1. Introduction ... 1
 1.1 Magnesium: chemical and biological properties ... 1
 1.2 Prokaryotic magnesium transport systems ... 2
 1.2.1 History of magnesium transport analysis ... 2
 1.2.2 The CorA transporter class ... 3
 1.2.3 The MgtA/MgtB transporter class .. 5
 1.2.4 The MgtE transporter class .. 6
 1.3 Eukaryotic magnesium transport systems ... 7
 1.3.1 Transport systems in yeast ... 7
 1.3.2 Transport systems in mammals .. 8
 1.3.3 Transport systems in plants .. 9

2. Materials and Methods .. 13
 2.1 Materials ... 13
 2.1.1 Plant material .. 13
 2.1.2 Bacterial strains ... 13
 2.1.3 Yeast strains ... 13
 2.1.4 Vectors .. 14
 2.1.5 Oligonucleotides ... 14
 2.1.6 Laboratory equipment ... 14
 2.1.7 Bioinformatics tools ... 15
 2.2 Methods ... 16
 2.2.1 Established methods in molecular biology ... 16
 2.2.2 Designing plant expression constructs with the Gateway™ technology 17
 2.2.3 Transformation of Arabidopsis thaliana via Agrobacterium tumefaciens 20
 2.2.4 Transformation of Arabidopsis protoplasts .. 22
 2.2.5 Tobacco leaf infiltration with Agrobacterium tumefaciens 23
 2.2.6 Tobacco protoplast transformation ... 24
 2.2.7 Fluorescence microscopy .. 25
 2.2.8 Yeast complementation assays ... 26
 2.2.9 Analysis of protein interactions via the mating-based split ubiquitin system.. 30
 2.2.10 Heterologous expression in Xenopus oocytes .. 33
 2.2.11 Xenopus oocyte protein extraction and immunoblot 37
3. Results

3.1 Investigating subcellular AtMRS2 protein localizations via gene-GFP fusions

3.1.1 Full length gene-GFP constructs: cloning and transformation of A. thaliana

3.1.2 Fluorescence of the full length gene-GFP fusion plants

3.1.3 Transcription and translation of the transgene

3.1.4 C-terminally shortened gene-GFP constructs

3.1.5 Transcription and translation within the AtMRS2short-GFP plant lines

3.1.6 Fluorescence of the C-terminally shortened GFP plant lines

3.1.7 A third approach: full length constructs in a new vector backbone

3.1.8 Transient transformation approaches I: tobacco leaf infiltration

3.1.9 Transient transformation approaches II: protoplast transformation

3.1.10 Summary of the results obtained with the numerous gene-GFP fusions

3.2 Heterologous expression in yeast: complementation and measurement of transport capacities

3.2.1 Selection of AtMRS2 proteins and cloning of the expression constructs

3.2.2 Complementation of the yeast Δmrs2 mutant strain

3.2.3 Measurement of transport capacities via the mag-fura 2 system

3.3 Heterologous expression in Xenopus oocytes: electrophysiological measurements

3.3.1 Selection of AtMRS2 proteins and cloning of the first constructs

3.3.2 DEVC measurements of the first constructs

3.3.3 V5-His6 tagged constructs: cloning, DEVC recordings, and oocyte blot

3.3.4 A week in Würzburg and numerous DEVC measurements

3.3.5 Stronger expression background: cloning into pDK148 and measurements

3.4 Analysis of protein interactions via the mating-based split ubiquitin system

3.4.1 Amplification of the AtMRS2-1 and AtMRS2-10 cDNAs

3.4.2 mbSUS: description of the procedure and first results

3.4.3 Extension of the screening system

4. Discussion

4.1 The Arabidopsis thaliana MRS2 family of magnesium transport proteins

4.2 Subcellular localization: no convincing, positive results, but a multitude of insights

4.2.1 Stable transformation approaches

4.2.2 Transient transformation approaches
4.3 Studies on the functional properties of the AtMRS2 proteins via heterologous expression and characterisation

4.3.1 Usage of the yeast Δmrs2 system

4.3.2 Usage of the *Xenopus* oocyte expression system

4.3.3 Conclusions

4.4 First indications of (hetero-) oligomerisation properties

4.4.1 The mating-based split ubiquitin system for interaction studies

4.4.2 Conclusions