, C-9), 80.4\text{ (d, C-11), 72.6\text{ (d, C-4), 70.5\text{ (d, C-2), 66.1\text{ (s, C-12), 49.7\text{ (s, C-5), 46.8\text{ (t, C-13), 44.0\text{ (s, C-6), 42.8\text{ (t, C-7), 40.2\text{ (t, C-3), 18.4\text{ (q, C-15), 15.3\text{ (q, C-16), 6.1\text{ (q, C-14); C}_1\text{5H}_2\text{O}_4 (264.14); } [\alpha]^{24}_D +25.0^\circ (c 0.2, \text{ CHCl}_3), (\text{lit. Loukaci et al., 2000); } [\alpha]^{24}_D +22.5^\circ (c 1, \text{ CHCl}_3)).}

3-\text{O-Alkylcyclopolarad (29) was isolated as pale yellow solid (12.0 mg). }^{1}\text{H NMR (300 MHz, MeOD); }\delta 6.73\text{ (1H, s, H-3), 4.0\text{ (8H, d, } J = 2.56, \text{ H}_3-1', \text{ H}_3-2', \text{ H}_2-4a), 2.26\text{ (3H, s, H}_3-6\text{Me); }^{13}\text{C NMR (75.5 MHz, MeOD) }\delta 169.3\text{ (s, C-1), 166.5\text{ (s, C-7), 159.2\text{ (s, C-5), 149.2\text{ (s, C-3a), 115.4\text{ (s, C-6), 108.0\text{ (s, C-4), 107.6\text{ (s, C-7a), 97.0\text{ (d, C-3), 65.3\text{ (t, C-4a), 56.9\text{ (q, C-1''), 56.4\text{ (q, C-2''), 10.3\text{ (q, C-6Me); C}_{12}\text{H}_{14}\text{O}_6 (254.08); } [\alpha]^{24}_D -0.4^\circ (c 0.9, \text{ MeOH).}}}

4.6.3 Brefeldin A – uncoupling of ganglioside biosynthesis

Primary cultured neurons were incubated with isolated pure compounds 24-29 and their interference with glycosphingolipid (GSL) metabolism was studied using $[^{14}C]$ galactose as the radioactively labeled precursor.

![Diagram of GSL metabolism](image)

Figure 4-6-3. Effect of brefeldin A and of two tricothecenes isolated from *Spicellum roseum* crude extract on the incorporation of $[^{14}C]$ galactose into glycosphingolipids of primary cultured cerebellar neurons.

Cells were incubated in the absence (C, control) or presence of brefeldin A (BFA, 20 µM), 8-deoxy-trichothecin (8-dT, 30 µM) or trichodermol (Td-ol, 30 µM). After 4 h 1µCi of $[^{14}C]$galactose was added into the medium. Twenty hours later cells were harvested and lipids were extracted, isolated, separated by TLC, and visualized as described in Materials and Methods. TLC plates were developed in chloroform-methanol-0.22 % aqueous CaCl$_2$ (60:35:8; v/v/v). The terminology of gangliosides (GQ1b, GT1b, GD1b, GD1a, GD3, GM1, GM2 and GM3) is according to Svennerholm (Svennerholm, 1963). GlcCer, glucosylceramide; LacCer, lactosylceramide.

Brefeldin A (BFA, 26) induced the accumulation of labeled GlcCer, LacCer, GM3 and GD3 (Figure 4-6-3) confirming previously published data (van Echten et al., 1990b; Sadeghlar et
Brefeldin A (26), a macrocyclic lactone, is a fungal metabolite originally isolated from *Penicillium brefeldianum* (Härri *et al.*, 1963). It has been reported that BFA blocks protein transport from the endoplasmatic reticulum (ER) to Golgi. This causes a redistribution of the proximal Golgi into the ER and a block of transport from these compartments to the distal Golgi (Donaldson and Klausner, 1994). Since GlcCer, LacCer, GM3 and GD3 are synthesized in the proximal Golgi (Figure 4-6-4), BFA uncouples ganglioside biosynthesis beyond GM3 and GD3 and, in that way, causes the accumulation of GlcCer, LacCer, GM3 and GD3 in cells (van Echten *et al.*, 1990b; Sadeghlar *et al.*, 2000).

![Figure 4-6-4. Scheme of glycosphingolipid biosynthesis.](image)

Modified from Giraudo and Maccioni (Giraudo and Maccioni, 2003). ER, endoplasmatic reticulum; Cer, ceramide; GlcCer, glucosylceramide; LacCer, lactosylceramide; BFA, brefeldin A. The terminology of gangliosides (GM3, GD3, GD2, GM2, GA2, GD1b, GM1, GA1, GT1b, GD1a, GM1b) is according to Svennerholm (Svennerholm, 1963).
4.6.4 Effect of trichothecene derivatives on glycosphingolipid metabolism

As shown in Figure 4-6-3, cells treated with trichothecene derivatives, 8-deoxy trichothecin (8-dT, 24) or trichodermol (Td-ol, 25), exhibited accumulation of GlcCer whereas the formation of LacCer and of all other GSLs located distal of LacCer was markedly impeded. The bands representing more complex gangliosides, which are metabolically derived from GM3 and GD3, can be explained by the glycosylation of the respective endogenous precursors to act as acceptors for the added $[^{14}C]$ galactose (van Echten et al., 1990a).

These findings led to the assumption that the two trichothecenes interfere with LacCer formation in neurons (see also Figure 4-6-4).

The other two isolated compounds from the trichothecene family, trichothecin (27) and trichothecolone (28), showed the same effect as compounds 24 (8-dT) and 25 (Td-ol) (data not shown). Therefore, all further experiments were performed only with compounds 24 and 25, and the obtained results were taken as equivalence for compounds 27 and 28.

Compound 29 did not show any modification on sphingolipid pathway.

The influence of 8-deoxy-trichothecin (8-dT, 24) and trichodermol (Td-ol, 25) on sphingolipid biosynthesis was studied in primary cultured cerebellar neurons and neuroblastoma cells by following the incorporation of L-$[^{3,14}C]$ serine into cellular sphingolipids. In cells incubated for 24 hours with 8-dT (30 µM) and Td-ol (30 µM) a 3fold increased content of de novo formed GlcCer was detected along with a 5fold reduced amount of LacCer as well as of all downstream gangliosides, when compared with control cells (Figure 4-6-5). These results indicate that 8-dT as well as Td-ol blocked the formation of LacCer thereby causing the accumulation of GlcCer. As shown in Figure 4-6-5, formation of sphingomyelin and of long chain sphingoid bases was not affected. Note that in the presence of the applied trichothecene concentration for 24 hours cell viability always amounted about 70 % of untreated controls.
Results

Figure 4-6-5. Effect of 8-deoxy-trichothecin and trichodermol on [¹⁴C] serine incorporation into sphingolipids of primary cultured cerebellar neurons (A) and neuroblastoma B104 cells (B).

Cells were incubated in the absence (C, control) or presence of 30 µM 8-deoxy-trichothecin (8-dT) or trichodermol (Td-ol), as indicated. After 4 h 1µCi of [¹⁴C]serine was added to the medium. Twenty hours later cells were harvested and lipids were extracted, isolated, separated by TLC, visualized by autoradiography and quantitatively evaluated as described under Materials and Methods. TLC plates were developed in chloroform-methanol-0.22 % aqueous CaCl₂ (60:35:8; v/v/v). In the two histograms the amount of radioactivity determined in the respective lipid fraction is expressed relative to total lipid associated radioactivity. Data are from one representative out of three independent experiments that gave similar results. Note that the content of de novo
formed sphingomyelin (SM) and also of free long chain bases (So/Sa) is not affected by tricothecenes in both cell types. The terminology of gangliosides (GQ1b, GT1b, GD1b, GD1a, GD3, GM1 and GM3) is according to Svennerholm (Svennerholm, 1963). GlcCer, glucosylceramide; LacCer, lactosylceramide; Sa, sphinganine; SM, sphingomyelin; So, sphingosine; *, unidentified bands.

