Contents

1 Introduction .. 13
 1.1 Motivation and Outline of this Thesis 13
 1.2 The Life-Cycle of Massive Stars 15
 1.3 Interferometry and the Quest for Spatial Resolution 18
 1.3.1 The turbulent Earth atmosphere 18
 1.3.2 Speckle interferometry and adaptive optics imaging ... 19
 1.3.3 Long-baseline interferometry 20

2 Principles of Long-Baseline Interferometry 21
 2.1 Basics of Interferometry .. 21
 2.2 Interferometric Observables 23
 2.2.1 Visibility .. 23
 2.2.2 Closure phase and bispectrum 23
 2.2.3 Differential observables 25
 2.3 Array Geometry and Optical Path Delays 26
 2.4 Fringe Signal Coding ... 26
 2.4.1 Coaxial beam combination 26
 2.4.2 Multiaxial beam combination 27
 2.5 The van-Cittert-Zernike Theorem 28
 2.5.1 Basic analytic visibility profiles 28

3 The IOTA/IONIC3 Interferometer 31
 3.1 Overview and Context ... 32
 3.2 Instrument Design and Signal Coding 32
 3.3 Constructing the interferograms 33
 3.3.1 Extracting the visibility using the Continuous Wavelet Transform ... 37
 3.3.2 Extracting the closure phase 39
4 The VLTI/AMBER Interferometer

4.1 Optical Design and Signal Coding
 4.1.1 The VLT interferometer and its infrastructure
 4.1.2 The AMBER instrument
4.2 AMBER Data Reduction Pipeline
4.3 Determining Wavelength Shifts
4.4 Data Selection
 4.4.1 Photometric selection
 4.4.2 Fringe SNR selection
 4.4.3 Piston selection
4.5 Data Averaging and Calibration
4.6 Investigating the Dependence of AMBER Results on the Bad Pixel Mask

5 Image Reconstruction Algorithms

5.1 Overview and Context
5.2 Reconstruction of Simple Binary Structure
5.3 Reconstruction of Complex Structure
5.4 Reconstruction of Complex, Extended Structure: The IAU Imaging Beauty Contest 2006
5.5 Conclusions

6 Radiative Transfer Modeling of the Active Accretion Disk around MWC 147

6.1 Overview and Context
6.2 Introduction
6.3 Observations and Data Reduction
 6.3.1 PTI
 6.3.2 VLTI/AMBER
 6.3.3 VLTI/MIDI
 6.3.4 Complementary Speitzer/IRS spectra
6.4 Results
 6.4.1 MIR spectrum
 6.4.2 Geometric model fits
 6.4.2.1 Wavelength-dependent characteristic sizes
6.5 Interpretation
 6.5.1 Wavelength-dependent size and comparison with analytic disk models
 6.5.2 The correlated spectrum – indications of grain growth
6.6 2-D Radiative Transfer Simulations
 6.6.1 SED analysis
Contents

7.5.4.4 Numerical molecular hydrodynamic simulations 124
7.5.4.5 Possible precession mechanisms 126
7.5.5 The IRS2 companion and flow interaction with the IRS2 UC H II region 128
7.5.6 Outflow structures from IRS1 at larger spatial scales 129
7.6 Evidence for Triggered Star Formation in the NGC 7538 Star Forming Region 129
7.7 Summary and Conclusions 130

8 Visual/Infrared Interferometry of the Orion Trapezium stars θ Ori C and D 133
8.1 Overview and Context 133
8.2 Introduction 136
8.3 Observations and Data Reduction 137
 8.3.1 Bispectrum speckle interferometry 137
 8.3.2 IOTA long-baseline interferometry 140
8.4 Aperture Synthesis Imaging 141
8.5 Model Fitting 143
 8.5.1 Binary model fitting for θ Ori C 143
 8.5.2 Resolved structure around θ Ori D: Potential detection of a companion 146
8.6 Results 146
 8.6.1 Preliminary physical orbit and dynamical masses of the θ Ori C binary system 146
 8.6.2 Dynamical masses and parallaxes 150
 8.6.3 The orbital parameters in the context of reported periodicities 151
 8.6.4 Nature of the θ Ori C components 151
 8.6.5 Nature of the potential θ Ori D companion 154
8.7 Conclusions 155

9 Near-Infrared Interferometry of η Carinae using VLTI/AMBER 157
9.1 Overview and Context 157
9.2 Introduction 159
9.3 AMBER Observations and Data Processing 163
9.4 Observational Results and Interpretation 166
 9.4.1 Comparison of the observed wavelength dependence of the visibility with the NLTE radiative transfer model of Hillier et al. (2001) 166
 9.4.2 Continuum visibilities 171
 9.4.2.1 Comparison of the continuum visibilities with the Hillier et al. (2001) model predictions 171
 9.4.2.2 Comparison of the VINCI and AMBER continuum visibilities 172
 9.4.3 Elongated shape of the continuum intensity distribution 173
9.4.4 Continuum-corrected visibilities .. 174
 9.4.4.1 Continuum-corrected visibility in the Brγ emission line 174
 9.4.4.2 Continuum-corrected visibility in the He I emission line 178
9.4.5 Differential Phases and Closure Phases ... 179
9.4.6 Modeling with an inclined aspherical wind geometry 180
9.4.7 Feasibility of the detection of the hypothetical hot companion and the wind-wind
 interaction zone ... 184
 9.4.7.1 A simple binary continuum model .. 184
 9.4.7.2 Can AMBER detect a He I wind-wind interaction zone shifted a few
 mas from the primary wind? ... 187
9.5 Conclusions ... 189
9.6 APPENDIX: Wavelength Calibration .. 191
9.7 APPENDIX: Continuum Uniform Disk and Gauss Diameter Fits 192
9.8 APPENDIX: Visibility and Differential Phase of an Emission Line Object 195

10 Summary and Outlook .. 197
 10.1 Radiative Transfer Modeling of the Active Accretion Disk around MWC 147 ... 198
 10.2 Signatures of Outflow Precession from the Young High-Mass Star NGC 7538 IRS1 . 198
 10.3 Visual/Infrared Interferometry of the Orion Trapezium Stars θ Ori C and D 199
 10.4 Near-Infrared Interferometry of η Carinae using VLTI/AMBER 200
 10.5 Future Perspectives .. 201

List of Publications ... 202
Curriculum Vitae .. 207
Acknowledgements .. 209
Bibliography ... 211