Quantitative Niederschlagsbestimmung aus Radardaten

Ein Vergleich von unterschiedlichen Verfahren unter Einbeziehung der Statistischen Objektiven Analyse

Dissertation
zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch–Naturwissenschaftlichen Fakultät
der
Rheinischen Friedrich–Wilhelms–Universität Bonn

vorgelegt von
Eva–Maria Heuel
aus Heessen

Bonn (April) 2004
Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn
Meiner Familie
Inhaltsverzeichnis

Zusammenfassung / Summary II

1 Einleitung 1
 1.1 Problemstellung, Motivation und Zielsetzung 1
 1.2 Vorgehensweise und Aufbau 3

2 Datengrundlage und Theorie der Niederschlagsmessung 6
 2.1 Niederschlagsmessung mit Stationswippen 7
 2.1.1 Meßprinzip ... 7
 2.1.2 Verfügbares Stationsnetz 8
 2.2 Niederschlagsmessung mit Radar 12
 2.2.1 Meßprinzip ... 12
 2.2.2 Theorie der Radarmessung 15
 2.2.3 Die Z–R–Beziehung 18
 2.2.4 Das Bonner X–Band–Radar 22
 2.3 Meteosat–Daten .. 23

3 Datenvorverarbeitung 24
 3.1 Stationsdaten ... 24
 3.1.1 Qualitätsprüfung 24
INHALTSVERZEICHNIS

3.1.2 Interpolation der Punktdaten auf die Fläche 28
3.2 Radardaten .. 34
 3.2.1 Darstellung und Geokodierung 34
 3.2.2 Umrechnung der Radarreflektivitäten in Regenraten 35
 3.2.3 Dämpfungskorrektur .. 36
 3.2.4 Clutterfilterung .. 40
 3.2.5 Beamblocking und Brightband 40
 3.2.6 Biaskorrektur ... 41
 3.2.7 Bildung von Niederschlagssummen 45
3.3 Meteosat–Daten ... 46
 3.3.1 Kalibrierung des IR–Kanals 46
 3.3.2 Kalibrierung des VIS–Kanals 46
 3.3.3 Georeferenzierung .. 47

4 Erweiterte Verfahren zur Radardatenaufbereitung 48
 4.1 Clutterkorrektur mit Meteosat–Daten 48
 4.1.1 Verfahrensablauf 49
 4.1.2 Fallstudien und Ausblick 53
 4.2 Trennung zwischen konvektiven und stratiformen Niederschlagsereig-
 nissen .. 57
 4.2.1 Manuelle Trennung 58
 4.2.2 Automatische Trennung 61
 4.3 Ableitung von Z–R–Beziehungen 65
 4.3.1 WPM–Methode 65
 4.3.2 Wolkenmodell 71
INHALTSVERZEICHNIS

4.4 Advektionskorrektur .. 72

4.4.1 Berechnung des Windfeldes durch Zellverfolgung 73

4.4.2 Interpolation des Niederschlagsfeldes 78

4.4.3 Fallbeispiele .. 78

5 Niederschlagsquantifizierung mittels statistischer objektiver Analyse ... 82

5.1 Herleitung der Modellgleichungen 84

5.2 Anwendung des SOA-Verfahrens 90

5.2.1 Bestimmung der Hintergrundfehlermatrix 90

5.2.2 Bestimmung des Beobachtungsfehlers und Initialisierung der Korrelationsmatrizen 92

5.2.3 Lösung des Gleichungssystems 93

5.2.4 Fallbeispiele .. 94

5.2.5 Sensitivitätssstudie .. 103

6 Quantitative Analyse der Verfahren .. 106

6.1 Fehlerquantifizierung .. 106

6.2 Einzelanalyse .. 108

6.2.1 Einfluß der Advektionskorrektur 108

6.2.2 Einfluß der Z-R-Beziehung 110

6.2.3 Einfluß der Biaskorrektur 112

6.2.4 Einfluß des SOA-Verfahrens 113

6.3 Zusammenspiel der Verfahren 115

6.3.1 Punktvergleiche .. 116

6.3.2 Flächenmittelvergleiche 118
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Schlußbetrachtung und Ausblick</td>
<td>122</td>
</tr>
<tr>
<td>7.1 Zusammenfassung der Ergebnisse</td>
<td>122</td>
</tr>
<tr>
<td>7.2 Verbesserungs- und Erweiterungsmöglichkeiten</td>
<td>125</td>
</tr>
<tr>
<td>7.3 Vergleich mit ähnlichen Untersuchungen</td>
<td>127</td>
</tr>
<tr>
<td>7.4 Ausblick</td>
<td>128</td>
</tr>
<tr>
<td>A Auflistung der Niederschlagsereignisse</td>
<td>130</td>
</tr>
<tr>
<td>B Kurzcharakteristik der Wettersituationen</td>
<td>134</td>
</tr>
<tr>
<td>C Detaillierte Ergebnistabellen der Fehleranalyse</td>
<td>143</td>
</tr>
<tr>
<td>Abkürzungsverzeichnis</td>
<td>147</td>
</tr>
<tr>
<td>Symbolverzeichnis</td>
<td>149</td>
</tr>
<tr>
<td>Literaturverzeichnis</td>
<td>153</td>
</tr>
</tbody>
</table>
Zusammenfassung

Summary

Precipitation measurement by radar allows the areal determination of precipitation distributions in a high spatial resolution. Hydrological applications such as flood forecasting hereby require an accuracy of the precipitation measurement which is still a challenge and which cannot be obtained by today’s weather radar devices. The objective of this thesis is the improvement of the quality of the radar precipitation with the aid of ground measurements using a statistical objective analysis method. Additionally, various algorithms for radar data preprocessing such as the dynamical use of Z–R relationships, a bias correction and an advection correction scheme are employed. In a detailed evaluation of the various methods, which comprises eight months of data, the influence as well as the advantages and disadvantages of the different algorithm components and their interactions are investigated through an RMS error analysis using independent station data. Thereby, the optimal combination of methods leads to a mean error reduction of 59%. In addition to these methods, two algorithms for the derivation of Z–R–relationships, the WPM method and a cloud model algorithm, are considered and an algorithm for clutter correction by means of Meteosat data is presented.
Kapitel 1

Einleitung

1.1 Problemstellung, Motivation und Zielsetzung

Zur Verbesserung der Bestimmung von Gebietsniederschlägen werden in dieser Arbeit eine Reihe von Verfahren umgesetzt und erweitert; die Beiträge sind im einzelnen:
KAPITEL 1. EINLEITUNG

- ein Verfahren zur zusätzlichen Eliminierung von Clutter unter Zuhilfenahme von Meteosat-Daten,
- ein Algorithmus zur automatisierten Auswahl von Z–R–Beziehungen für konvektive und stratiforme Niederschlagsereignisse durch eine statistische Analyse der Radardaten,
- ein Verfahren zur Advektionskorrektur der Radardaten mit geeigneter Behandlung der Randbereiche,
- ein SOA–Verfahren zur Echtzeitbestimmung von Gebietsniederschlägen durch Verwendung von räumlichen statt zeitlichen Mitteln zur Bestimmung der Hintergrundfehlerkorrelation,
- die Optimierung der verschiedenen Parameter der Verfahren und ihre Anpassung an das Bonner Radar,
- die Durchführung einzelner Fallstudien zur quantitativen und qualitativen Gütemessung der Verfahren,
- ein quantitativer Vergleich der einzelnen Verfahren zur Bestimmung von Gebietsniederschlägen basierend auf einer umfangreichen RMS–Fehleranalyse.

1.2 Vorgehensweise und Aufbau

Im folgenden werden die einzelnen Schritte des hier vorgestellten Verfahrens zur Bestimmung von Gebietsniederschlägen genauer erläutert (Abbildung 1.1). Die fehlerbehafteten Radar–Rohdaten müssen zunächst aufbereitet werden. Hierzu erfolgt

Abbildung 1.1: Ablaufschema der verschiedenen Verfahrenskomponenten zur Bestimmung von Flächenmehrschlag aus Radar- und Stationsdaten.
Kapitel 2

Datengrundlage und Theorie der Niederschlagsmessung

Die vorliegende Arbeit befaßt sich mit der Niederschlagsquantifizierung aus Radar- und Stationsdaten im Köln–Bonner Raum. Das Untersuchungsgebiet ist begrenzt durch den Einzugsbereich des X–Band–Radars (siehe Kapitel 2.2.4), der sich um Bonn als Radarstandort mit einem Radius von bis zu 100 km erstreckt, von dem allerdings nur 50 km ausgewertet werden. Das Meßgebiet ist in Abbildung 2.1 darge-

Abbildung 2.1: Topographie des vom Radar erfaßten Meßgebiets.1

1Abbildung von T. Gerstner, Institut für Angewandte Mathematik, Universität Bonn.
stellte; zur Veranschaulichung der topographischen Verhältnisse wurde hierbei ein
digitales Geländemodell unterlegt.

Die vom Rhein gebildete Nordwest–Südost–Achse teilt das betrachtete Gebiet in
drei fast gleich große Hälften. Im Nordwesten sind die Kölner Bucht und die Jülicher
Börde an den nur sehr geringen Höhenunterschieden erkennbar. Genau östlich
von Bonn ist über Troisdorf, Hennef, Siegburg und Eitorf deutlich der Verlauf der
Sieg erkennbar, nördlich davon der Verlauf der Agger. Im Süden ist das Gebiet in
die Ausläufer des Rheinischen Schiefergebirges eingebettet: im Südosten erstreckt
sich das Siebengebirge und der westliche Teil des Westerwaldes, im Südwesten der
östliche Teil der Eifel. Die Eifel stellt den Bereich mit den höchsten Erhebungen im
Bereich des Radarmessgebiets dar, zergliedert durch den ebenfalls gut erkennbaren
Verlauf der Ahr in südwestlicher Richtung. Im Nordosten schließlich zeichnen sich
das Bergische Land und das westliche Randgebiet des Sauerlandes ab.

Der Untersuchungszeitraum umfaßt die Monate Juni bis September der Jahre 1998
und 1999. Diese Einschränkung ist auf das besondere Interesse der vorliegenden Ar-
beit an der quantitativen Erfassung konvektiver Starkniederschlagsereignisse zurück-
zuführen, die in Mitteleuropa am häufigsten in den Sommermonaten auftreten.

2.1 Niederschlagsmessung mit Stationswippen

Im folgenden wird das Grundprinzip der Niederschlagsmessung mit Regenwippen
kurz erläutert sowie die Struktur der in der vorliegenden Arbeit verwendeten Meß-
netze vorgestellt.

2.1.1 Meßprinzip

Prinzipiell existieren zur punktuellen Niederschlagsmessung zahlreiche verschiedene
Meßmethoden, zum Beispiel mittels Distrometern, wägenden Wippen, sowie aku-
stischen oder optischen Sensoren. An offiziellen meteorologischen Stationen und
Meßstellen in Deutschland bestehen die Meßgeräte in jedem Fall aus einem Auffang-
gefaß mit einer 200 cm² großen Öffnung, die sich in einem Meter Höhe über dem
Erdboden befindet. Gemessen wird die Niederschlagshöhe in mm, die angibt, wie
hoch der gefallene Niederschlag den Erdboden bedecken würde (1 mm Niederschlag
entspricht dabei der Flüssigkeitsmenge von einem Liter pro m2 Bodenfläche). Wird die Niederschlagshöhe auf die Niederschlagsdauer bezogen, ergibt sich die Regenrate (in mm pro Minute oder Stunde).

2.1.2 Verfügbares Stationsnetz

Folgende Meßgeräte standen im Rahmen der vorliegenden Arbeit zur Auswertung zur Verfügung:

- 21 Regenmesser des Erftkreisverbandes (Pluvio-Meßstationen bzw. ein Tagesstrommelschreiber mit digitalisierten Streifen) und des SFB-eigenen Niederschlagsmeßnetzes (Thies-Clima-Wippen) mit einer zeitlichen Auflösung von 5 Minuten oder höher,

Abbildung 2.2 zeigt die räumliche Verteilung der Meßgeräte. Die genauen Stationsbezeichnungen, die Gauß-Krüger-Koordinaten sowie die jeweilige Distanz der Station zum Bonner Radar sind in Tabelle 2.1 angegeben. Die Stationen sind nicht homogen über das vom Radar erfaßte Untersuchungsgebiet verteilt, sondern bilden zwei räumliche Cluster: Ein Cluster mit zeitlich hoch auflösenden Wippen (im folgenden als Stationscluster I bezeichnet) befindet sich vor allem im südwestlichen Bereich (hauptsächlich linksrheinisch), ein zweites Cluster, bestehend aus den nur Tagessummen liefernden Regenschreibern (im folgenden als Stationscluster II bezeichnet), deckt im wesentlichen den Nordosten ab (hauptsächlich rechtsrheinisch). Innerhalb dieser beiden Cluster weisen die Stationen allerdings eine recht gleichförmige Struktur auf und liegen im Mittel nicht weiter als 6 km voneinander entfernt.

