Hinweis zum Urheberrecht| Allgemeine Informationen | FAQ
Beim Zitieren dieses Dokumentes beziehen Sie sich bitte immer auf folgende URN: urn:nbn:de:hbz:5N-05844

Mathematisch-Naturwissenschaftliche Fakultät - Jahrgang 2005

 

Titel On affine Deligne-Lusztig varieties for GLn
Autor Eva Mierendorff
Publikationsform Dissertation
Abstract In the first part of this thesis we study the global structure of moduli spaces of quasi-isogenies of p-divisible groups introduced by Rapoport and Zink. We determine their dimensions and their sets of connected components and of irreducible components. If the isocrystals of the p-divisible groups are simple, we compute the cohomology of the moduli space. As an application we determine which moduli spaces are smooth.
In the second part we generalise some of these results to affine Deligne-Lusztig varieties for the general linear group. We describe the set of connected components of closed affine Deligne-Lusztig varieties and determine which of these varieties are zero-dimensional.
Komplette Version pdf-Dokument (0,5 MB) Hier können Sie den Adobe Acrobat Reader downloaden
© Universitäts- und Landesbibliothek Bonn | Veröffentlicht: 2005