4.6.4.1 Influence of trichothecenes on lactosylceramide synthase in neural cells

Reduction of lactosylceramide biosynthesis by tricothecenes could be due either to an inhibitory effect of these compounds on the enzyme responsible for LacCer formation by catalyzing the addition of galactose to GlcCer or to an interference of tricothecenes with the translocation of GlcCer from the cytosolic face where it is formed to the luminal face of the Golgi membrane where it is used for LacCer formation.

![Figure 4-6-6](image_url)

Figure 4-6-6. Effect of 8-deoxy-trichothecin and trichodermol on LacCer synthase of neural cells.

Cells were cultivated in the presence of 30 µM of 8-deoxy-trichothecin (8-dT) or trichodermol (Td-ol), respectively. After 24 h cells were harvested and LacCer synthase activity was assessed in cell homogenate as described in Materials and Methods. Blanks (B) with boiled cell homogenate were run in parallel.

To examine both possibilities, we first analyzed whether tricothecenes act as inhibitors of LacCer synthase (galactosyltransferase I). Cells were preincubated prior to determination of
LacCer synthase activity for 24 h with 30 µM of trichothecene derivatives. The results shown in Figure 4-6-6 reveal a decrease of LacCer synthase activity by about 90% in both cell types treated with trichodermol or 8-deoxy-trichothecin, when compared to control cells. This effect was concentration dependent (Figure 4-6-7) with half maximal inhibition at 0.5 µM for 8-deoxy-trichothecin and 1 µM for trichodermol. These findings demonstrate that 8-dT (24) and Td-ol (25) reduce catalytic activity of LacCer synthase in cultured cells.

However, in vitro the same concentrations of trichothecenes directly added to the assay mixture, exhibited no effect on LacCer synthase activity (data not shown). These observations indicate that cell integrity plays a crucial role for the effect of both, trichodermol and 8-deoxy-trichothecin on LacCer synthase activity.

Figure 4-6-7. Concentration dependence of the effect of 8-deoxy-trichothecin and of trichodermol on the incorporation of [14C] serine into sphingolipids of neuroblastoma B104 cells.

Cells were incubated with the indicated concentrations of 8-deoxy-trichothecin (8-dT) and of trichodermol (Td-ol). After 4 h 1µCi of [14C] serine was added into the cultured medium. After 20 h cells were harvested and lipids were extracted, isolated, separated by TLC, and detected as described under Materials and Methods. TLC
plates were developed in chloroform-methanol-0.22% aqueous CaCl$_2$ (60:35:8; v/v/v). The results are presented as percentages of control and are means from three independent experiments.

We then analyzed whether the compounds affect transcription of LacCer synthase. As illustrated in Figure 4-6-8A in neuroblastoma cells treated with 8-deoxy-trichothecin and trichodermol, respectively, transcription of LacCer synthase mRNA was markedly decreased amounting only about 20% of untreated controls. By contrast, in primary cultured neurons (Figure 4-6-8B) the level of mRNA was the same in control cells and in cells treated with trichothecenes. Collectively, these findings show that the trichothecene derivatives, 8-dT (24) and Td-ol (25), isolated from *Spicillum roseum* decrease LacCer synthase activity in both cell types, albeit by different mechanisms: in neuroblastoma cells they interfere with enzyme transcription, while in cerebellar neurons they act on a post-transcriptional level.

Figure 4-6-8. Effect of 8-deoxy-trichothecin and of trichodermol on mRNA levels of LacCer synthase in neuroblastoma B104 cells (A) and in primary cultured neurons (B). Cells were incubated for 24 h in the absence (control) or presence of 8-deoxy-trichothecin (Td-ol, 30 µM) or of trichodermol (8-dT, 30 µM). Levels of LacCer synthase mRNA were determined by RT-PCR as described in Materials and Methods. Shown is one representative of three different experiments, each performed with double determinations.

4.6.4.2 Influence of trichothecenes on galactosyltransferase II

Galactosyltransferase II catalyses the transfer of galactose from UDP-galactose to gangliosides GA2, GM2 and GD2 generating the formation of GA1, GM1 and GD1b, respectively (Figure 4-6-4). Galactosyltransferase I (LacCer synthase), whose activity was inhibited by trichothecenes (Chapter 4.6.4.1), shows 96% identity with galactosyltransferase II in terms of amino acid sequence (Nomura et al., 1998).

To test if compounds 24 and 25 also inhibit galactosyltransferase II, neuroblastoma cells were treated with 8-dT (24, 30 µM) and Td-ol (25, 30 µM) and labelled either with [14C]
lactosylceramide or $[^{14}C_8]$ GM3. As shown in Figure 4-6-9, both compounds had no influence on a-series gangliosides formation (GM1 and GD1a). However, levels of b-series gangliosides (GD1b, GT1b, GQ1b) in cells treated with trichothecene derivatives were visibly reduced. These observations suggest that trichothecenes have an additional effect on GSL expression which includes reduced formation of acidic gangliosides.

![Figure 4-6-9](image)

Figure 4-6-9. Effect of 8-deoxy-trichothecin (8-dT) and trichodermol (Td-ol) on $[^{14}C_8]$ LacCer (A) and $[^{14}C_8]$ GM3 (B) incorporation into glycosphingolipids of neuroblastoma B104 cells.

Cells were incubated in the absence (C, control) or presence of 30 µM 8-deoxy-trichothecin (8-dT) or trichodermol (Td-ol), as indicated. After 4 h 1µCi of $[^{14}C_8]$LacCer or $[^{14}C_8]$GM3 were added to the medium. Twenty hours later cells were harvested and lipids were extracted, isolated, separated by TLC, visualized by autoradiography and quantitatively evaluated as described under Materials and Methods. TLC plates were developed in chloroform-methanol-0.22 % aqueous CaCl$_2$ (60:35:8; v/v/v). Data are from one representative out of three independent experiments that gave similar results. The terminology of gangliosides (GQ1b, GT1b, GD1b, GD1a, GD3, GM1, GM2 and GM3) is according to Svennerholm (Svennerholm, 1963). LacCer, lactosylceramide.
4.6.4.3 Influence of trichothecenes on the translocation of glucosylceramide

Next, we examined whether trichothecenes also affect GlcCer translocation from the cytosolic side, where it is formed to the luminal side where it is galactosylated to yield LacCer (Figure 4-6-4).

First, we analyzed the activity of Pgp (also known as ABCB1) and MRP1 (also known as ABCC1), two potential translocators of GlcCer, towards known fluorescent substrates. In both cell types, the ability of cyclosporin A (CsA) (10µM), an inhibitor of Pgp activity as well as of MK571 (20µM), an inhibitor of MRP1 activity was tested using rhodamine-123 (R-123) and/or 5-carboxyfluorescein diacetate (CFDA) as fluorescent substrates for Pgp and MRP1, respectively. In both cell types CsA showed no effect on efflux of R-123 indicating that Pgp was not active towards this substrate in neural cells. On the other hand MK571 caused significant accumulation of CFDA (Figure 4-6-10) in neuroblastoma cells but not in cerebellar neurons, pointing to an activity of MRP1 towards the used substrate only in neuroblastoma cells.