Zur Übersicht sind in Abbildung 2.3 für alle betrachteten Monate der mittlere Tagesniederschlag (nur auf Regentage bezogen) sowie die Monatssumme des Nieder-
Abbildung 2.2: Lage der 5-Minuten-Regenwippen (Stationscluster I, oben) sowie der Tagesschreiber (Stationscluster II, unten) im Untersuchungsgebiet.
Tabelle 2.1: Stationsbezeichnungen, Koordinatenangaben und Distanzen zum Bonner Radar für die 5–Minuten–Regenwippen (Stationscluster I, oben) und für die Tagesschreiber (Stationscluster II, unten).
KAPITEL 2. DATENGRUNDLAGE

schlags dargestellt, in beiden Fällen über alle verfügbaren Stationen gemittelt. In diesem Zeitraum war der September 1998 sowohl in der Monatssumme als auch im Tagesmittel der niederschlagsreichste Monat und der Juli 1999 der niederschlagsärmi-
ste. Die übrigen Monate unterscheiden sich zum Teil stark in ihrer Niederschlags–
Charakteristik; so hat es zum Beispiel im August 1998 in nur 5 Tagen fast ebenso viel geregnet wie im September 1999 in 10 Tagen.

Abbildung 2.3: Über alle Regentage (die Zahl der Regentage ist im jeweiligen Bal-
ken angegeben) und über alle jeweils verfügbaren Stationen gemittelter Tagesnieder-
schlag (oben) sowie über die Stationen gemittelte Monatssumme des Niederschlags (unten).
2.2 Niederschlagsmessung mit Radar

In den folgenden Abschnitten werden nun die Grundprinzipien und die Theorie der Radarmessung erläutert sowie die technischen Details des Bonner X–Band–Radars beschrieben.

2.2.1 Meßprinzip

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequenz (MHz)</th>
<th>Wellenlänge (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1 000 - 2 000</td>
<td>30 - 15</td>
</tr>
<tr>
<td>S</td>
<td>2 000 - 4 000</td>
<td>15 - 8</td>
</tr>
<tr>
<td>C</td>
<td>4 000 - 8 000</td>
<td>8 - 4</td>
</tr>
<tr>
<td>X</td>
<td>8 000 - 12 000</td>
<td>4 - 2.5</td>
</tr>
<tr>
<td>K</td>
<td>12 000 - 40 000</td>
<td>2.5 - 0.75</td>
</tr>
</tbody>
</table>

Tabelle 2.2: Gebräuchliche Wetterradarbänder und deren Frequenzen bzw. Wellenlängen (vgl. Rinehart 1991 [77]).

Generell ist zu beachten, daß zu große Wellenlängen ein zu geringes Rücksprechsignal liefern, während zu kleinwellige Strahlen von den Hydrometeoren zu stark gedämpft werden. Wichtig für eine genaue Messung ist daher der Wert, der sich aus dem Verhältnis zwischen dem Ziel-(Tropfen)radius r und der Wellenlänge λ definiert.
Abbildung 2.4 verdeutlicht den Zusammenhang zwischen dem Tropfendurchmesser, der Wellenlänge und dem normierten Rückstreuquerschnitt kugelförniger Tropfen σ, der sich aus den Rückstreuquerschnitten der einzelnen Tropfen zusammensetzt. Gut erkennbar ist eine Unterteilung in drei Bereiche. Im rechten, optischen Bereich mit sehr kleinen Wellenlängen reflektieren die Teilchen so stark, daß elektromagnetische Wellen nicht tief genug eindringen können. Im mittleren Bildabschnitt, dem sogenannten Mie–Bereich, ist aufgrund der Schwingung keine eindeutige Zuordnung der Partikelgröße zum Rückstreuquerschnitt möglich. Im linken Bildabschnitt, dem sogenannten Rayleigh–Bereich, besteht jedoch ein linearer Zusammenhang zwischen Rückstreuung und Tropfendurchmesser. Die aufsteigende Gerade, die diesen linken Bereich sehr gut approximiert, heißt Rayleigh–Approximation.

Abbildung 2.4: Normierter Rückstreuquerschnitt sphärischer Tropfen in Abhängigkeit von der Wellenlänge (vgl. Schroth 1995 [84]).

Abbildung 2.5: Schematische Abbildung der Strahlausbreitung bei einer Parabolantenne (vgl. Collier 1996 [19]).

Der horizontale Öffnungswinkel θ bestimmt die Strahlbreite (bei einer Parabolantenne sind horizontaler und vertikaler Öffnungswinkel identisch). Außerdem nimmt die Strahlbreite mit zunehmender Entfernung von der Antenne zu. Das heißt, mit zunehmender Entfernung zum Radar wird mit einem Strahlimpuls ein immer größeres Volumen erfaßt, wodurch die Meßgenauigkeit abnimmt. Infolge der Erdbiegung wandert das Meßvolumen mit zunehmender Entfernung zudem in immer größere Höhen, so daß in weiter entfernten Bereichen nur Niederschlagsgebiete mit ausreichender Vertikalerstreckung noch vom Radarstrahl geortet werden können. Die Strahlhöhe hängt dabei in erster Linie vom gewählten Elevationswinkel ab. Der Elevationswinkel definiert den Abstrahlungswinkel bezüglich des Zenits und sollte bei reiner Niederschlagsmessung so gewählt werden, daß die Strahlachse unter 2–3 km bleibt. Der Azimutwinkel gibt die Himmelsrichtung an, in der gemessen wird (Blick nach Norden: 0°). Wird bei einem fest vorgegebenen Azimutwinkel der Elevationswinkel nahezu kontinuierlich von 0° auf 90° erhöht, ergibt sich ein Elevationsscan (oder auch RHI = Range–Height Indicator). Diese Darstellung ermöglicht einen vertikalen Querschnitt des Niederschlagsgebiets in jedem beliebigen Azimut. Umgekehrt ergibt sich ein Azimutscan (oder auch PPI = Plan Parallel Indicator),

In der vorliegenden Arbeit werden — insbesondere wegen ihrer höheren zeitlichen Auflösung — nur Azimutscans mit dem niedrigsten Elevationswinkel zur Analyse der Niederschlagsereignisse herangezogen (siehe Kapitel 2.2.4 für die technischen Details des Bonner X-Band-Radars).

2.2.2 Theorie der Radarmessung

Die Radargleichung für Volumenziele lautet:

$$
\bar{P}_r = \frac{P_t \cdot G^2 \cdot \lambda^2 \cdot \theta^2 \cdot h_p}{512 \cdot \pi^2} \cdot \frac{1}{d^2} \cdot \sum_{\text{vol}} \sigma_i.
$$ \hspace{1cm} (2.1)

Hierbei sind \bar{P}_r die Empfangsleistung, P_t die Senderleistung, G der sogenannte Antennengewinn (ein Maß für die Verstärkung des Strahls infolge der gebündelten Abstrahlung im Vergleich zu einer isotrop abstrahlenden Antenne), λ die Wellenlänge des Radars, θ der horizontale Öffnungswinkel, womit der Winkel beschrieben wird, bei dem der Antennengewinn G relativ zur Strahlachse auf die Hälfte abgenommen hat (auch als Halbwertsbreite bezeichnet), h_p die Pulslänge und d die Entfernung zum Volumenziel. Die radarspezifischen Größen lassen sich zur Radarkonstante zusammenfassen. Kleine Fehler bei den einzelnen Größen können einen beachtli-
KAPITEL 2. DATENGRUNDLAGE

chen Gesamtfehler ergeben, so daß die genaue Vermessung der Radarparameter von großer Bedeutung ist (vgl. Schroth 1995 [84]). Die Bezeichnung Volumenziel impliziert bereits, daß mit dem Radarstrahl wegen der hohen Tropfendichte einzelne Echos von Regentropfen nicht voneinander unterscheidbar sind. Da sich die Tropfen außerdem relativ zueinander bewegen und als im Pulsvolumen zufällig verteilt angenommen werden, muß über genügend viele Pulse gemittelt werden (was durch den Querbalken über \(\bar{P}_r \) in Gleichung 2.1 beschrieben wird). Durch eine Eichung des Meßgeräts kann der Zusammenhang zwischen dem gemessenen Spannungssignal und der rückgestreuten Leistung \(\bar{P}_r \) bestimmt werden. Der letzte Faktor in Gleichung 2.1 beschreibt den Inhalt des Pulsvolumens als Summe aller enthaltenen Rückstreuquerschnitte \(\sigma_i \) pro Einheitsvolumen:

\[
\sum_{vol} \sigma_i = \frac{1}{V} \cdot \sum_i \sigma_i
\]
(2.2)

Die Ausbreitung des Radarstrahls wird vereinfacht als Kegel angenommen, der sich bei einer Parabolantenne symmetrisch um die Strahlachse erstreckt. Das Pulsvolumen entspricht dabei einem Kegelstumpf (Abbildung 2.6).

Abbildung 2.6: Schematische Darstellung des Pulsvolumens (vgl. Hacker 1996 [41]).

Der Puls passiert jeden Punkt der Strahlstrecke zweimal (beim Hin- und beim Rückweg). Hat der Puls die Länge \(h_p \), so beträgt die Breite des Pulsvolumens \(h_p / 2 \). Für das Pulsvolumen \(V \) ergibt sich damit

\[
V = \pi \cdot \left(d \cdot \frac{\theta}{2} \right)^2 \cdot \frac{h_p}{2}
\]
(2.3)
Voraussetzung für Gleichung 2.1 ist ein homogen ausgefülltes Pulsvolumen V. Für kleine Pulsvolumina (das heißt wenn h_p, θ und d klein sind) ist diese Bedingung annähernd erfüllt. Die Annahme eines homogen gefüllten Pulsvolumens ist für größere Pulsvolumina jedoch nicht realistisch. Vielmehr liegt das Intensitätsmaximum in der Strahlmitte, während die Intensität nach außen hin abnimmt. Eine solche Verteilung wird häufig durch die Gaußsche Glockenkurve beschrieben. Damit ergibt sich als neue Radargleichung für Volumenziele:

$$\bar{P}_r = \frac{P_t \cdot G^2 \cdot \lambda^2 \cdot \theta^2 \cdot h_p \cdot 1}{1024 \cdot \ln 2 \cdot \pi^2} \cdot \frac{1}{d^2} \cdot \sum_{vol} \sigma_i$$ \hspace{1cm} (2.4)

Weitere Probleme sind zum einen die Größendynamik der Tropfen im Pulsvolumen, deren Durchmesser D_i typischerweise zwischen 0.05 und 5 mm liegen, und zum anderen die Variabilität des Tropfenspektrums (vgl. Rogers 1979 [78]). Es ist daher notwendig, die Größenverteilung in die Radargleichung einzufügen. Innerhalb des Rayleigh-Bereichs kann, wie oben bereits erläutert, anstelle der Mie’schen Streu-theorie die sogenannte Rayleigh-Approximation benutzt werden. Danach gilt für die Rückstreufrequenzser σ_i von kugelförmigen Tropfen:

$$\sum_{vol} \sigma_i = \frac{\pi^5}{\lambda^4} \cdot |K_b|^2 \cdot \sum_{vol} D_i^6 \quad \text{für} \quad \lambda \gg \pi D$$ \hspace{1cm} (2.5)

Hierbei ist K_b eine Funktion des komplexen Brechungsindexes und hängt von den dielektrischen Eigenschaften der Teilchen ab; ihr Betrag $|K_b|$ ist 0.93 für reines Wasser (vgl. Battan 1973 [6]) und wird für die gesamte Messung unter Vernachlässigung der Temperaturabhängigkeit als konstant angenommen.

Wird Gleichung 2.5 in die Radargleichung für Volumenziele (Gleichung 2.4) eingesetzt, ergibt sich die vollständige Radargleichung für Regenziele:

$$\bar{P}_r = \frac{\pi^3 \cdot P_t \cdot G^2 \cdot \theta^2 \cdot h_p}{1024 \cdot \ln 2 \cdot \lambda^2} \cdot \frac{1}{d^2} \cdot |K_b|^2 \cdot \sum_{vol} D_i^6$$ \hspace{1cm} (2.6)

Wichtigster Faktor ist die Summe über die sechsten Potenzen der auf das Einheitsvolumen bezogenen Tropfenquerschnitte, welche als Radarreflektivitätsfaktor Z bezeichnet wird. Die Einheit von Z ist mm6/m3. Meist wird jedoch das logarithmische Maß dBZ (entspricht $10 \cdot \log Z/Z_0$ mit $Z_0 = 1$ mm6/m3) verwendet.
Der Reflektivitätsfaktor Z wird in der Literatur und auch in der vorliegenden Arbeit oft nur als Reflektivität Z bezeichnet. Es sei darauf hingewiesen, daß die wahre Reflektivität η eigentlich die Summe über die Rückschwerequerschnitte pro Einheitsvolumen darstellt. Der Zusammenhang mit dem Reflektivitätsfaktor Z ist

$$\eta = \pi^5 |K_b|^2 Z/\lambda^4,$$

siehe Gleichung 2.5 (vgl. auch Hagen 1998 [42]).

Es zeigt sich hier, daß gerade die großen Tropfen einen wesentlichen Einfluß auf die Rückstreuung haben. Die D^6-Abhängigkeit zeigt folgendes Zahlenbeispiel (vgl. Olbrück 1975, [66]):

$$1 \text{Tropfen (}D = 3 \text{mm)} \simeq 46\,656 \text{Tropfen (}D = 0.5 \text{mm)}$$

Dies bedeutet, daß circa 46 656 kleine Tropfen erforderlich sind, um dasselbe Echo zu erzeugen wie ein großer Tropfen.

2.2.3 Die Z–R–Beziehung

Mit der Radarreflektivität Z ist zwar eine qualitative Auswertung der Radardaten möglich, für quantitative Aussagen über Niederschlagsereignisse wird jedoch die Regenrate R (in mm/h) benötigt, welche die in einem bestimmten Zeitintervall auf den Erdboden fallende Niederschlagsmenge angibt. Der Zusammenhang zwischen R und Z wird durch die sogenannte Z–R–Beziehung hergestellt. Diese Umrechnung, die erforderlich ist, weil die Radarmessung nicht die physikalische Zielgröße an sich erfaßt, stellt die größte Fehlerquelle bei der Quantifizierung des Niederschlags dar.

Im allgemeinen wird folgende Form der Beziehung angenommen, die auch als Z–R–Beziehung bezeichnet wird:

$$Z = a \cdot R^b \quad (2.7)$$

KAPITEL 2. DATENGRUNDLAGE

Zum Verständnis dieser für die Radarmeteorologie zentralen Problemstellung sind einige Überlegungen notwendig. Es werden wiederum nur die wichtigsten Punkte herausgegriffen; für eine detaillierte Herleitung sei auf die zahlreich vorhandene Literatur zu diesem Thema verwiesen, vgl. zum Beispiel Battan (1973) [6], Rinehart (1991) [77] oder Beheng (1998) [7].

Das Tropfenspektrum (die Verteilung aller Regentropfen eines gegebenen Volumens auf die unterschiedlichen Tropfengrößen) läßt sich mathematisch durch eine Funktion \(N_T(D) \) des Tropfendurchmessers \(D \) (in mm) beschreiben. Hierbei ist die Tropfenanzahl \(N_T \) pro Größenintervall auf das betrachtete Volumen \(\text{m}^3 \) zu beziehen. Die empirische Annahme, daß sich bei ausreichend langer Falldauer der Tropfen ein Gleichgewichtsspektrum einstellt, führt zu der Darstellung des Tropfenspektrums mittels einer Exponentialfunktion:

\[
N_T(D) = N_T(0) \cdot \exp(-\Lambda \cdot D)
\]

(2.8)

\(N_T(0) \) ist hierbei die Zahl der Tropfen mit Durchmesser \(D \) für den Grenzwert \(D \to 0 \). Der in der Literatur verbreitete Ansatz ist der von Marshall und Palmer (1948) [58] mit \(N_T(0) = 8000 \text{ m}^{-3}\text{mm}^{-1} \) und \(\Lambda = 4.1 \cdot R^{-0.21} \text{ mm}^{-1} \). Hierbei ist für \(R \) der Zahlenwert der Regenrate in mm/h einzusetzen (also ohne die zugehörige Einheit). Ein Nachteil dieser Verteilung ist die starke Überschätzung der Anzahl sehr kleiner Tropfen.

Eine neuere Form der Parametrisierung stellt die Gammaverteilung dar:

\[
N_T(D) = N_T(0) \cdot D^{\mu} \cdot \exp(-\Lambda \cdot D)
\]

(2.9)

Der hier zusätzlich eingeführte Parameter \(D^{\mu} \), der die Spektrumsform beeinflußt, kann insbesondere dazu benutzt werden, die Überschätzung des kleintropfigen Bereichs zu vermeiden. Der Exponent \(\mu \) liegt zwischen -1 und 4, für \(\mu=0 \) geht die Gammaverteilung in die Exponentialverteilung über. Nach Ulbrich (1983) [91] ist eine mögliche Gammaverteilung für Gewitter, die der von Fujiwara (1965) [35] vorgeschlagenen Z–R–Beziehung entspricht, durch \(\mu = 0.40 \), \(\Lambda = 34.5 \cdot R^{-0.2} \text{ cm}^{-1} \) und \(N_T(0) = 70 500 \text{ m}^{-3}\text{cm}^{-1} \cdot \mu \) gegeben. Das resultierende Tropfenspektrum \(N_T(D) \) hat hier die Einheit \(\text{m}^{-3}\text{cm}^{-1} \).
Im folgenden werden nun die Radarreflektivität Z und die Regenrate R formal zueinander in Beziehung gesetzt. Hierzu wird zunächst eine integrale Regenkenngröße J betrachtet, die nach Ulbrich (1983) [91] die folgende allgemeine Form hat:

$$J = C_p \int_{D_{\text{min}}}^{D_{\text{max}}} N_T(D) D^p dD$$ \hspace{1cm} (2.10)

Dabei ist C_p eine vom Tropfendurchmesser unabhängige Konstante. Werden für das Tropfenspektrum obige Gammaverteilung und als Integralgrenzen 0 und ∞ gewählt, so ist eine analytische Lösung des Integrals bekannt:

$$J = C_p \cdot \Gamma(p + \mu + 1) \cdot N_T(0) \cdot \Lambda^{-(p+\mu+1)}$$ \hspace{1cm} (2.11)

Hierbei steht Γ für die Gammafunktion.

Damit lassen sich bei bekanntem Tropfenspektrum die für die Radarmeteorologie zentralen integralen Kenngrößen Z und R analytisch über

$$R = \frac{\pi}{6} \int_{D_{\text{min}}}^{D_{\text{max}}} v_t(D) N_T(D) D^3 dD$$ \hspace{1cm} (2.12)

mit der vom Tropfendurchmesser abhängigen Endfallgeschwindigkeit $v_t(D)$ und

$$Z = \int_{D_{\text{min}}}^{D_{\text{max}}} N_T(D) D^6 dD$$ \hspace{1cm} (2.13)

berechnen.

Werden nun die Parametrisierungen für $N_T(0)$, Λ und μ des gewählten Tropfenspektrums eingesetzt, kann die Beziehung zwischen den beiden Kenngrößen über ein einfaches Potenzgesetz dargestellt werden. Für die von Marshall & Palmer (1948) [58] gefundenen Werte ergibt sich damit zum Beispiel die Z–R–Beziehung $Z = 296 R^{1.47}$, und die auf Fujiwara (1965) [35] zurückgehende Z–R–Beziehung hat die Form $Z = 450 R^{1.46}$.

Es ist offensichtlich, daß die beschriebene Vorgehensweise zur Umrechnung des Radarechos in eine quantitative Regenrate nur eine ungefähre Annäherung an die Realität darstellt und keineswegs als allgemein gültig bezeichnet werden kann. Selbst bei bekanntem aktuellen Tropfenspektrum muß noch berücksichtigt werden, daß die Radarmessung nicht am Erdboden selbst erfolgt. Mit zunehmender Entfernung vom Radarstandort wird diese Höhendifferenz zu einer immer größeren Unsicherheitsquelle. Darüber hinaus gibt es noch eine Reihe weiterer Fehlermöglichkeiten, die vom Gerät, dem Meßaufbau sowie der Signalverarbeitung abhängen.

Der Ansatz der vorliegenden Arbeit besteht gerade darin, diese Unsicherheiten durch Hinzuziehung von unabhängigen Niederschlagsmessungen am Boden zu kompensieren.
KAPITEL 2. DATENGRUNDLAGE

2.2.4 Das Bonner X–Band–Radar

<table>
<thead>
<tr>
<th>Typ</th>
<th>Selenia METEOR–200 X–Band–Radar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td>Frog2.0 (Gamic)</td>
</tr>
<tr>
<td>Frequenz</td>
<td>9.375 GHz</td>
</tr>
<tr>
<td>Wellenlänge</td>
<td>3.2 cm</td>
</tr>
<tr>
<td>Antenne</td>
<td>Parabolspiegel (Durchmesser: 2 m)</td>
</tr>
<tr>
<td>Antennenposition</td>
<td>geographische Länge: 07° 04’ 31.7” Ost,</td>
</tr>
<tr>
<td></td>
<td>geographische Breite: 50° 43’ 53.5” Nord,</td>
</tr>
<tr>
<td></td>
<td>Höhe über NN: 98.5 m</td>
</tr>
<tr>
<td>Antennenöffnungswinkel</td>
<td>1.06° Halbwertsbreite</td>
</tr>
<tr>
<td>Antennengeschwindigkeit</td>
<td>maximal 4 Umdrehungen pro Minute</td>
</tr>
<tr>
<td>Meßradius</td>
<td>bis zu 100 km</td>
</tr>
<tr>
<td>Pulsfolgefrequenz (PRF)</td>
<td>250 Hz</td>
</tr>
<tr>
<td>Pulsdauer</td>
<td>3 µs</td>
</tr>
<tr>
<td>Pulslastung</td>
<td>200 kW</td>
</tr>
<tr>
<td>Mittlere Sendeleistung</td>
<td>150 W</td>
</tr>
<tr>
<td>Entfernungsauflösung</td>
<td>circa 440 m (nach Digitalisierung: 250 m)</td>
</tr>
</tbody>
</table>

Tabelle 2.3: Technische Daten des Bonner Radars (Werte nach Meetschen 1999 [61] und Grimbacher 2001 [39]).

2.3 Meteosat–Daten

Der für die Regionen Europa und Afrika eingesetzte geostationäre Wetter­satellit Meteosat befindet sich bei 0° geographischer Länge über dem Äquator. Die Flughöhe beträgt circa 36 000 km, die Umlaufdauer 23 Stunden und 56 Minuten, was einem Sterntag entspricht.

Die Datengewinnung stellt sich wie folgt dar: Meteosat ist mit Radiometern im sichtbaren (VIS–Kanal, 0.5 bis 0.9 μm) und infraroten (IR–Kanal, 10.5 bis 12.5 μm) Spektralbereich sowie im Wasserdampf–Absorptionsband ausgestattet. Innerhalb von 25 Minuten wird die Erde vom Süd- zum Nordpol im infraroten Bereich in 2 500 Zeilen und im sichtbaren Bereich in 5 000 Zeilen abgetastet. Gemessen wird dabei die von der Erde emittierte bzw. reflektierte Strahldichte (Radianz), die als digitales Signal (8 Bit Counts) gespeichert wird. Es entstehen somit Bilder der Erdhalbkugel, die aus 2500×2500 (bzw. aus 5000×5000) Pixeln mit Grauwerten zwischen 0 und 255 bestehen.

Kapitel 3

Datenvorverarbeitung

3.1 Stationsdaten

Aus Gründen der Vergleichbarkeit mit den Tagessummen des Stationsclusters II werden die hochaufgelösten Wippendaten des Stationsclusters I zunächst zu vollen Stundensummen, und hieraus wiederum zusätzlich zu Tagessummen aufsummiert. Weiterhin müssen alle Meßdaten in ein gemeinsames Zeitsystem gebracht werden, da die Daten der Erftkreis-Stationen in Mitteleuropäischer Sommerzeit (MEZ), die SFB-eigenen Stationsdaten hingegen in Weltzeit (UTC) abgespeichert werden. Alle nachfolgenden Zeitangaben beziehen sich auf UTC.

3.1.1 Qualitätsprüfung

KAPITEL 3. DATENVORVERARBEITUNG

Regenraten und bei hohen Windgeschwindigkeiten der Fall (vgl. Nystuen 1999 [65]). Die durch systematische Meßfehler bedingten Ungenauigkeiten sind in der Regel jedoch deutlich geringer als diejenigen, die aus einer zu geringen Stationsdichte oder indirekten Meßmethoden resultieren (vgl. Reiss et al. 1992 [76]).