Figure 4-6-10. Effect of 8-deoxy-trichothecin (8-dT) and of trichodermol (Td-ol) on MRP1 transport activity in neuroblastoma B104.

Transport activity was assessed over 2 h by CFDA accumulation assay as described in Materials and Methods. MK571 was used as a positive control. Results are given relative to untreated controls and represent means from three independent experiments.
Since MRP1 was only demonstrated to function as a translocator for short chain lipid analogs across cellular membranes (Raggers et al., 1999) we tested whether MRP1 also acts as a flippase for endogenous long-chain glucosylceramide across the Golgi membrane. Therefore, neuroblastoma B104 cells were incubated with different concentrations of MK571 and the incorporation of L-[3-\(^{14}\)C] serine into cellular GSLs was followed. As illustrated in Figure 4-6-11, levels of labeled GlcCer in MK571 treated cells were 3-4fold higher than in control cells. However, the amounts of labeled LacCer and other GSLs were comparable with those of control cells (not shown), indicating that additional mechanisms exist that obviously allow translocation of sufficient amounts of GlcCer for \textit{de novo} GSL biosynthesis. In primary cultured neurons, however, no changes either in GlcCer or in downstream GSL biosynthetic labelling were observed in the presence of MK571. These observations suggested MRP1 to function as a GlcCer translocase across Golgi membranes at most in neuroblastoma B104 cells.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Effect of MK571 on \(^{14}\)C serine incorporation into sphingolipids of neuroblastoma B104 cells.}
\end{figure}

Cells were incubated in the absence (C, control) or presence of the indicated concentrations of MK571. After 4 h 1\(\mu\)Ci of \(^{14}\)C-serine was added to the medium. Twenty hours later cells were harvested and lipids were extracted, isolated, separated by TLC, and detected as described under Materials and Methods. TLC plates were developed in chloroform-methanol-0.22 % aqueous CaCl\(_2\) (60:35:8; v/v/v). GlcCer bands were scraped and their
radioactivity was quantified in a liquid scintillation counter. The results are presented as percentages of control and are means from three independent experiments.

We therefore tested the effect of 8-dT and Td-ol on CFDA accumulation in neuroblastoma cells. As shown in Figure 4-6-10, neither 8-dT (24) nor Td-ol (25) altered CFDA accumulation. It thus appears that 8-deoxy-trichothecin and trichodermol do not affect the function of ABC transporters.

4.6.4.4 Influence of trichothecenes on ceramide level in neural cells
Trichothecenes are well known apoptotic compounds (Yang et al., 2000; Pestka and Smolinski, 2005). Ceramide, a biosynthetic precursor and also a catabolic product of GlcCer, has been shown to be involved in many forms of apoptosis (Pettus et al., 2002; Gulbins, 2003). Therefore, we investigated the influence of compounds 24 and 25 on the formation of ceramide.

The incorporation of L-[3-14C] serine into ceramide was studied in primary cultured neurons and neuroblastoma cells after incubation of the cells with compounds 24 (8-dT, 30 µM) or 25 (Td-ol, 30 µM) for 24 h. In neuroblastoma cells trichothecenes significantly elevated level of ceramide (3-4fold), while in cerebellar neurons there was no difference between trichothecene-treated and control cells (Figure 4-6-12).
Figure 4-6-12. Effect of 8-deoxy-trichothecin (8-dT, 24) and of trichodermol (Td-ol, 25) on ceramide level in neuroblastoma cells and primary cultured neurons.

Cells were incubated in the absence (C, control) or presence of 8-dT (30 µM) or Td-ol (30 µM). After 4 h 1µCi of [14C]serine was added to the medium. Twenty hours later cells were harvested and lipids were extracted, isolated, separated by TLC, and detected as described under Materials and Methods. TLC plates were developed in chloroform-methanol-acetic acid (190:9:1; v/v/v). Ceramide bands were scraped and their radioactivity was quantified in a liquid scintillation counter. The results are presented as percentages of control and are means from three independent experiments.

These findings demonstrate, once more, that trichothecenes exhibit different mechanism of action in cerebellar neurons and neuroblastoma cells.
5 Discussion

The focus of this study was the investigation of marine-derived fungi aiming to find natural products with potent biological activity and/or novel chemical structures. Fungi are an extremely valuable source of novel natural products with a wide array of biological activities (König and Wright, 1996; Blunt et al., 2005). Several fungal metabolites, e.g. fumagillin, illudin S (McMorris, 1999; Butler, 2005; Furness et al., 2005; Senzer et al., 2005), are undergoing clinical trials as antitumour compounds and inspired the current study. Also, fungal metabolites are reported to interfere with sphingolipids (SLs), compounds of eukaryotic cells that are connected with different signaling pathways including regulation of cell growth and death (Merrill et al., 1993a; Mandala et al., 1994). The isolated fungal metabolites and their biological activity are discussed below according to the results presented in the previous chapter.

5.1 Selection of fungal strains

Search for new anticancer drugs is today of utmost importance for therapy. Natural products are an important source of anticancer drugs (Simmons et al., 2005; Altmann and Gertsch, 2007). Therefore, fungal strains from the culture collection of the Institute for Pharmaceutical Biology (Bonn) were screened in a panel of six human tumor cell lines in cooperation with Oncotest GmbH, Institute for Experimental Oncology (Freiburg). The results of the present study are based on cytotoxic screening of around 80 fungal strains. Due to the significant advances in cancer biology much of the research is focused on cancer-specific mechanisms and molecular targets (McLaughlin et al., 2003). Sphingolipids, mediators of apoptosis and cell growth, were recognized in the last 20 years as molecules with an important role in cancer pathogenesis and treatment (Ogretmen and Hannun, 2004; Radin, 2004; Modrak et al., 2006). Hence, the extracts of fungal strains with cytotoxic activity were screened for their interference with sphingolipid metabolism. In preliminary screening studies out of 25 cytotoxic extracts seven showed alterations in expression of sphingolipids (Figure 4-1-2, Chapter 4-1-2) and were, thus, chosen for mass cultivation. Though, extracts of the strains Emericella nidulans, Arthrinium sacchari and Aspergillus terreus did not interfere with sphingolipids, they were selected for further studies due to interesting NMR (low field 1H NMR resonances) and MS data (m/z 900-1100).
After large scale cultivation and extraction some of the fungal strains revealed a different profile of biological activity as compared with that of the screening extracts. Extracts of the strains *Microsphaeropsis* sp. and *Acremonium sclerotigenum* (strain number 96 and 738, respectively) lost their cytotoxic effects together with the effect on SLs. The activity on SL metabolism was lost in extracts from the strains of *Fusarium dimerum* and *Paecilomyces lilacinus*.

The loss of biological activity is one of the problems encountered when screening for biological compounds in microorganisms. It may be explained by physiological changes of fungal strains which loose, due to many passages, the ability to produce their active metabolites.

5.2 Isolated natural products

A major problem within natural product isolation is rediscovery of already known compounds. A careful selection of organisms based on taxonomy may not help, especially when dealing with fungi. Certain fungal secondary metabolites are often found in more than one species and some are typical for several genera. Also, the output of LC-MS spectra of extracts or VLC fractions is usually a list of possible candidates, and it is hard to determine whether the peaks belong to known compounds or not, especially when molecular weights are smaller than 500 Da. Thus, the selection of strains in the current project was based on biological activity of extracts and VLC fractions.

It has to be stated, however, that most of the isolated compounds responsible for the bioactivity of the extracts were known.