Die Stationsdaten wurden zunächst manuell gesichtet. Dies führte in einigen Fällen zur Eliminierung von Datenreihen, wenn zum Beispiel eine sich offiziell im Betrieb befindliche Station über einige Wochen hinweg auch bei starken Niederschlagsereignissen, die von benachbarten Stationen registriert wurden, konstant 0 mm anzeigte oder, wie im Fall einer der Frankenforst–Stationen, eine über zwei Monate andauernde konstante Stundensumme von 0.4 mm aufwies. Diese Datenlücken sind zusammen mit den „offiziellen“ technischen Datenausfällen in Tabelle A.3 im Anhang aufgeführt.

Auch wenn die kleinräumige Variation gerade bei konvektiven Niederschlägen sehr hoch ist und selbst von dichten Meßnetzen oft nicht ausreichend erfaßt werden kann, sollte, gemittelt über einen längeren Zeitraum, zwischen sehr nah beieinander gelegenen Stationen eine gewisse statistische Korrelation bestehen. Es wurden daher die Korrelationen der Tagessummen aller benachbarter Stationen mit einer maximalen Distanz von 10 km zueinander für den Zeitraum von jeweils einigen Monaten berechnet (Tabelle 3.1). Eine zu niedrige Korrelation wäre ein Hinweis auf eine eventuelle Fehlerbehaftung zumindest einer der beiden Stationen. Die Korrelationen weisen in den meisten Fällen auch bei größeren Distanzen noch einen Mindestkoeffizienten von 0.6 oder höher auf. In einem Fall jedoch war die Korrelation zweier Stationen des Stationsclusters II (der Stationen 18 und 19 im Zeitraum von Juni bis August 1998) mit 0.28 besonders niedrig. Eine nähere Betrachtung der Meßdaten zeigte, daß am 15. Juni 1998 (Tag 9) an Station 18 mit 43.6 mm (Abbildung 3.1) ein mehr als 10 mal größerer Wert als an allen anderen Stationen vorlag. Ein Auslassen dieses Ausreißers würde eine deutlich höhere Korrelation von 0.76 für den betrachteten Zeitraum ergeben, was im Einklang mit anderen Stationspaaren gleichen Abstandes stünde. Die Radardaten dieses Tages (Abbildung 3.2) zeigen jedoch eine konvektive Zelle mit Niederschlagsmengen bis zu 40 mm in unmittelbarer Nähe der Station 18, so daß der Stationsmeßwert trotz der geringen Korrelation realistisch erscheint. Dieses Beispiel zeigt, daß geringe Korrelationen zwischen benachbarten Stationen in solchen Extremfällen durchaus auftreten können, aber überprüft werden sollten.
<table>
<thead>
<tr>
<th>Paar</th>
<th>Distanz (km)</th>
<th>Korrelation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8–9</td>
<td>3.6</td>
<td>0.95</td>
</tr>
<tr>
<td>20–21</td>
<td>4.5</td>
<td>0.53</td>
</tr>
<tr>
<td>10–11</td>
<td>5.7</td>
<td>0.64</td>
</tr>
<tr>
<td>16–17</td>
<td>6.0</td>
<td>0.75</td>
</tr>
<tr>
<td>11–12</td>
<td>6.7</td>
<td>0.40</td>
</tr>
<tr>
<td>7–8</td>
<td>7.8</td>
<td>0.92</td>
</tr>
<tr>
<td>1–2</td>
<td>10.0</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Cluster II

<table>
<thead>
<tr>
<th>Paar</th>
<th>Distanz (km)</th>
<th>Korrelation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9–10</td>
<td>3.6</td>
<td>0.89</td>
</tr>
<tr>
<td>16–17</td>
<td>3.6</td>
<td>0.89</td>
</tr>
<tr>
<td>12–13</td>
<td>4.1</td>
<td>0.80</td>
</tr>
<tr>
<td>11–12</td>
<td>4.2</td>
<td>0.91</td>
</tr>
<tr>
<td>7–8</td>
<td>4.5</td>
<td>0.82</td>
</tr>
<tr>
<td>14–15</td>
<td>5.0</td>
<td>0.88</td>
</tr>
<tr>
<td>13–14</td>
<td>5.4</td>
<td>0.89</td>
</tr>
<tr>
<td>5–6</td>
<td>5.7</td>
<td>0.86</td>
</tr>
<tr>
<td>15–16</td>
<td>5.7</td>
<td>0.72</td>
</tr>
<tr>
<td>10–11</td>
<td>6.0</td>
<td>0.85</td>
</tr>
<tr>
<td>14–16</td>
<td>7.0</td>
<td>0.66</td>
</tr>
<tr>
<td>13–15</td>
<td>7.2</td>
<td>0.71</td>
</tr>
<tr>
<td>2–3</td>
<td>7.3</td>
<td>0.68</td>
</tr>
<tr>
<td>8–11</td>
<td>7.3</td>
<td>0.90</td>
</tr>
<tr>
<td>12–15</td>
<td>7.8</td>
<td>0.90</td>
</tr>
<tr>
<td>11–13</td>
<td>8.1</td>
<td>0.73</td>
</tr>
<tr>
<td>8–10</td>
<td>8.1</td>
<td>0.78</td>
</tr>
<tr>
<td>4–14</td>
<td>8.2</td>
<td>0.75</td>
</tr>
<tr>
<td>8–9</td>
<td>8.6</td>
<td>0.65</td>
</tr>
<tr>
<td>4–13</td>
<td>9.2</td>
<td>0.58</td>
</tr>
<tr>
<td>9–11</td>
<td>9.2</td>
<td>0.79</td>
</tr>
<tr>
<td>10–12</td>
<td>9.5</td>
<td>0.77</td>
</tr>
<tr>
<td>12–14</td>
<td>9.5</td>
<td>0.90</td>
</tr>
<tr>
<td>18–19</td>
<td>9.9</td>
<td>0.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paar</th>
<th>Distanz (km)</th>
<th>Korrelation</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–21</td>
<td>2.2</td>
<td>0.97</td>
</tr>
<tr>
<td>9–10</td>
<td>3.6</td>
<td>0.97</td>
</tr>
<tr>
<td>16–17</td>
<td>3.6</td>
<td>0.80</td>
</tr>
<tr>
<td>12–13</td>
<td>4.1</td>
<td>0.78</td>
</tr>
<tr>
<td>13–15</td>
<td>5.1</td>
<td>0.86</td>
</tr>
<tr>
<td>13–14</td>
<td>5.4</td>
<td>0.91</td>
</tr>
<tr>
<td>5–6</td>
<td>5.7</td>
<td>0.77</td>
</tr>
<tr>
<td>15–16</td>
<td>5.7</td>
<td>0.91</td>
</tr>
<tr>
<td>10–11</td>
<td>6.0</td>
<td>0.95</td>
</tr>
<tr>
<td>14–16</td>
<td>7.0</td>
<td>0.82</td>
</tr>
<tr>
<td>4–5</td>
<td>7.0</td>
<td>0.84</td>
</tr>
<tr>
<td>2–3</td>
<td>7.2</td>
<td>0.58</td>
</tr>
<tr>
<td>15–17</td>
<td>7.3</td>
<td>0.82</td>
</tr>
<tr>
<td>8–11</td>
<td>7.3</td>
<td>0.91</td>
</tr>
<tr>
<td>12–15</td>
<td>7.8</td>
<td>0.94</td>
</tr>
<tr>
<td>11–13</td>
<td>8.1</td>
<td>0.62</td>
</tr>
<tr>
<td>8–10</td>
<td>8.1</td>
<td>0.96</td>
</tr>
<tr>
<td>4–14</td>
<td>8.2</td>
<td>0.62</td>
</tr>
<tr>
<td>8–9</td>
<td>8.6</td>
<td>0.93</td>
</tr>
<tr>
<td>15–21</td>
<td>8.9</td>
<td>0.92</td>
</tr>
<tr>
<td>4–13</td>
<td>9.2</td>
<td>0.69</td>
</tr>
<tr>
<td>9–11</td>
<td>9.2</td>
<td>0.91</td>
</tr>
<tr>
<td>14–21</td>
<td>9.4</td>
<td>0.79</td>
</tr>
<tr>
<td>10–12</td>
<td>9.5</td>
<td>0.96</td>
</tr>
<tr>
<td>15–21</td>
<td>9.9</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Tabelle 3.1: Korrelation benachbarter Regenwippen aus Stationscluster I (oben) und II (unten), berechnet aus den Tagessummen für Juni bis August 1998 (links) sowie für Juni bis August 1999 (rechts).

3.1.2 Interpolation der Punktdaten auf die Fläche

Für spätere Vergleiche ist es sinnvoll, aus den Stationsdaten durch Interpolation für begrenzte Bereiche mit ausreichend hoher Stationsdichte räumliche Gebietsmittel des Niederschlags zu erstellen.

Mit Kriging wird ein Schätzvorgang bezeichnet, der eine gegebene Anzahl von Meßwerten in einen Wichtungsprozess so einbezieht, daß die Schätzvarianz minimiert wird. Gegeben seien hierzu die K Stationsmessungen $P_g(x_1, y_1), P_g(x_2, y_2), \ldots, P_g(x_K, y_K)$ in den zugehörigen Punkten $(x_1, y_1), \ldots, (x_K, y_K)$. Es soll der unbekannte Wert $P(x_0, y_0)$ geschätzt werden. Als Bedingungen an das Verfahren gelten die Annahme der Stationarität (das heißt die Verteilung einer Zufallsvariable ändert sich nicht durch Verschiebung) und die intrinsische Hypothese (dies bedeutet, daß die statistischen Parameter nicht von der absoluten Lage im Raum, sondern von
KAPITEL 3. DATENVORVERARBEITUNG

\[
\delta(h) = \frac{1}{2K(h)} \sum_{i=1}^{K(h)} (P_g(x_j, y_j) - P_g(x_k, y_k))^2
\] (3.1)

Hierbei sind \(\delta \) der Variogrammwert (da \(P_g \) in mm gemessen wird, ist hier die Einheit mm²), \(P_g \) die Meßwerte an den Positionen \((x_j, y_j)\) bzw. \((x_k, y_k)\) und \(K(h) \) die Anzahl der Wertepaare in der Distanzklasse \(h \). Die Distanzklasse \(h \) umfaßt alle Positions-paare mit einem Abstand zwischen \(h - \epsilon/2 \) und \(h + \epsilon/2 \), wobei \(\epsilon \) die Klassenbreite ist. Die Summe aller Abstände beträgt \(\sum K(h) = K(K - 1)/2 \). Bei der Mittelwertbildung in den einzelnen Klassen sollten genügend Werte vorhanden sein, um eine repräsentative Schätzung zu gewährleisten (vgl. auch Mächel 1989 [57]). Als Klassenbreite \(\epsilon \) wird in der vorliegenden Arbeit ein Wert von 5 km gewählt.

- lineares Modell: \(\delta(h) = \zeta \frac{h}{q} \) für \(0 \leq h \leq q \)
- \(\delta(h) = \zeta \) für \(h > q \)
- exponentielles Modell: \(\delta(h) = \zeta \left(1 - \exp(-\frac{h}{q}) \right) \) für \(h \geq 0 \)
- sphärisches Modell: \(\delta(h) = \zeta \left(\frac{3h}{2q} - \frac{1}{2} \left(\frac{h}{q} \right)^3 \right) \) für \(0 \leq h \leq q \)
- \(\delta(h) = \zeta \) für \(h > q \)

Hierbei ist \(\zeta \) ein horizontaler Skalierungsfaktor, der durch den Minimierungsalgorithmus bestimmt wird. Die Angleichung erfolgt nur für die ersten acht Klassen,
also bis zu einem Abstand von $q = 40$ km. Das resultierende Variogramm wird für die anschließende räumliche Interpolation verwendet. Exemplarisch ist in Abbildung 3.3 für die Monatssumme des Niederschlags im Juni 1998 ein auf diese Weise erzeugtes Variogramm dargestellt.

Zur Ableitung der eigentlichen Schätzung wird angenommen, daß sich der zu interpolierende Wert $P(x_0, y_0)$ als gewichtetes Mittel (Linearkombination) der Meßwerte darstellen läßt:

$$P(x_0, y_0) = \sum_{i=1}^{K} g_i \cdot P_g(x_i, y_i) \quad (3.2)$$

Die Gewichte g_i sind so zu bestimmen, daß der Schätzwert $P(x_0, y_0)$ die folgenden Bedingungen erfüllt:

- $P(x_0, y_0)$ ist erwartungstreu, das heißt, die Abweichung zwischen wahren und geschätzten Werten ist im Mittel gleich Null,
- die Varianz der geschätzten Werte ist minimal.

Da die Schätzwerte $P(x_0, y_0)$ erwartungstreu sein sollen, wird $\sum g_i = 1$ verlangt. Aufgrund der Minimalität der Varianz lautet das Kriging–Gleichungssystem dann:

$$
\begin{pmatrix}
0 & \delta_{12} & \cdots & \delta_{1K} & 1 \\
\delta_{21} & 0 & \cdots & \delta_{2K} & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\delta_{K1} & \delta_{K2} & \cdots & 0 & 1 \\
1 & 1 & \cdots & 1 & 0
\end{pmatrix}
\begin{pmatrix}
g_1 \\
g_2 \\
\vdots \\
g_K \\
\tau
\end{pmatrix}
=
\begin{pmatrix}
\delta_{10} \\
\delta_{20} \\
\vdots \\
\delta_{K0} \\
1
\end{pmatrix}
$$

mit $\delta_{jk} = \delta(|(x_j, y_j) - (x_k, y_k)|)$ und dem Lagrange–Multiplikator τ.

KAPITEL 3. DATENVORVERARBEITUNG

<table>
<thead>
<tr>
<th>Stationsnr.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monatssumme (mm)</td>
<td>94.9</td>
<td>108.2</td>
<td>89.4</td>
<td>109.4</td>
<td>104.7</td>
<td>114.1</td>
<td>117.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stationsnr.</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monatssumme (mm)</td>
<td>108.3</td>
<td>93.5</td>
<td>95.5</td>
<td>89.5</td>
<td>100.7</td>
<td>65.7</td>
<td>80.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stationsnr.</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monatssumme (mm)</td>
<td>74.2</td>
<td>71.4</td>
<td>80.6</td>
<td>98.0</td>
<td>54.7</td>
<td>54.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monat</th>
<th>RMS–Diff. Radar allein (mm)</th>
<th>RMS–Diff. Kriging (mm)</th>
<th>Diff. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juni ’99</td>
<td>4.40</td>
<td>2.87</td>
<td>34.8</td>
</tr>
<tr>
<td>Juli ’99</td>
<td>2.33</td>
<td>2.41</td>
<td>-3.4</td>
</tr>
<tr>
<td>Aug. ’99</td>
<td>2.87</td>
<td>2.82</td>
<td>1.7</td>
</tr>
<tr>
<td>Sep. ’99</td>
<td>1.64</td>
<td>1.55</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Gemittelt über alle vier Monate des Jahres 1999 und alle verfügbaren Stationen des Clusters I auf Tagessummenbasis (68 Fälle) beträgt die RMS–Differenz für die Radarmessung allein 3.38 mm und für die Kriging–Interpolation 3.27 mm, was einem um circa 3.3% besseren Wert entspricht.
KAPITEL 3. DATENVORVERARBEITUNG

In einem zweiten Schritt wird der Einfluß der Lage einzelner Stationen auf die vorgenommene Mittelbildung untersucht. Wird von den sich im nordwestlichen Randbereich befindenden Stationen 1 und 2 des Clusters I nur jeweils eine für die Kriging-Schätzung verwendet, sind die Ergebnisse um 30–40% schlechter als die Radarmessungen. Wird hingegen eine Station aus der Mitte des Clusters herausgenommen (zum Beispiel Station 15), so wird diese durch die benachbarten Stationen um 50–60% deutlich besser interpoliert als durch das Radar allein (Tabelle 3.4).

<table>
<thead>
<tr>
<th>Vergleichsstation (Cluster I)</th>
<th>RMS–Diff. Radar allein (mm)</th>
<th>RMS–Diff. Kriging (mm)</th>
<th>Diff. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.82</td>
<td>4.96</td>
<td>-29.8</td>
</tr>
<tr>
<td>2</td>
<td>4.98</td>
<td>6.83</td>
<td>-37.1</td>
</tr>
<tr>
<td>8</td>
<td>3.26</td>
<td>1.65</td>
<td>49.4</td>
</tr>
<tr>
<td>9</td>
<td>2.63</td>
<td>1.33</td>
<td>49.4</td>
</tr>
<tr>
<td>15</td>
<td>2.10</td>
<td>0.83</td>
<td>60.5</td>
</tr>
</tbody>
</table>

Tabelle 3.4: Über alle vier Monate des Jahres 1999 gemittelte RMS-Differenzen zwischen Stations- und Radarwerten bzw. zwischen Stations- und Kriging-Schätzwerten, berechnet auf Tagessummenbasis für einzelne (unabhängige) Stationen des Clusters I.

Insgesamt läßt sich also sagen, daß das Kriging-Verfahren durchaus zuverlässige Vergleichsdaten für Flächenmittelvergleiche liefern kann, sofern die betrachteten Gebiete sich im Nahbereich von Stationen befinden.
3.2 Radardaten

3.2.1 Darstellung und Geokodierung

Die in Polarkoordinaten vorliegenden Rohdaten werden auf ein kartesisches Koordinatensystem mit einer Gitterweite von $1 \times 1 \text{ km}^2$ für ein Gesamtfeld von $100 \times 100 \text{ km}^2$ umgerechnet. Dafür wurde ein von Meetschen (1999) [61] entwickeltes Programm verwendet, welches zunächst mittels der „Nearest–Neighbour–Methode“ jedem Gitterpunkt den Meßwert des nächstgelegenen Meßpunktes zuordnet, wobei alle Meßpunkte berücksichtigt werden, die in einem bestimmten Umkreis um den Gitterpunkt liegen (500 m beim 50 km–Scan). Die Meßpunkte innerhalb eines Umkreises werden dann mit einer exponentiell mit dem Abstand vom Gitterpunkt abfallenden Funktion gewichtet.

3.2.2 Umrechnung der Radarreflektivitäten in Regenraten

3.2.3 Dämpfungskorrektur

$$K_d = \beta \cdot R^\gamma$$ \hspace{1cm} (3.3)

Hierbei ist für R der Zahlenwert der Regenrate in mm/h einzusetzen (also ohne die zugehörige Einheit). Einige gängige Literaturwerte für β und γ sind in Tabelle 3.5 dargestellt.

<table>
<thead>
<tr>
<th>β</th>
<th>γ</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0074</td>
<td>1.31</td>
<td>Gunn & East (1954) [40]</td>
</tr>
<tr>
<td>0.0110</td>
<td>1.15</td>
<td>Wexler & Atlas (1963) [98]</td>
</tr>
<tr>
<td>0.0119</td>
<td>1.063</td>
<td>Eissing (1976) [29]</td>
</tr>
</tbody>
</table>

Tabelle 3.5: Parameter β und γ des Dämpfungskoeffizienten K_d für die einfache Wegstrecke bei $\lambda=3.2$ cm (Einwegdämpfung).

KAPITEL 3. DATENVORVERARBEITUNG

Abbildung 3.6: Entfernungsbedingtes Verhältnis von dämpfungskorrigierten und nicht dämpfungskorrigierten Radarniederschlägen zu Wippenniederschlägen für Juni bis September 1999.
3.2.4 Clutterfilterung

Mit dem Begriff Clutter werden üblicherweise unerwünschte Radarechos bezeichnet, die vor allem im Nahbereich des Radars auftreten und im wesentlichen von Reflexionen durch den Hauptstrahl oder die Nebenkeulen an Festzielen auf der Erdoberfläche oder, bei niedriger Elevation, an der Erdoberfläche selbst verursacht werden. Letzteres Phänomen ist auch als „Anaprop-Effekt“ (von anomalous propagation) bekannt.

3.2.5 Beamblocking und Brightband

Festziele machen sich nicht nur als Clutter in den Radardaten bemerkbar, sondern können auch zur Abschattung einzelner Bereiche führen. Dieser Effekt, der auch als „Beamblocking“ bezeichnet wird, tritt dann ein, wenn sich hinter einem Festziel ein Niederschlagsgebiet befindet, das wegen der am Festziel auftretenden Dämpfung
nur noch mit einer geringen Leistung erfaßt wird. Beim Bonner X-Band-Radar kann das Beamblocking besonders deutlich im südöstlichen Bildbereich beobachtet werden. Aufgrund der Breite dieser sogenannten „Venusberg-Abschattung“ ist eine Korrektur nicht möglich, was bei quantitativen Interpretationen berücksichtigt werden muß. In diesem Bereich befindet sich allerdings nur eine Bodenmeßstation, die Wippe Nr. 21 des Stationsclusters I, vgl. auch Abbildung 2.2, oben. Einige weitere Radarstrahlen (1°, 49°, 50° und 149°), die regelmäßig durch Abschattungseffekte hervortreten, werden aus jedem Radarscan eliminiert.

3.2.6 Biaskorrektur

Das Prüfmaß „Bias“ beschreibt den sogenannten systematischen Fehler, eine grundsätzliche Verzerrung (engl. bias: schief, schräg) zwischen Prognose und Wirklichkeit (vgl. Balzer et al. 1998 [5]). Er berechnet sich wie folgt:

\[
Bias = \frac{1}{N} \cdot \sum_{j=1}^{N} (P_r^j(x_i, y_i) - P_g^j(x_i, y_i))
\] (3.4)

Hierbei sind \(P_r^j\) die Radarmessung und \(P_g^j\) die Stationsmessung zum Zeitpunkt \(j\) am Gitterpunkt \((x_i, y_i)\) sowie \(N\) die Anzahl der Messungen. Systematische Fehler tendieren mit wachsender Zahl der Beobachtungen nicht — wie es bei zufälligen Fehlern der Fall ist — zum gegenseitigen Ausgleich und sollten nach Möglichkeit eli-
KAPITEL 3. DATENVORVERARBEITUNG

miniert werden. Liegt keine Verzerrung vor, so ist die Schätzfunktion erwartungstreu (unbiased), eine Bedingung, die auch vom SOA–Verfahren gefordert wird (siehe Kapitel 5). Aus diesem Grund wird im folgenden versucht, den systematischen Fehler in Form einer Unter- oder Überschätzung der Radarniederschlagswerte zu bestimmen. Dazu wird für alle acht Monate der Radarniederschlag mit den Werten der Stationswippen verglichen und der Bias als Mittelwert über die Zeit für jede Station bestimmt; für beide Stationscluster werden als Ausgangsbasis hierzu die Tagessummen herangezogen. Aus allen Stationswerten, die eine Mindestkorrelation von 0.5 zu den Radarwerten nicht unterschreiten, wird schließlich der mittlere Biasfaktor berechnet. Die eigentliche Korrektur der Radardaten erfolgt über eine pixelweise Multiplikation mit dem mittleren Korrekturfaktor \(f \), der sich über

\[
\frac{1}{N} \cdot \sum_{j=1}^{N} (P_g^j(x_i, y_i) - f_i \cdot P_r^j(x_i, y_i)) = 0
\]

aus

\[
f_i = \frac{\sum_{j=1}^{N} P_g^j(x_i, y_i)}{\sum_{j=1}^{N} P_r^j(x_i, y_i)}
\]

(3.5)

und

\[
f = \frac{1}{K} \sum_{i=1}^{K} f_i
\]

(3.6)

Die Biaskorrektur ist eigentlich eine Korrektur des Vorfaktors \(a \) der Z–R–Beziehung (zur Wichtigkeit einer solchen Korrektur siehe auch Ulbrich & Lee (1999) [92]). Durch den auf \(P_r \) anzuwendenden Korrekturfaktor \(f \) ergeben sich mit

\[
a' = \frac{a}{f_b}
\]

(3.7)

für die beiden Z–R–Beziehungen folgende angeeichte Werte \(a' \) für den Vorfaktor \(a \):

- Marshall et al. (1955): \(a = 200 \quad a' = 286 \)
- Fujiwara (1965): \(a = 450 \quad a' = 307 \)

<table>
<thead>
<tr>
<th></th>
<th>V</th>
<th>ρ</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marshall et al. (1955)</td>
<td>1.28</td>
<td>0.88</td>
<td>0.81</td>
</tr>
<tr>
<td>Fujiwara (1965)</td>
<td>0.81</td>
<td>0.87</td>
<td>1.29</td>
</tr>
</tbody>
</table>

Werden die Korrekturfaktoren für jeden Monat einzeln berechnet, liegen sie nicht in jedem Monat so nahe bei dem Wert f, der im Mittel über alle acht Monate bestimmt wurde, sondern weisen eine mehr oder weniger starke Variation von bis zu 60 Prozent auf. Dennoch erscheint es sinnvoll, die Biaskorrektur nicht für kleinere Zeitabschnitte getrennt anzuwenden, da an dieser Stelle nur eine Art Gerätekorrektur erfolgt. Die eigentliche Aneichung der Radardaten an die Stationsdaten erfolgt später (siehe Kapitel 5).