The cytotoxic effect of the *Emericella nidulans* extract resulted from the toxicity of sterigmatocystin (9) and averufin (10), biosynthetic precursors of aflatoxins (Yabe and Nakajima, 2004). Aflatoxins are metabolites of different species of *Aspergillus* that induce DNA damage and immune suppression, and are associated with toxicity and carcinogenicity in animals and humans (Bennett and Klich, 2003; Preston and Williams, 2005).

Bioassay-guided isolation of cytotoxic compounds from an *Arthrinium sacchari* extract revealed the presence of cytochalasins (14, 15), a group of toxic metabolites known from different genera of fungi (Liu, 2005) which show a wide range of biological activities. Many cytochalasins bind to actin filaments and block polymerization and elongation of actin which leads to the inhibition of cell division and apoptotic responses (Cooper, 1987; Rubtsova et al.,
1998). They have also been reported to inhibit HIV-1 protease (Lingham et al., 1992) and to have antibiotic and antitumor activities (Carter, 1967; Mookerjee et al., 1981). Trichothecenes (24, 25, 27 and 28) were identified as the major compounds in a strain of *Spicellum roseum*. They are well described in the literature as cytotoxic compounds that bind to eukaryotic ribosomes and inhibit translation (Pestka and Smolinski, 2005).

The bioassay-guided isolation is not always a suitable approach in the isolation of new natural products. Mostly, the activity of extracts or VLC fractions comes from the presence of known compounds. The reason for that is probably due to the general validity of the assays used. Preliminary antitumor assays consider only the percentage of dead cells and, by that, are not suitable for detailed analysis and selection.

New fungal metabolites (1, 2, 11, 12) elucidated in this study were isolated in small amounts (1.5 – 3.0 mg) and usually had no significant biological activity. These, compounds present as “traces” are biosynthetic products of specific metabolic pathways of a certain fungus. Compounds 1 and 2 belong to a family of arugosins which are of interest with regard to the biosynthesis of several structural types of fungal polyketides, e.g. anthrones, anthraquinones, benzophenones and xanthones (Chexal et al., 1974; Holker et al., 1974; Chexal et al., 1975). Compounds 11 and 12 are cyclodepsipeptides, analogs of beauvericin and enniatins which were reported to have cytotoxic and antibiotic activity (Dobler et al., 1969; Calo et al., 2004). Thus, they clearly demonstrate the chemical diversity of fungal-derived natural products.

5.3 Interference of fungal metabolites with sphingolipid metabolism

In the current study the influence of cytotoxic fungal extracts on sphingolipid metabolic pathway has been investigated. Sphingolipid metabolism bears potential valuable targets for cancer therapy since sphingolipids are involved in important cellular functions (Fox et al., 2006; Ogretmen, 2006). Isolation of sphingolipids, their purification and separation in individual species is well described by van Echten-Deckert (van Echten-Deckert, 2000). Thin layer chromatography has proven to be a valuable method for metabolic studies of lipids. In this study the influence of fungal metabolites on SL biosynthesis was examined in primary cultured neurons and neuroblastoma cells by following the incorporation of L-[3-14C] serine into cellular sphingolipids. For examination of specific glycosphingolipids other labeled precursors were also used. Neurons are enriched in complex gangliosides which enables their detection (van Echten-Deckert and Herget, 2006), whereas neuroblastoma cell line originates
in central nervous system (Schubert et al., 1974). Interference of fungal toxins trichothecenes with sphingolipids is discussed below.

5.3.1 Trichothecenes – alterations of glycosphingolipid profiles
In a screening approach we investigated the effect of more than 20 different crude extracts from fungal species of the genera *Fusarium*, *Acremonium*, *Trichoderma*, *Microsphaeropsis*, *Chaetomium* and *Arthrinium* on sphingolipid metabolism in neural cells. Most interesting was a crude extract of the fungal strain *Spicellum roseum*. When added to the culture medium it displayed a similar effect with that previously described in the presence of brefeldin A (BFA) in primary cultured neurons (van Echten et al., 1990b; Sadeghlar et al., 2000) except that no accumulation but rather a strongly reduced formation of *de novo* biosynthesized LacCer was observed. Further fractionation of the crude extract indeed revealed BFA as one of the components produced by *Spicellum roseum*. The effect of BFA known to induce an accumulation of newly formed GlcCer, LacCer, GM3 and GD3 along with a reduction of the formation of complex gangliosides and also of sphingomyelin due to the redistribution of the proximal Golgi into the endoplasmatic reticulum was obviously accompanied by an additional effect regarding LacCer formation. Indeed two additional compounds were identified which belong to the trichothecene family.

Trichodermol (Td-ol, 25) was described as an isolate from different fungal species (Grove, 1988; Krohn et al., 2003), while its isocrotonyl ester 8-deoxy-trichothecin (8-dT, 24) was identified so far only in *Spicellum roseum* (Plattner et al., 1988; Tanaka et al., 2001). The trichothecenes are a group of about 180 diverse sesquiterpenoid metabolites produced by various fungal species of the genera *Fusarium*, *Trichothecium*, *Cephalosporum* and *Stachybotrys* (Grove, 1988; Grove, 2000). Consumption of food contaminated with these mycotoxins causes severe pathological effects in animals and humans (Lautraite et al., 1997; Li et al., 1999; Pestka and Smolinski, 2005). Trichothecenes are cytotoxic compounds that have multiple inhibitory effects on eukaryotic cells (summarized in review (Rocha et al., 2005)) like inhibition of protein, DNA and RNA synthesis (Ji et al., 1994). At the molecular level, trichothecenes inhibit the peptidyltransferase reaction by binding to the 60S ribosomal subunit, suggesting that one of the cytotoxic mechanisms is translational inhibition (Ueno, 1984). Later, it was shown that trichothecenes activate mitogen-activated protein kinases (MAPKs) which induce the production of proinflammatory cytokines, implying the immune system as the most important target of trichothecenes (Shifrin and Anderson, 1999; Zhou et al., 2003; Pestka et al., 2004). Despite a vast number of studies on various effects of this
mycotoxin family, results described in this study are the first report on an interference of trichothecenes with GSL metabolism.

The analysis of the effects of trichothecenes on sphingolipid metabolism showed that both compounds blocked de novo formation of LacCer (lactosylceramide) and of its downstream derivatives (Figure 4-6-4, Chapter 4-6), leading simultaneously to an accumulation of GlcCer in neural cells. A similar uncoupling of GSL biosynthesis at the level of LacCer synthase was described in embryonic chicken neurons incubated with epoxy-glucosylceramide, a synthetic analog of GlcCer (Zacharias et al., 1994). Like shown for this truncated GlcCer-analog, cell integrity was also required for the inhibitory action of trichothecenes in the two neural cell types investigated in the present study. Thus, a reduction of LacCer synthase activity was observed only after pretreatment of neural cells with trichothecenes but not when directly added to the enzyme assay in vitro. This of course raised the question whether not the enzyme itself but a flippase responsible for the translocation of the substrate from the cytosolic face, where it is formed, to the luminal face, where it is galactosylated, might be the in vivo target of trichothecenes action. In neuroblastoma B104 cells we could clearly show that this was not the case. However, in these cells both trichothecenes clearly decreased transcription of LacCer synthase, which explains the importance of cell integrity for the inhibitory effect in this cell type. On the other hand in primary cultured cerebellar neurons we could detect neither a protein responsible for GlcCer translocation nor an effect of trichothecenes on transcription of LacCer synthase. Obviously in terminally differentiated post-mitotic neurons different metabolic requirements imply different regulatory mechanisms when compared with undifferentiated rapidly dividing neuroblastoma cells. Terminally differentiated neurons exhibit a characteristic ganglioside composition, which is known to change upon cell transformation (van Echten-Deckert and Herget, 2006) (see also Figure 4-6-5, Chapter 4-6). Although the exact function of certain complex ganglioside species is not known yet, the development of mouse models deficient in gangliosides clearly document the essential function of these complex membrane components for brain development and function (Proia, 2004; Yamashita et al., 2005).