KAPITEL 3. DATENVORVERARBEITUNG

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P_g (mm)</td>
<td>P_r (mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cluster I</td>
<td>62.0</td>
<td>67.2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>115.1</td>
<td>93.1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>84.1</td>
<td>99.3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>47.7</td>
<td>64.0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>44.5</td>
<td>66.9</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>34.8</td>
<td>52.3</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>40.7</td>
<td>50.2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>31.3</td>
<td>45.6</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>48.9</td>
<td>49.4</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>42.3</td>
<td>42.3</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>38.5</td>
<td>40.8</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>33.0</td>
<td>49.3</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>51.3</td>
<td>57.4</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>50.4</td>
<td>56.9</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>49.7</td>
<td>68.0</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>58.9</td>
<td>56.7</td>
</tr>
</tbody>
</table>

3.2.7 Bildung von Niederschlagssummen

Die zeitliche Integration der berechneten Niederschlagsintensitäten wird zum einen für den Vergleich mit Stationsdaten geringerer zeitlicher Auflösung (Tagessummen) und zum anderen für das in Kapitel 5 beschriebene SOA-Verfahren benötigt. Hierzu ist es erforderlich, die Intensitäten der einzelnen Azimutscans zunächst auf Stunden- summen und diese dann jeweils zu Tagessummen zu akkumulieren. Hierzu müssen die Pixelwerte mit der zeitlichen Auflösung der Scans (in h) multipliziert werden, um sie von Niederschlagsraten (mm/h) in Niederschlagshöhen (mm) umzurechnen.

Die zeitlichen Abstände der zur Verfügung stehenden Scans sind jedoch nicht immer äquidistant. Drei Fälle müssen unterschieden werden:

1. Juni bis September 1998:
 1:08 Uhr, 1:21 Uhr, 1:38 Uhr, 1:51 Uhr, usw. (4 Azimutscans pro Stunde, 96 Azimutscans pro Tag)

2. Juni 1999:
 1:03 Uhr, 1:13 Uhr, 1:21 Uhr, 1:33 Uhr, 1:43 Uhr, 1:51 Uhr, usw. (6 Azimutscans pro Stunde, 144 Azimutscans pro Tag)

3. Juli bis September 1999:
 1:01 Uhr, 1:06 Uhr, 1:11 Uhr, 1:16 Uhr, 1:21 Uhr, 1:26 Uhr, 1:31 Uhr, 1:36 Uhr, 1:41 Uhr, 1:46 Uhr, 1:51 Uhr, 1:56 Uhr, usw. (12 Azimutscans pro Stunde, 288 Azimutscans pro Tag)

Bei größeren Zeitabständen werden zur Bildung von Stundensummen zusätzlich zu jeder Stunde der jeweils vorherige und nachfolgende Azimutscan herangezogen. Im Jahr 1998 werden somit beispielsweise die Scans zwischen 0:51 Uhr und 1:08 Uhr bzw. zwischen 1:51 Uhr und 2:08 Uhr auf 8 bzw. 9 Minuten aufgeteilt, so daß sich mit den restlichen Scan-Intervallen von 2 \times 13 und 1 \times 17 Minuten wieder 60 Minuten ergeben. Aus den 24 Stunden- summen werden schließlich durch Akkumulation Tagessummen erzeugt.
3.3 Meteosat–Daten

Um zwischen den ausgestrahlten Radianzen und den von Meteosat gemessenen 256 Digitalwerten (Counts) einen funktionalen Zusammenhang aufstellen zu können, ist eine entsprechende Kalibrierung der Kanäle erforderlich.

3.3.1 Kalibrierung des IR–Kanals

\[L = \alpha \cdot (C - C_0) \]

Es sind dabei \(L \) die Radianz (in \(W \cdot m^{-2} \cdot sr^{-1} \)), \(\alpha \) der Kalibrierungsfaktor, \(C \) der gemessene Grauwert und \(C_0 \) der sogenannte „Space Count“. Diese Faktoren werden von EUMETSAT in den vierteljährlich erscheinenden „Meteosat Calibration Reports“ (vgl. ESOC 1996 [34]) veröffentlicht. Anhand des Planckschen Strahlungsgesetzes lassen sich für den IR–Kanal weiterhin die berechneten Radianzen in Strahlungsaquivalenttemperaturen umrechnen. Die Umrechnung erfolgt mit Hilfe sogenannter „Look–up“–Tabellen, die ebenfalls von EUMETSAT veröffentlicht werden (vgl. ESOC 1991 [33]) und für die gesamte Lebensdauer des Satelliten Gültigkeit besitzen.

3.3.2 Kalibrierung des VIS–Kanals

gleichung (3.8) wurden Kriebel et al. (1996) [54] entnommen, da die Kalibrierung des VIS-Kanals von EUMETSAT nicht operationell durchgeführt wird. Der Reflektionsfaktor F_r berechnet sich über

$$ F_r = \frac{\pi \cdot L}{\nu \cdot E} $$

wobei ν den Cosinus des Sonnenzenitwinkels und E die ungefilterte solare Bestrah lungsstärke für den Spektralbereich 0.4 bis 1.05 μm darstellen. Die Bestimmung von E erfolgt mit Hilfe der bei Thékaïkara (1974) [87] in tabellarischer Form vorliegenden Strahlungswerte. Für eine detaillierte Beschreibung der Umrechnungen sei auf Heuel (1996) [44] verwiesen.

3.3.3 Georeferenzierung

Kapitel 4

Erweiterte Verfahren zur Radardatenaufbereitung

4.1 Clutterkorrektur mit Meteosat–Daten

4.1.1 Verfahrensablauf

Im zweiten Schritt erfolgt eine Korrektur des Wolkenversatzes in den Satellitendaten. Abhängig von der Höhe der Wolkenoberfläche tritt mit wachsender Entfernung vom Subsatellitenpunkt ein immer größerer Fehler in der Zuordnung der geographischen Position der Wolke auf, indem sie einer weiteren Entfernung vom Subsatellitenpunkt zugeordnet wird, als es ihrer wahren Position entspricht (Tabelle 4.1).
KAPITEL 4. RADARDATENAUFBEREITUNG

Korrektur des Wolkenversatzes
Rektifizierung auf die räumliche Auflösung der Radardaten
Überlagerung der Radardaten mit den Meteosat-Daten
Eliminierung der Clutterpixel

Abbildung 4.1: Überblick über den Verfahrensablauf zur Clutterfilterung mittels Überlagerung mit Meteosat-Daten.
KAPITEL 4. RADARDATENAUFBEREITUNG

51

\[\psi = 0^\circ \]
\[\psi = 10^\circ \]
\[\psi = 20^\circ \]

\[\phi = 45^\circ \]

<table>
<thead>
<tr>
<th>\psi</th>
<th>\psi</th>
<th>\psi</th>
<th>Richtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>\phi</td>
<td>=45^\circ</td>
<td>=0^\circ</td>
<td>=10^\circ</td>
</tr>
<tr>
<td>15.8</td>
<td>15.9</td>
<td>16.1</td>
<td>N/S</td>
</tr>
<tr>
<td>0.0</td>
<td>4.0</td>
<td>9.3</td>
<td>O/W</td>
</tr>
</tbody>
</table>

\[\phi = 50^\circ \]

<table>
<thead>
<tr>
<th>\psi</th>
<th>\psi</th>
<th>\psi</th>
<th>Richtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>\phi</td>
<td>=50^\circ</td>
<td>=0^\circ</td>
<td>=10^\circ</td>
</tr>
<tr>
<td>19.4</td>
<td>19.5</td>
<td>19.8</td>
<td>N/S</td>
</tr>
<tr>
<td>0.0</td>
<td>4.5</td>
<td>19.2</td>
<td>O/W</td>
</tr>
</tbody>
</table>

\[\phi = 55^\circ \]

<table>
<thead>
<tr>
<th>\psi</th>
<th>\psi</th>
<th>\psi</th>
<th>Richtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>\phi</td>
<td>=55^\circ</td>
<td>=0^\circ</td>
<td>=10^\circ</td>
</tr>
<tr>
<td>24.1</td>
<td>24.2</td>
<td>24.7</td>
<td>N/S</td>
</tr>
<tr>
<td>10.9</td>
<td>11.0</td>
<td>11.1</td>
<td>O/W</td>
</tr>
</tbody>
</table>

Tabelle 4.1: Mißpositionierung eines Meteosatpixels in km bei einer Wolkenhöhe von 12.5 km, vgl. Eriksson (1987) [32].

Betrachtet man desweiteren die Auflösung der Meteosatpixel (in km) in Abhängigkeit von der geographischen Position bei einem gegebenen Öffnungswinkel der Aufnahme von 0.008° sowie einer Flughöhe von 35 800 km, vgl. Scholl (1991) [82].

Tabelle 4.2: Auflösung eines Meteosatpixels in Abhängigkeit von der geographischen Position bei einem gegebenen Öffnungswinkel der Aufnahme von 0.008° sowie einer Flughöhe von 35 800 km, vgl. Scholl (1991) [82].

\[r_e = r_e + h_f \]

und

\[h_f = h_f - h_w \]

wobei \(h_w \) die Wolkenhöhe ist. Der durch eine bestimmte Wolkenhöhe verursachte Versatz in der Zuordnung der geographischen Position läßt sich nun durch Differenzbildung mit den Koordinaten eines mit konstant vorgegebenen Werten für \(r_e \) und \(h_f \) erstellten geokorrigierten Bildes ermitteln.

Im dritten Schritt werden die Meteosat–Daten auf die räumliche Auflösung der Radardaten rektifiziert. Hierbei kommt es durch die Übertragung der Grauwertinformation vom Input- ins Outputbild zu einer Neuordnung der Bildmatrix. Das angewandte Resamplingverfahren beruht auf der „Nearest–Neighbour–Methode“. Diese hat den Vorteil, daß es zu keiner Mittelung der Pixelwerte kommt, die ursprünglichen Werte werden also nicht verändert. Allerdings können sich die Objektstrukturen verschieben.

Eine annähernd zeitgleiche Überlagerung kann aufgrund der zeitlichen Auflösung von Meteosat nur alle 30 Minuten erfolgen. Da Meteosat den interessierenden Bereich bei 50° N circa 7 Minuten früher erfasst, als es der in jeder halben Stunde angegebenen Endzeit eines Scans entspricht, sind jeweils die Azimutscans von 23 und 53 Minuten nach jeder vollen Stunde am geeignetsten für die Überlagerung.
KAPITEL 4. RADARDATENAUFBEREITUNG

Meteosat

<table>
<thead>
<tr>
<th>Wolkenfrei</th>
<th>Bewölkter</th>
<th>Wolkenfrei</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>X-Band-Radar</td>
<td>mit Radarecho</td>
<td>ohne Radarecho</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Tabelle 4.3: Pixelkodierung in den Meteosat- und Radardaten vor der Überlagerung.

<table>
<thead>
<tr>
<th>Wolkenfrei</th>
<th>mit Radarecho</th>
<th>ohne Radarecho</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Bewölkter</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Tabelle 4.4: Pixelkodierung in den Meteosat- und Radardaten nach der Überlagerung.

4.1.2 Fallstudien und Ausblick

bild in diesem Bereich als wolkenfrei klassifizierte Region als Clutter bestätigt wird. Dieser Effekt wird ebenso im zweiten betrachteten Fall (Abbildung 4.3) bestätigt. In diesem Fall wird zur Überlagerung das IR–Meteosatbild verwendet, da das VIS–Bild zur betrachteten Uhrzeit zu dunkel erscheint. Trotz schlechterer räumlicher Auflösung wird der artefaktische Strahl recht deutlich als Clutter erkannt.

Abbildung 4.4 zeigt einige weitere Beispiele für Überlagerungen mit klassifizierten VIS–Bildern des gleichen Tages. Hierbei werden vor allem sich am Bildrand befindende isolierte Pixelcluster als Clutter klassifiziert, was durchaus realistisch scheint.

4.2 Trennung zwischen konvektiven und stratiformen Niederschlagsereignissen

In den Radardaten können konvektive Niederschlagssysteme durch ihre charakteristische Zellstruktur, einen starken horizontalen Gradienten sowie ihre hohen Reflektivitäten relativ gut erkannt werden. Wegen der Größe der Tropfen (zwischen 1 und 5 mm) sind Reflektivitäten zwischen 30 und 50 dBZ (bei Vorkommen von Hagel sogar noch höher) typisch. Sichtbarstes Zeichen für stratiforme Niederschläge in den Radardaten ist das großflächige gleichförmige Niederschlagsgebiet, verbunden mit moderaten Reflektivitäten (< 30 dBZ) (vgl. Raghavan 2003 [73]).

4.2.1 Manuelle Trennung

Um für die automatisierte Trennung einen Referenzdatensatz zur Verfügung zu haben, wird zunächst eine manuelle Trennung vorgenommen.