It is thus not surprising that in rapidly dividing neuroblastoma cells trichothecenes act on the transcriptional level whereas in terminally differentiated post-mitotic neurons a fine tuning on post-transcriptional and/or post-translational level appears to be decisive for the activity of LacCer synthase, which yields the common precursor for all cellular complex GSLs. Note that LacCer synthase has been purified and cloned from rat brain about one decade ago.
Different mechanisms of action in different cell types are also demonstrated in ceramide level of trichothecene treated cells. Both trichothecene derivatives increased cellular level of ceramide in neuroblastoma cells but not in cerebellar neurons. Yet, these effects require detailed investigations in future studies.

Collectively these data document a new effect of two trichothecene derivatives in neural cells. Trichodermol (25) and 8-deoxy-trichothecin (24) considerably interfere with the activity of LacCer synthase albeit by different cell type specific mechanisms. As a consequence GSL biosynthesis is uncoupled at the level of LacCer accompanied by the accumulation of GlcCer.

As already mentioned, one of the most important effects of trichothecenes is the modulation of the immune system by inducement of the production of proinflammatory cytokines and chemokines (Pestka et al., 2004). It is known that sphingolipids can act as regulators and mediators of inflammatory responses (El Alwani et al., 2006). Memon et al. (Memon et al., 2001) reported that inflammation caused by bacterial endotoxin lipopolysaccharide increased ceramide and glucosylceramide content in Syrian hamsters. These results suggest a possible role of GlcCer in inflammation and, by that, a possible relation between the inflammatory effects of trichothecenes on one side and trichothecene-induced GlcCer accumulation on the other side.

Moreover, it was demonstrated (Yang et al., 2000; Zhou et al., 2005) that trichothecenes, although strong apoptotic compounds, initiate competing apoptotic and survival pathways. Since GlcCer was reported to have growth stimulatory and anti-apoptotic effects (Datta and Radin, 1988; Marsh et al., 1995; Marchell et al., 1998), in contrast to its metabolic precursor ceramide, there is a possibility that GlcCer accumulation induced by trichothecenes to act as a link between trichothecenes and survival pathways.

However, further studies will clarify the fate and physiological consequence of accumulated GlcCer in trichothecene-treated cells and also the correlation of known effects of trichothecenes with those presented here.

5.4 General discussion

As already discussed above, a general bioassay-guided isolation (cytotoxicity and antimicrobial assays) is not always a favorable for the isolation of new compounds with potent biological activity. However, when a specific cellular function is recognized as a target
for potential therapeutics and used for screening, there are more chances for the isolation of compounds that serve as tools for biological research and/or are leads for clinical medicines. Various sphingolipid metabolites appear to modulate various cellular events including proliferation, differentiation, and apoptosis. These sphingolipid-regulated processes are crucial in cancer development and progression, and influence the efficacy of anti-cancer therapeutics. In addition, defects of enzymes catalyzing SL degradation are responsible for various genetic, so called sphingolipid storage diseases.

Till today, only few compounds of natural origin and several synthetic compounds are known to interfere with sphingolipid metabolism. Considering plenty of cellular functions regulated by SLs and their importance, sphingolipid metabolism represents a wealthy source for pharmacological targets.
6 Summary

Development of new drugs, especially in the area of oncological and infectious diseases, represents today one of the most important research fields. An analysis of the number of chemotherapeutic agents and their sources shows that over 60% of approved drugs are derived from natural compounds. The marine environment is a tremendous source of natural products. Moreover, many of the new compounds isolated from marine micro- and macroorganisms showed prominent biological effects, mostly antibiotic and cytotoxic activities. Drug development is now turning toward potentially more selective ways (e.g., inducement of certain signaling molecules) in disease treatments, especially when concerning cancer. Sphingolipids (SLs) are ubiquitous constituents of eukaryotic cellular membranes that are involved in cell growth, proliferation, differentiation and apoptosis. These sphingolipid-regulated processes are crucial in cancer development and progression, and influence efficacy of anti-cancer therapeutics. Pharmacological or molecular manipulations of any of the enzymes involved in SL metabolism have been proposed as new strategies in the treatment of cancer or diseases caused by disrupted sphingolipid balance. The toxic effects of some fungal metabolites were related to their ability to interfere with SL metabolism. The aim of this study was the investigation of secondary metabolites produced by marine-derived fungi with cytotoxic properties and the isolation of new compounds with potent biological activity, preferably with the potential to influence sphingolipid metabolism.

Extracts of seven fungal strains, including five algal-derived and two sponge-derived strains, were chemically investigated. This investigation resulted in the isolation and structure elucidation of 29 pure compounds. Four compounds, arugosin G and H, spicellamide A and B, proved to be new. Arugosins G and H, together with arugosins A and B, were isolated from algicolous fungus *Emericella nidulans* var. *acristata*. They are benzophenone derivatives, biosynthetically related to xanthones, which showed moderate antitumor activity toward individual tumor cell lines. Cyclohexadepsipeptides spicellamide A and B, isolated from sponge-derived fungus *Spicellum roseum*, exhibited an IC$_{50}$ value of 30 µg mL$^{-1}$ and 6.2 µg mL$^{-1}$, respectively, in neuroblastoma cells.

Bioassay-guided isolation of cytotoxic compounds revealed the presence of cytochalasins from an *Arthrinium sacchari* extract, of aflatoxins from an *Emericella nidulans* var. *acristata* extract and of trichothecenes from a *Spicellum roseum* extract.
Trichothecenes are cytotoxic compounds that have several inhibitory effects on eukaryotic cells. Tests on sphingolipid metabolism exhibited alterations in the expression of glycosphingolipids by two compounds from trichothecene family, 8-deoxy-trichothecin and trichodermol. In cerebellar neurons and neuroblastoma cells both compounds inhibit lactosylceramide synthase activity and induce an accumulation of glucosylceramide (Figure 6-1). These data describe a new effect of trichothecenes. However, further studies have to clarify the fate and physiological consequence of accumulated glucosylceramide and also its correlations with known effects of trichothecenes.

![Chemical structures](image)

8-deoxy-trichothecin $R = \text{trichothe}c\text{e}n\text{e} R = \text{H}$

Trichodermol $R = \text{H}$

Figure 6-1. Structures of trichothecene derivatives and their interference with sphingolipids. Trichothecenes inhibit the activity of lactosylceramide (LacCer) synthase which leads to the accumulation of glucosylceramide level and reduction of lactosylceramide level in the cells.

Fungal metabolites are recognized as a valuable source of new and biologically active metabolites. Since sphingolipid metabolites modulate various cellular events, they are a wealthy source of pharmacological targets. Results obtained in this study demonstrate that targeting specific cellular pathways, e. g. sphingolipid metabolism, in a combination with additional biological assays, e. g. cytotoxic tests, represents good strategy in detection of new chemical structures and/or compounds with desirable biological effects.
7 References

Duan RD 2005. Anticancer compounds and sphingolipid metabolism in the colon. *In Vivo* 19, 293-300.

8 Appendix

Assays were performed as described in the Materials and Methods chapter.

8.1 Results of the cytotoxicity assay

8.1.1 Cytotoxicity of extracts and VLC fractions
8.1.2 Cytotoxicity of isolated compounds
Cytotoxicity of extracts and VLC fractions

<table>
<thead>
<tr>
<th>Fungal strain</th>
<th>code</th>
<th>IC50 [µg/ml]</th>
<th>IC70 [µg/ml]</th>
<th>active/total* at 3 µg/ml</th>
<th>30 µg/ml</th>
<th>Tumor selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>König Oncotest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>018MYA-8</td>
<td>MNEB127F</td>
<td>8,511</td>
<td>14,717</td>
<td>0/6 0%</td>
<td>6/6 100%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>018MYA-9</td>
<td>MNEB128F</td>
<td>9,778</td>
<td>16,050</td>
<td>0/6 0%</td>
<td>6/6 100%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>018MYA-5</td>
<td>MNEB124F</td>
<td>14,091</td>
<td>22,433</td>
<td>0/6 0%</td>
<td>5/6 83%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>018MYA-10</td>
<td>MNEB129F</td>
<td>28,892</td>
<td>59,052</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>018MYA-2</td>
<td>MNEB121F</td>
<td>>30</td>
<td>>30</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>018MYA-3</td>
<td>MNEB122F</td>
<td><30</td>
<td>>30</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>Fusarium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>018MYA-1</td>
<td>MNEB120F</td>
<td>10,141</td>
<td>16,915</td>
<td>0/6 0%</td>
<td>6/6 100%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>018MYA-2</td>
<td>MNEB121F</td>
<td>>30</td>
<td>>30</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>018MYA-3</td>
<td>MNEB122F</td>
<td><30</td>
<td>>30</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>dimerum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>018MYA-7</td>
<td>MNEB126F</td>
<td>10,127</td>
<td>17,626</td>
<td>0/6 0%</td>
<td>6/6 100%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>018MYA-1</td>
<td>MNEB120F</td>
<td>10,141</td>
<td>16,915</td>
<td>0/6 0%</td>
<td>6/6 100%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>018MYA-5</td>
<td>MNEB124F</td>
<td>14,091</td>
<td>22,433</td>
<td>0/6 0%</td>
<td>5/6 83%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>018MYA-6</td>
<td>MNEB125F</td>
<td>21,048</td>
<td>29,064</td>
<td>0/6 0%</td>
<td>3/6 50%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>018MYA-4</td>
<td>MNEB123F</td>
<td>21,751</td>
<td>39,031</td>
<td>0/6 0%</td>
<td>2/6 33%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>018MYA-11</td>
<td>MNEB130F</td>
<td>27,744</td>
<td>44,033</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>018MYA-10</td>
<td>MNEB129F</td>
<td>28,892</td>
<td>59,052</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>018MYA-2</td>
<td>MNEB121F</td>
<td>>30</td>
<td>>30</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>018MYA-3</td>
<td>MNEB122F</td>
<td><30</td>
<td>>30</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
</tr>
<tr>
<td>Arthrinium sacchari</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>727/3</td>
<td>MNEB003</td>
<td>3,302</td>
<td>5,753</td>
<td>3/6 50%</td>
<td>6/6 100%</td>
<td></td>
</tr>
<tr>
<td>727/4</td>
<td>MNEB004</td>
<td>23,213</td>
<td>>30</td>
<td>0/6 0%</td>
<td>2/6 33%</td>
<td></td>
</tr>
<tr>
<td>727/1</td>
<td>MNEB001</td>
<td>>30</td>
<td>>30</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
<td></td>
</tr>
<tr>
<td>727/10</td>
<td>MNEB010</td>
<td>>30</td>
<td>>30</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
<td></td>
</tr>
<tr>
<td>727/2</td>
<td>MNEB002</td>
<td>28,243</td>
<td>>30</td>
<td>0/6 0%</td>
<td>0/6 0%</td>
<td></td>
</tr>
</tbody>
</table>