Exemplarisch zeigt Abbildung 4.6 (oben) für den gesamten Monat August 1999 das Verhältnis des Radarniederschlags zum Stationsniederschlag vor bzw. nach durchgeführter Trennung. Berechnet mit einer einheitlichen Z–R–Beziehung und gemittelt über in diesem Fall 37 Stationen, wird der mittlere Tagesniederschlag (nur auf Regentage bezogen) um circa 23% überschätzt, während er sich nach Anwendung von
KAPITEL 4. RADARDATENAUFBEREITUNG

4.2.2 Automatische Trennung

Abbildung 4.7 (oben) zeigt zwei auf diese Weise erstellte Korrelogramme für die in Abbildung 4.5 dargestellten Beispieltage. In diesem Fall sind die beiden Niederschlagstypen aufgrund der deutlich verschiedenen Steigungskoeffizienten der Korrelogrammkurven gut voneinander unterscheidbar. Die generelle Unterscheidbarkeit konvektiver bzw. stratiformer Ereignisse mittels einer räumlichen Strukturanalyse zeigt sich auch in den mittleren Korrelogrammen, die unter Zugrundelegung der oben erfolgten manuellen Trennung aus zahlreichen (2127) solcher Strukturanalysen erstellt wurden (Abbildung 4.7, unten).
Um eine automatische Trennung von konvektiven und stratiformen Niederschlagsereignissen zu erreichen, werden die aus den Strukturanalysen ermittelten Korrelogramme jeweils an eine Modellkurve der Form e^{ch} angepaßt und der Steigungskoeffizient c als Häufigkeitshistogramm aufgetragen (Abbildung 4.8). Eine geeignete Trennung, bei der mit einer Fehlerwahrscheinlichkeit von rund 24 Prozent auf beiden Seiten die konvektiven von den stratiformen Niederschlagsereignissen unterschieden werden können, ergibt sich bei $c = -0.193$.

Abbildung 4.9 veranschaulicht einen Vergleich der Ergebnisse beider Trennverfahren für die Radarniederschlagsverteilungen von 5 Tagen im August 1998. Hieran wird deutlich, daß die automatisierte Methode vor allem bei den Übergangsphasen von einem Niederschlagstyp zum anderen verzögert reagiert, aber prinzipiell die manuelle Vorgabe recht gut widerspiegelt.
KAPITEL 4. RADARDATENAUFBEREITUNG

Abbildung 4.8: Als Histogramm aufgetragene Steigungskoeffizienten für aus konvektiven und stratiformen Niederschlagsereignissen erstellte Korrelogramme.

4.3 Ableitung von Z–R–Beziehungen

4.3.1 WPM–Methode

Die WPM–Methode wird im folgenden auf die Messungen des Bonner X–Band–Radars sowie der zur Verfügung stehenden Regenwippen mit dem Ziel angewandt,
eine geeignete Z–R–Beziehung für sommerliche konvektive Niederschlagsereignisse im Bonner Raum abzuleiten.

In einem zweiten Schritt werden die kumulativen Wahrscheinlichkeiten von Z und R bestimmt mit

$$V(Z_i) = \int_0^{Z_i} \mathcal{P}(Z) dZ$$ \hspace{1cm} (4.1)

bzw.

$$V(R_i) = \int_0^{R_i} \mathcal{P}(R) dR$$ \hspace{1cm} (4.2)

Es sind dabei $V(Z_i)$ die kumulative Verteilungsfunktion der Radarreflektivitäten bis zur Intensität Z_i, $V(R_i)$ die kumulative Verteilungsfunktion der Regenraten bis zur Intensität R_i, $\mathcal{P}(Z)$ die Wahrscheinlichkeit des Auftretens von Z und $\mathcal{P}(R)$ die Wahrscheinlichkeit des Auftretens von R. Das Ergebnis dieser Berechnungen ist in Abbildung 4.11 dargestellt.
Abbildung 4.11: Kumulative Wahrscheinlichkeiten der Radarreflektivitäten (oben) bzw. der am Boden gemessenen Regenraten (unten) für jeweils neun ausgewählte konvektive Niederschlagsereignisse aus den Monaten Juli und August 1999.

KAPITEL 4. RADARDATENAUFBEREITUNG

4.3.2 Wolkenmodell

Die operationelle Unterscheidung der einzelnen Entwicklungsstadien innerhalb eines konvektiven Niederschlagsereignisses wird in der vorliegenden Arbeit nicht vorgenommen, jedoch wird die Trennung nach konvektiven bzw. nicht konvektiven Ereignissen und die Wahl der hierfür entsprechenden Z–R–Beziehungen durch diese Studie noch einmal bestätigt.

4.4 Advektionskorrektur

Zur Interpolation wird angenommen, daß das Regenband sich mit einer konstanten Geschwindigkeit fortbewegt und dabei seine Intensität linear verändert. Hierzu werden zunächst die Zugrichtung sowie die Zuggeschwindigkeit des Regenbandes
bestimmt. Das interpolierte Niederschlagsfeld ergibt sich dann, indem der Nieder-
schlag, der über jedem Regenpixel fällt, linear über alle in Zugrichtung liegende
Pixel des betrachteten Zeitintervalls interpoliert wird (Abbildung 4.13, rechts). Die
Vorgehensweise wird im folgenden genauer beschrieben.

4.4.1 Berechnung des Windfeldes durch Zellverfolgung

Zur Bestimmung des Verlagerungsvektors einzelner Regenzellen ist es notwendig,
ein automatisiertes Zellverfolgungs–Verfahren zu verwenden. Ein geeignetes stati-
stisches Verfahren stellt die Kreuzkorrelationsmethode dar, die in der vorliegenden
Arbeit eingesetzt wird.\footnote{Die Umsetzung dieses Verfahrens und die im folgenden beschriebenen Erweiterungen erfolgten
zusammen mit Tobias Grimbacher, vgl. auch Grimbacher (2001) [39].}

Hierfür werden zwei aufeinanderfolgende Azimutscans betrachtet, die Ursprungsscan
und Zielscan genannt werden. Der Ursprungsscan wird in gleich große quadratische
Teilgebiete untergliedert. In Anlehnung an Anagnostou & Krajewski (1999) [4], die
in ihrer Studie 10×10 Teilgebiete mit einer Größe von 20×20 Pixel (zu je 2 km \times 2 km) verwenden, werden in der vorliegenden Arbeit ebenfalls 10×10 Teilgebiete,
jedoch mit einer Größe von 10×10 Pixel (zu je 1 km \times 1 km) verwendet.

Für jedes dieser 100 Teilgebiete im Ursprungsscan wird die Kreuzkorrelation mit
verschiedenen Gebieten gleicher Größe im Zielscan innerhalb einer quadratischen
Suchumgebung berechnet. Die Suchumgebung ergibt sich aus der Position des Ur-
sprungsscans, versetzt um den letzten Windvektor, welche um U Pixel in jede Rich-
tung erweitert wird (Abbildung 4.14). Dadurch werden Regenzellen in Bildberei-
chen, die bei der gerade vorherrschenden Windstärke und Windrichtung mit hoher
Wahrscheinlichkeit nicht erreicht werden können, bei der Suche von vornherein aus-
geschlossen. Am Rand des Azimutscans werden nur solche Zielgebiete betrachtet,
bei denen mindestens 75% der Pixel innerhalb des Radargebiets liegen. Damit er-
geben sich bis zu $(2U + 1)^2$ verschiedene Zielgebiete pro Teilgebiet. Bei 5–Minuten
Scans wird U auf 5 gesetzt, bei 15–Minuten Scans wird U gleich 10 gewählt.

Für ein Teilgebiet und für alle seine zugehörigen Zielgebiete werden Mittelwert, Stan-
dardabweichung und Kovarianz der entsprechenden Pixelwerte bestimmt. Daraus
wird dann der Korrelationskoeffizient ρ nach der Formel

\[\rho = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} \]
Abbildung 4.14: Schematische Abbildung zur Festlegung der Suchumgebung.

\[
\rho_{XY} = \frac{\text{cov}_{XY}}{s_X s_Y}
\] \hspace{1cm} (4.3)

berechnet, wobei \(\text{cov}_{XY}\) die Kovarianz der Pixelwerte im Ursprungs- und Zielgebiet darstellt und \(s_X\) beziehungsweise \(s_Y\) die Standardabweichungen. Allerdings wird nun nicht einfach jenes Zielgebiet, für welches sich die beste Korrelation mit dem Ursprungsgebiet ergibt, bedingungslos als verlagertes Ursprungsgebiet angenommen, sondern zuvor jeder berechnete Korrelationskoeffizient \(\rho\) (der Wertebereich von \(\rho\) ist dabei auf positive Korrelationskoeffizienten zu beschränken), mit zwei weiteren Parametern gewichtet.

Das erste Gewicht berücksichtigt das Verhältnis der Mittelwerte der Niederschlagsraten beider Teilgebiete, da ansonsten nur die strukturelle Ähnlichkeit der Felder erfaßt wird. Somit wird verhindert, daß eine stark regnende Zelle mit einer schwach regnenden vertauscht wird, die nur zufällig dieselbe Struktur und damit einen sehr hohen Korrelationskoeffizienten aufweist. Diese Problematik wird schematisch in Abbildung 4.15 veranschaulicht. Zelle 0 stellt das Teilgebiet im Ursprungsscan dar, Zelle 1 und Zelle 2 sind zwei potentielle Trefferkandidaten im Zielscan. Durch eine ähnliche Struktur der Pixelwerte bekommt Zelle 2 mit \(\rho_{02} = 0.999\) zunächst einen höheren Korrelationskoeffizienten zugewiesen als Zelle 1 mit \(\rho_{01} = 0.995\). Zelle 1 weist jedoch im Vergleich zu Zelle 2 deutlich höhere Regenraten auf und stellt mit großer Wahrscheinlichkeit die richtigere Zielzelle dar.
In diesem Beispiel ergibt sich für Zelle 0 als Mittelwert \(m_0 = 16.375 \), für Zelle 1 erhält man \(m_1 = 14.563 \) und für Zelle 2 gilt \(m_2 = 8.250 \). Dadurch ergibt sich für Zelle 1 ein gewichteter Korrelationskoeffizient von \(0.885 = 0.995 \times (14.563/16.375) \) und für Zelle 2 ein gewichteter Korrelationskoeffizient von \(0.504 = 0.999 \times (8.250/16.375) \). Somit erzielt Zelle 1 ein höheres Resultat als Zelle 2 und wird daher zur Bestimmung des Verlagerungsvektors verwendet.

Abbildung 4.15: Schematische Darstellung zum Zellverfolgungs-Verfahren. Zelle 0 stellt ein Teilgebiet im Ursprungsscan dar, Zelle 1 und Zelle 2 sind zwei potentielle Trefferzellen im Zielscan. Die Zahlenwerte stellen die Regenraten für die einzelnen Pixel dar.

Bei der Bildung der Mittelwertverhältnisse muß darauf geachtet werden, daß der Wertebereich des gewichteten Korrelationskoeffizienten zwischen 0 und 1 bleibt. Dies wird dadurch erreicht, daß jeweils der kleinere der beiden Mittelwerte durch den größeren dividiert wird.

Das zweite Gewicht berücksichtigt die Lage des betrachteten Teilgebiets innerhalb der Suchumgebung. Als Kriterium dient hier der Abstand zwischen tatsächlicher Verschiebung und vermuteter Verschiebung. Je näher der Verlagerungsvektor des betrachteten Teilgebiets am vorhergehenden Windvektor liegt, desto höher ist auch das ihm zugewiesene Gewicht.

Insgesamt ergibt sich der gewichtete Korrelationskoeffizient \(\bar{\rho}_{XY} \) als

\[
\bar{\rho}_{XY} = \rho_{XY} \cdot \min \left\{ \frac{m_X}{m_Y}, \frac{m_Y}{m_X} \right\} \cdot \left(1 - c_o \frac{\left| \bar{v}_Y - \bar{v}_a \right|}{\bar{v}_{max}} \right) \tag{4.4}
\]
wobei m_X und m_Y die Mittelwerte der Teilgebiete X bzw. Y sind, \vec{v}_Y der Verschiebungsvektor für das Zielgebiet Y, \vec{v}_a der vorhergehende Windvektor und $|\vec{v}_{max}|$ die maximal auftretende Windstärke. Der Faktor c_v soll den Einfluß der Verschiebung im Verhältnis zum ersten Gewicht limitieren und wird auf 0.4 gesetzt. Als Schwellwert für die maximal auftretende Windstärke wird 100 km/h gewählt.

Zwei weitere Schwellwerte sind die Mindestgröße des als Treffer noch verwertbaren Korrelationskoeffizienten (0.1) sowie der minimale Niederschlagswert einer Regen- zelle (0.1 mm), die als solche überhaupt verfolgt werden soll.