* Sel. 1) / total, % select. 2) rating
<table>
<thead>
<tr>
<th>Fungal strain</th>
<th>König</th>
<th>Oncotest</th>
<th>IC50</th>
<th>IC70</th>
<th>active/total at 3 µg/ml</th>
<th>active/total at 30 µg/ml</th>
<th>Tumor selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>727/5</td>
<td>MNEB005</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>727/6</td>
<td>MNEB006</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>727/7</td>
<td>MNEB007</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>727/8</td>
<td>MNEB008</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>727/9</td>
<td>MNEB009</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>727-11</td>
<td>MNEB011</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>727/3-5</td>
<td>MNEB053F</td>
<td>0,172</td>
<td>2,435</td>
<td>3/6</td>
<td>50%</td>
<td>5/6</td>
<td>83%</td>
</tr>
<tr>
<td>727/3-6</td>
<td>MNEB054F</td>
<td>0,507</td>
<td>1,776</td>
<td>3/6</td>
<td>50%</td>
<td>4/6</td>
<td>66%</td>
</tr>
<tr>
<td>727/3-4</td>
<td>MNEB052F</td>
<td>0,883</td>
<td>8,607</td>
<td>3/6</td>
<td>50%</td>
<td>3/6</td>
<td>50%</td>
</tr>
<tr>
<td>727/3-7</td>
<td>MNEB055F</td>
<td>5,353</td>
<td>13,094</td>
<td>1/6</td>
<td>17%</td>
<td>5/6</td>
<td>83%</td>
</tr>
<tr>
<td>727/3-1</td>
<td>MNEB049F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>727/3-2</td>
<td>MNEB050F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>727/3-3</td>
<td>MNEB051F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>727/3-8</td>
<td>MNEB056F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>727/3-9</td>
<td>MNEB057F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>727/3-10</td>
<td>MNEB058F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>Fungal strain</td>
<td>code</td>
<td>König</td>
<td>Oncotest</td>
<td>IC50 [µg/ml]</td>
<td>IC70 [µg/ml]</td>
<td>3 µg/ml active/total*</td>
<td>30 µg/ml active/total*</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Fusarium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oxysporum</td>
<td>588-4</td>
<td>MNEB181F</td>
<td>2,385</td>
<td>2,351</td>
<td>5,123</td>
<td>2/6</td>
<td>3/6</td>
</tr>
<tr>
<td>(588 MYA)</td>
<td>588-5</td>
<td>MNEB182F</td>
<td>9,391</td>
<td>11,648</td>
<td>17,784</td>
<td>0/6</td>
<td>0/6</td>
</tr>
<tr>
<td>588-7</td>
<td>MNEB184F</td>
<td>11,648</td>
<td>14,142</td>
<td>25,915</td>
<td>22,016</td>
<td>0/6</td>
<td>0/6</td>
</tr>
<tr>
<td>588-8</td>
<td>MNEB185F</td>
<td>17,807</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0/6</td>
</tr>
<tr>
<td>588-1</td>
<td>MNEB178F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0/6</td>
<td>0/6</td>
<td>0/6</td>
</tr>
<tr>
<td>588-2</td>
<td>MNEB179F</td>
<td>70,558</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0/6</td>
</tr>
<tr>
<td>Paecilomyces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lilacinus</td>
<td>193BMS-8</td>
<td>MNEB104F</td>
<td>0,012</td>
<td>0,928</td>
<td>4,716</td>
<td>2/6</td>
<td>1/6</td>
</tr>
<tr>
<td>(193 BMS)</td>
<td>193BMS-7</td>
<td>MNEB103F</td>
<td>0,928</td>
<td>0,091</td>
<td>5,448</td>
<td>2/6</td>
<td>0/6</td>
</tr>
<tr>
<td>193BMS</td>
<td>MNEB096F</td>
<td>0,091</td>
<td>0,275</td>
<td>1,611</td>
<td>4,372</td>
<td>2/6</td>
<td>1/6</td>
</tr>
<tr>
<td>193BMS-5</td>
<td>MNEB101F</td>
<td>1,659</td>
<td>1,611</td>
<td>5,075</td>
<td>5,448</td>
<td>3/6</td>
<td>3/6</td>
</tr>
<tr>
<td>193BMS-6</td>
<td>MNEB102F</td>
<td>21,830</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0/6</td>
</tr>
<tr>
<td>193BMS-3</td>
<td>MNEB099F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0/6</td>
<td>0/6</td>
<td>0/6</td>
</tr>
<tr>
<td>Fungal strain</td>
<td>König</td>
<td>Oncotest</td>
<td>IC50 [µg/ml]</td>
<td>IC70 [µg/ml]</td>
<td>active/total* at 3 µg/ml</td>
<td>active/total* at 30 µg/ml</td>
<td>sel.¹/total</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>193BMS-1</td>
<td>MNEB097F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>193BMS-2</td>
<td>MNEB098F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>Acremonium</td>
<td>738BMS-6</td>
<td>MNEB090F</td>
<td>0,331</td>
<td>0,698</td>
<td>6/6</td>
<td>100%</td>
<td>6/6</td>
</tr>
<tr>
<td>(sclerotigenum)</td>
<td>738BMS-5</td>
<td>MNEB089F</td>
<td>5,311</td>
<td>9,960</td>
<td>1/6</td>
<td>17%</td>
<td>6/6</td>
</tr>
<tr>
<td>738BMS-7</td>
<td>MNEB091F</td>
<td>0,692</td>
<td>1,340</td>
<td>6/6</td>
<td>100%</td>
<td>6/6</td>
<td>100%</td>
</tr>
<tr>
<td>738BMS-8</td>
<td>MNEB092F</td>
<td>14,036</td>
<td>22,158</td>
<td>0/6</td>
<td>0%</td>
<td>5/6</td>
<td>83%</td>
</tr>
<tr>
<td>738BMS-4</td>
<td>MNEB084F</td>
<td>13,065</td>
<td>22,917</td>
<td>0/6</td>
<td>0%</td>
<td>4/6</td>
<td>67%</td>
</tr>
<tr>
<td>738BMS-9</td>
<td>MNEB083F</td>
<td>20,399</td>
<td>31,010</td>
<td>0/6</td>
<td>0%</td>
<td>2/6</td>
<td>33%</td>
</tr>
<tr>
<td>738BMS-11</td>
<td>MNEB085F</td>
<td>42,753</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
</tr>
<tr>
<td>738BMS-10</td>
<td>MNEB086F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>738BMS-3</td>
<td>MNEB087F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>738BMS-2</td>
<td>MNEB088F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>738BMS-1</td>
<td>MNEB089F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
<td>0%</td>
</tr>
<tr>
<td>Fungal strain</td>
<td>code</td>
<td>König</td>
<td>Oncotest</td>
<td>IC50 [µg/ml]</td>
<td>IC70 [µg/ml]</td>
<td>active/total* at 3 µg/ml</td>
<td>active/total* at 30 µg/ml</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>-------</td>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Microsphaeropsis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp.</td>
<td>96BMS-6</td>
<td>MNEB112F</td>
<td>25,110</td>
<td>29,250</td>
<td>0/6</td>
<td>0%</td>
<td>1/6</td>
</tr>
<tr>
<td>(96 BMS)</td>
<td>96BMS-5</td>
<td>MNEB111F</td>
<td>>30</td>
<td>29,584</td>
<td>0/6</td>
<td>0%</td>
<td>1/6</td>
</tr>
<tr>
<td></td>
<td>96BMS-7</td>
<td>MNEB113F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>96BMS-4A</td>
<td>MNEB110F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>96BMS</td>
<td>MNEB107F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>96BMS-3</td>
<td>MNEB108F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>96BMS-4</td>
<td>MNEB109F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>96BMS-8</td>
<td>MNEB1114F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>96BMS-9</td>
<td>MNEB115F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>96BMS-10</td>
<td>MNEB116F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>96BMS-11</td>
<td>MNEB117F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>96BMS-12</td>
<td>MNEB118F</td>
<td>>30</td>
<td>>30</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
</tr>
<tr>
<td>Fungal strain</td>
<td>code</td>
<td>Kö nig</td>
<td>Oncotest</td>
<td>IC50 [µg/ml]</td>
<td>IC70 [µg/ml]</td>
<td>active/total* at 3 µg/ml</td>
<td>sel./total</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Stagonospora</td>
<td>16-6</td>
<td>MNEB173F</td>
<td>3.666</td>
<td>6,813</td>
<td>2/6</td>
<td>33%</td>
<td>6/6</td>
</tr>
<tr>
<td>sp.</td>
<td>16-5</td>
<td>MNEB172F</td>
<td>0.700</td>
<td>1,259</td>
<td>6/6</td>
<td>100%</td>
<td>6/6</td>
</tr>
<tr>
<td>(16 BMS)</td>
<td>16-8</td>
<td>MNEB175F</td>
<td>7,903</td>
<td>12,231</td>
<td>0/6</td>
<td>0%</td>
<td>4/6</td>
</tr>
<tr>
<td></td>
<td>16-4</td>
<td>MNEB171F</td>
<td>7,409</td>
<td>12,773</td>
<td>1/6</td>
<td>17%</td>
<td>6/6</td>
</tr>
<tr>
<td>16BMS</td>
<td>16-2</td>
<td>MNEB169F</td>
<td>6,781</td>
<td>15,416</td>
<td>0/6</td>
<td>0%</td>
<td>5/6</td>
</tr>
<tr>
<td></td>
<td>16-7</td>
<td>MNEB174F</td>
<td>11,233</td>
<td>18,796</td>
<td>0/6</td>
<td>0%</td>
<td>6/6</td>
</tr>
<tr>
<td></td>
<td>16-3</td>
<td>MNEB170F</td>
<td>10,050</td>
<td>19,312</td>
<td>0/6</td>
<td>0%</td>
<td>6/6</td>
</tr>
<tr>
<td></td>
<td>16-1</td>
<td>MNEB168F</td>
<td>25,703</td>
<td>38,005</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>16-9</td>
<td>MNEB176F</td>
<td>27,783</td>
<td>38,442</td>
<td>0/6</td>
<td>0%</td>
<td>0/6</td>
</tr>
</tbody>
</table>

Samples were dissolved in methanol and tested in concentrations of 10 µg/mL against six tumor cell lines. Details are given in 3.9.2 chapter. Each test series was run in duplicate.

1) individual IC70 < 1/3 mean IC70; for example if mean IC70 = 2.1 µM the threshold for above average sensitivity was IC70 < 0.7 µM

2) – (% selective = < 4 %); + (4 % >= 10 %); ++ (10 % > % selective >= 20 %); +++ (% selective > 20 %)
8.2 Cytotoxicity of isolated compounds

<table>
<thead>
<tr>
<th>compound</th>
<th>Identification</th>
<th>Potency</th>
<th>active/total at</th>
<th>Tumor selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mean IC50/mean IC70 [µg/ml]</td>
<td>1 µg/ml</td>
<td>10 µg/ml</td>
</tr>
<tr>
<td>1</td>
<td>MNSB009</td>
<td>EM 7.2.4</td>
<td>>10/10</td>
<td>0/36</td>
</tr>
<tr>
<td>2</td>
<td>MNSB012</td>
<td>EM 7.10</td>
<td>>10/10</td>
<td>0/36</td>
</tr>
<tr>
<td>3 and 4</td>
<td>MNSB010</td>
<td>EM 7.3</td>
<td>9.5/10</td>
<td>0/36</td>
</tr>
<tr>
<td>5</td>
<td>MNSB006</td>
<td>EM 6.0.8</td>
<td>>10/10</td>
<td>0/36</td>
</tr>
<tr>
<td>6</td>
<td>MNSB007</td>
<td>EM 6.0.9</td>
<td>>10/10</td>
<td>0/36</td>
</tr>
<tr>
<td>7</td>
<td>MNSB011</td>
<td>EM 7.7</td>
<td>5.5/9.8</td>
<td>0/36</td>
</tr>
<tr>
<td>8</td>
<td>MNSB008</td>
<td>EM 6.6.2</td>
<td>>10/10</td>
<td>0/36</td>
</tr>
<tr>
<td>10</td>
<td>MNSB013</td>
<td>EM 13</td>
<td>0.51/1.6</td>
<td>4/37</td>
</tr>
<tr>
<td>13</td>
<td>MNSB049</td>
<td>018-8-8</td>
<td>7,706/13,621</td>
<td>1/36</td>
</tr>
<tr>
<td>14</td>
<td>MNSB035</td>
<td>727-V3-5-4</td>
<td>1.59/5.24</td>
<td>2/36</td>
</tr>
<tr>
<td>15</td>
<td>MNSB034</td>
<td>727-V3-5-3</td>
<td>0.014/0.094</td>
<td>30/36</td>
</tr>
<tr>
<td>16</td>
<td>MNSB033</td>
<td>727-V3-2-11</td>
<td>>10/10</td>
<td>0/36</td>
</tr>
<tr>
<td>17</td>
<td>MNSB032</td>
<td>727-V3-2-2-3</td>
<td>4.67/8.14</td>
<td>0/36</td>
</tr>
<tr>
<td>18</td>
<td>MNSB041</td>
<td>A. T. 3.4</td>
<td>>10/10</td>
<td>0/36</td>
</tr>
<tr>
<td>19</td>
<td>MNSB042</td>
<td>A. T. 4.7</td>
<td>>10/10</td>
<td>0/36</td>
</tr>
<tr>
<td>20</td>
<td>MNSB044</td>
<td>A. T. 7.3</td>
<td>3,473/6,671</td>
<td>0/36</td>
</tr>
</tbody>
</table>
Samples were dissolved in methanol and tested against 36 tumor cell lines. Details are given in 3.9.2 chapter. Each test series was run in duplicate.

<table>
<thead>
<tr>
<th>compound</th>
<th>Identification</th>
<th>Potency</th>
<th>active/total at</th>
<th>Tumor selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mean IC50 [µg/ml]</td>
<td>mean IC70 [µg/ml]</td>
<td>1 µg/ml</td>
</tr>
<tr>
<td>21</td>
<td>MNSB043</td>
<td>A. T. 5.2</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>22</td>
<td>MNSB045</td>
<td>588-3.4-2.4</td>
<td>4,768</td>
<td>8,754</td>
</tr>
<tr>
<td>23</td>
<td>MNSB046</td>
<td>193-7.8-3.4</td>
<td>9,403</td>
<td>9,965</td>
</tr>
<tr>
<td>24</td>
<td>MNSB016</td>
<td>74-v1-5</td>
<td>0,07</td>
<td>0,15</td>
</tr>
<tr>
<td>25</td>
<td>MNSB017</td>
<td>74-v2-2</td>
<td>0,17</td>
<td>0,42</td>
</tr>
<tr>
<td>26</td>
<td>MNSB031</td>
<td>74-v2-8-4</td>
<td>0,005</td>
<td>0,014</td>
</tr>
<tr>
<td>29</td>
<td>MNSB030</td>
<td>74-v2-9-1</td>
<td>>10</td>
<td>>10</td>
</tr>
</tbody>
</table>

1) individual IC70 < 1/3 mean IC70; for example if mean IC70 = 2.1 µM the threshold for above average sensitivity was IC70 < 0.7 µM

2) – (% selective = < 4 %); + (4 % > = 10 %); ++ (10 % > % selective >= 20 %); +++ (% selective > 20 %)
8.2 1H and 13C NMR spectra of isolated compounds
Arugosin G (1)
300 MHz, (CD$_3$)$_2$CO
Arugosin H (2)
300 MHz, (CD$_3$)$_2$CO

[Chemical structure diagram and NMR spectrum]
Arugosin A (3) $R_1 = \text{CH}_2\text{CH}_2\text{OH}$
$R_2 = \text{H}$

Arugosin B (4) $R_1 = \text{H}$
$R_2 = \text{CH}_2\text{CH}_2\text{OH}$

300 MHz, (CD$_3$)$_2$CO

Shamixanthone (5)
300 MHz, CDCl$_3$
Emericellin (6)
300 MHz, CDCl₃

![Emericellin (6) NMR spectrum](image)

Emindole DA (7)
300 MHz, (CD₃)₂CO

![Emindole DA (7) NMR spectrum](image)
Microperfuraneone (8)

300 MHz, (CD$_3$)$_2$CO

![Chemical structure of Microperfuraneone (8)](image1)

Sterigmatocystin (9)

300 MHz, (CD$_3$)$_2$CO

![Chemical structure of Sterigmatocystin (9)](image2)
Averufin (10)
300 MHz, tetrahydrofuran-d$_8$
Spicellamide A (11)
300 MHz, (CO$_3$)$_2$CO
Spicellamide B (12)
300 MHz, (CO$_2$)$_2$CO

Appendix
Mixture of lipopeptides (13)
300 MHz, DMSO

![Mixture of lipopeptides](image)

Cytochalasin K (14)
300 MHz, CDCl₃

![Cytochalasin K](image)
6.12 isomer of Cytochalasin K (15)
300 MHz, CDCl₃

Sclerotinin B (16)
300 MHz, (CD₃)₂CO
Ergosterol (17)
300 MHz, (CD$_3$)$_2$CO

Butyrolactone I (18)
300 MHz, (CD$_3$)$_2$CO
Butyrolactone II (19)
300 MHz, (CD$_3$)$_2$CO

Terrein (20)
300 MHz, (CD$_3$)$_2$CO
Itaconic acid (21)
300 MHz, (CD$_3$)$_2$CO

Equisetin (22)
300 MHz, (CO$_3$)$_2$CO
Gregatin D (23)
300 MHz, MeOD

8-Deoxy-trichothecin (24)
300 MHz, (CD₃)₂CO
Trichodermol (25)
300 MHz, \((\text{CO}_3)_2\text{CO}\)

Brefeldin A (26)
300 MHz, MeOD
Trichothecin (27)
300 MHz, CDCl$_3$

Trichothecolone (28)
300 MHz, (CD$_3$)$_2$CO
3-\textit{O}-Alkylecyclopolacid (29)

300 MHz, MeOD
Erklärung

Hierhin versichere ich, die vorliegende Arbeit selbständig und unter ausschließlicher Verwendung der angegebenen Hilfsmittel verfasst zu haben, wobei ich die von mir verwendeten Quellen als solche gekennzeichnet habe.

Bonn, October 2007

Ana Kralj
CURRICULUM VITAE

Personal Data

Name, First Name KRALJ, ANA (name of birth UREMOVIC)
Date of birth April 8th, 1980
Place of birth Zagreb, Croatia
Family status Married
Nationality Croatian

Education

12/2003 – 10/2007 Graduate Study of Pharmaceutical Sciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany

10/1998 – 02/2003 University of Zagreb, Faculty of Pharmacy, Croatia
Diploma thesis: “Action and usage of Borage and Evening primrose oils” (original in Croatian; diploma thesis supervisor Prof. Dr. Zdenka Kalodjera, Department of Pharmacognosy)

09/1986-06/1994 Primary School – Titus Brezovacki, Zagreb, Croatia