Zum Schluß wird als Windvektor des Teilgebiets der Verschiebungsvektor für das Zielgebiet mit dem größten gewichteten Korrelationskoeffizienten gewählt. Das ganze Verfahren wird auf alle 100 Teilgebiete des Ursprungsscans angewandt.

Die auf diese Weise ermittelten Windfelder zeigen in der Regel ein recht homogenes Bild (Abbildung 4.16). Es erscheint daher zulässig, aus den zahlreichen, für alle Teilgebiete einzeln ermittelten Windvektoren einen jeweils mittleren Windvektor zu bestimmen, der die meteorologische Situation zum momentanen Zeitpunkt repräsentiert und für die anschließende Interpolation herangezogen wird. Der so ermittelte Windvektor wird dann als Ausgangsvektor für die Zellverfolgung im nächsten Azimutscan verwendet.

4.4.2 Interpolation des Niederschlagsfeldes

Der ermittelte mittlere Windvektor wird nun dazu verwendet, den Niederschlag zwischen Ursprungs- und Zielscan zu interpolieren. Unter Annahme einer linearen Fortbewegung des Regenfeldes lautet die Gleichung für die zeitliche Interpolation:

\[R(\vec{u}) = \frac{1}{T(T+1)} \sum_{t=0}^{T} \left[(T - \Delta T)R_{1} \left(\vec{u} - \frac{\Delta T}{T} \vec{v} \right) + \Delta T R_{2} \left(\vec{u} + \frac{T - \Delta T}{T} \vec{v} \right) \right] \quad (4.5) \]

Hierbei sind \(T \) das Zeitintervall zwischen zwei aufeinanderfolgenden Bildern, \(\Delta T \) das Zeitintervall (1 Minute) der diskreten zeitlichen Interpolation, \(\vec{v} \) der Windvektor, \(R(\vec{u}) \) die Regenrate an der Pixelstelle \(\vec{u} = (x, y) \) und \(R_{1} \) bzw. \(R_{2} \) die Regenraten an den angegebenen Pixelstellen im Ursprungsscan 1 und Zielscan 2.

4.4.3 Fallbeispiele

I, an der im Zeitraum zwischen 10:38 Uhr und 10:51 Uhr UTC 2.6 mm Niederschlag registriert wurden. Ohne Anwendung der Advektionskorrektur liegt diese Station genau in der niederlagsfreien Zone zwischen zwei Konvektionsbändern, die Radarmessung beträgt in diesem Fall 0.5 mm. Nach Durchführung der Advektionskorrektur hingegen wird auch diese Zwischenzone durch die Interpolation erfaßt; die Radarmessung beträgt nun 2.0 mm.

Abbildung 4.18: Niederschlagsverteilungen für die Tagessummen am 29.7.98 (oben) sowie für die Monatssummen für Juni 1998 (unten), ermittelt jeweils ohne (links) bzw. mit Advektionskorrektur (rechts).
Kapitel 5

Niederschlagsquantifizierung mittels statistischer objektiver Analyse

method for the analysis of meteorological fields in such a way that the "optimal" solution, which minimizes the interpolation error by an appropriate choice of posterior weights, results. The resulting analysis error variance is then smaller than the minimum error variance of the observational data. The weights to be determined are only truly "optimal" if it is guaranteed that both the observational and background error variances can be correctly specified. If this is not the case, the method is no longer "optimal" and is called statistical interpolation (vgl. Daley 1991 [20]).

Generally, statistical objective analysis (SOA) allows observational data with a faulty background field of the same variable to be combined to generate an "update field", the so-called analysis field, with reduced observation and analysis errors. The method of Pereira Fo & Crawford (1999) [69], which is modified and adapted to the Bonn radar data in this work, is the use of sparsely and temporally highly resolved radar data as background grid for the precipitation field. The analyzed radar precipitation is obtained by pixel correction of the radar measurement with the weighted sum of the differences between the radar measurement and the ground measurement. The problem is now to choose the interpolation weights so that the error is minimized. Therefore, most methods make assumptions about the behavior of the variable. The following assumptions are made for the SOA algorithm:

1. The observational and background errors are uncorrelated (also independent from each other),
2. The observational and background errors are unbiased ("unbiased"),
3. The observational errors are uncorrelated,
4. The background error is homogeneous (space-independent).

Allgemein formuliert erlaubt die statistische objektive Analyse (SOA), Beobachtungsdaten mit einem fehlerhaften Hintergrundfeld der gleichen Meßgröße zu kombinieren, um ein „update–Feld“, das sogenannte Analysefeld, mit reduziertem Beobachtungs- und Analysefehler, zu generieren. Neu an dem Verfahren von Pereira Fo & Crawford (1999) [69], das in der vorliegenden Arbeit modifiziert und auf die Bonner Radardaten angepaßt wird, ist die Heranziehung von räumlich und zeitlich hochaufgelösten Radardaten als Hintergrundgitter für das Niederschlagsfeld. Der analysierte Radarniederschlag ergibt sich, indem die Radarmessung pixelweise mit der Summe der gewichteten Differenzen zwischen Radarmessung und Bodenmessung korrigiert wird. Das Problem besteht nun darin, die Interpolationsgewichte so zu wählen, daß der Fehler minimiert wird. Deshalb treffen die meisten Verfahren Annahmen über das Verhalten der Variablen. Für den SOA–Algorithmus werden a priori folgende Annahmen getroffen:

1. die Beobachtungs- und Hintergrundfehler sind unkorreliert (also voneinander unabhängig),
2. die Beobachtungs- und Hintergrundfehler sind erwartungstreu („unbiased“),
3. die Beobachtungsfehler sind unkorreliert,
4. der Hintergrundfehler ist homogen (ortsunabhängig).

5.1 Herleitung der Modellgleichungen

Die grundlegende Analyse–Gleichung des SOA–Verfahrens lautet

\[P_a(x_i, y_i) = P_r(x_i, y_i) + \sum_{k=1}^{K} w_{ik} [P_g(x_k, y_k) - P_r(x_k, y_k)] \] (5.1)
mit
\[\begin{align*}
P_a(x_i, y_i) &= \text{Analysierter Niederschlag (mm) am Gitterpunkt } (x_i, y_i), \\
P_r(x_i, y_i) &= \text{Radarmessung des Niederschlags (mm) am Gitterpunkt } (x_i, y_i), \\
P_g(x_k, y_k) &= \text{Stationsmessung des Niederschlags (mm) am Stationspunkt } (x_k, y_k), \\
P_r(x_k, y_k) &= \text{Radarmessung des Niederschlags (mm) am Stationspunkt } (x_k, y_k), \\
w_{ik} &= \text{noch nicht bestimmtes a posteriori Gewicht,} \\
K &= \text{Anzahl der Regenwippen (bzw. Anzahl der Beobachtungspunkte).}
\end{align*} \]

Gleichung 5.1 kann auch etwas einfacher formuliert werden, wenn folgende Definitionen gelten: \(P_a(x_i, y_i) = a_i \) („analysis”), \(P_g(x_k, y_k) = o_k \) („observation”), \(P_r(x_i, y_i) = b_i \) und \(P_r(x_k, y_k) = b_k \) („background”).

Die Analyse-Gleichung lautet dann:
\[a_i = b_i + \sum_{k=1}^{K} w_{ik}(o_k - b_k) \quad (5.2) \]

Hierbei stellen \(a_i - b_i \) das Analyse-Inkrement und \(o_k - b_k \) das Beobachtungs-Inkrement dar. Die Punkte \((x_i, y_i)\) gehören dabei zu einem regelmäßigen Pixelgitter, während die Punkte \((x_k, y_k)\) unregelmäßig im zwei-dimensionalen Raum verteilt sind. Sowohl die Beobachtungs- als auch die Hintergrundmessung enthält einen Fehler. \(t(x_i, y_i) \) und \(t(x_k, y_k) \) werden als die wahren Werte („true”) an den Pixelgitterpunkten \((x_i, y_i)\) und den Stationspunkten \((x_k, y_k)\) definiert. Werden die wahren Werte \(t_i = t(x_i, y_i) \) am Gitterpunkt \((x_i, y_i)\) auf beiden Seiten von Gleichung 5.2 subtrahiert, ergibt sich
\[a_i - t_i = b_i - t_i + \sum_{k=1}^{K} w_{ik}(o_k - b_k) \quad (5.3) \]

Es wird angenommen, daß Beobachtungs- und Hintergrundfehler frei von Bias sind, also der Erwartungswert des Fehlers gleich Null ist (vgl. Annahme Nr. 2), so daß gilt:
\[\langle b_i - t_i \rangle = \langle b_k - t_k \rangle = \langle o_k - t_k \rangle = 0 \quad (5.4) \]
Die eckigen Klammern ⟨⟩ stehen hierbei für den Erwartungswert. Werden beide Seiten von Gleichung 5.3 quadriert und der Erwartungswert genommen, ergibt sich

\[
\langle (a_i - t_i)^2 \rangle = \langle (b_i - t_i)^2 \rangle + 2 \sum_{k=1}^{K} w_{ik} \langle (o_k - b_k)(b_i - t_i) \rangle \\
+ \sum_{k=1}^{K} \sum_{l=1}^{K} w_{ik} w_{il} \langle (o_k - b_k)(o_l - b_l) \rangle
\]

(5.5)

Dabei wird \(E^2_{ai} = \langle (a_i - t_i)^2 \rangle\) als die erwartete Analysefehlervarianz am Gitterpunkt \((x_i, y_i)\), und \(E^2_{bi} = \langle (b_i - t_i)^2 \rangle\) als die erwartete Hintergrundfehlervarianz am Gitterpunkt \((x_i, y_i)\) bezeichnet. Weiterhin ist \(\langle (o_k - b_k)(b_i - t_i) \rangle\) die Kovarianz zwischen Hintergrundfehler und Beobachtungs–Inkrement sowie \(\langle (o_k - b_k)(o_l - b_l) \rangle\) die Kovarianz zwischen den Beobachtungs–Inkrementen an den Stationspunkten \((x_k, y_k)\) und \((x_l, y_l)\).

Das Problem besteht nun darin, die Gewichte \(w_{ik}\) so zu bestimmen, daß Gleichung 5.5 minimiert wird. Beim SOA–Verfahren wird hierzu nach den Gewichten differenziert, während dieser Ausdruck beim Kriging–Verfahren weiter umgeformt wird. Differenzieren in Bezug auf jedes der Gewichte \(w_{ik}\) (mit \(1 \leq k \leq K\)) führt zu

\[
\frac{\partial E^2_{ai}}{\partial w_{ik}} = 2\langle (o_k - b_k)(b_i - t_i) \rangle + 2 \sum_{l=1}^{K} w_{il} \langle (o_k - b_k)(o_l - b_l) \rangle
\]

(5.6)

Wird die Ableitung zu Null gesetzt, ergibt sich

\[
\sum_{l=1}^{K} w_{il} \langle (o_k - b_k)(o_l - b_l) \rangle = -\langle (o_k - b_k)(b_i - t_i) \rangle
\]

(5.7)

Der rechte Term von Gleichung 5.7 kann auch umgeformt werden zu

\[
\langle (o_k - b_k)(b_i - t_i) \rangle = \langle (o_k - t_k)(b_i - t_i) \rangle - \langle (b_k - t_k)(b_i - t_i) \rangle
\]

(5.8)

Terme der Form \(\langle (o_k - t_k)(b_i - t_i) \rangle\) sind Kovarianzen zwischen dem Hintergrundfehler und dem Beobachtungsfehler. Unter Berücksichtigung von Annahme Nr. 1 kann der erste Term der rechten Seite von Gleichung 5.8 vernachlässigt werden, denn sind zwei Variablen unkorreliert, verschwindet die Kovarianz.
KAPITEL 5. STATISTISCHE OBJEKTEIVE ANALYSE

Nun wird auch der Term in der Summe der linken Seite von Gleichung 5.7 umgeformt, indem man die folgende Gleichung verwendet:

\[\langle (o_k - b_k)(o_l - b_l) \rangle = \langle (o_k - t_k)(o_l - t_l) \rangle + \langle (b_k - t_k)(b_l - t_l) \rangle \] (5.9)

Die sich ergebenden Terme auf der rechten Seite von Gleichung 5.9 stellen jeweils Kovarianzen des Hintergrundfehlers sowie des Beobachtungsfehlers dar.

Setzt man die Umformungen 5.8 und 5.9 in Gleichung 5.7 ein, erhält man schließlich

\[\sum_{l=1}^{K} w_{il} \left[\langle (o_k - t_k)(o_l - t_l) \rangle + \langle (b_k - t_k)(b_l - t_l) \rangle \right] = \langle (b_k - t_k)(b_l - t_l) \rangle \] (5.10)

Nun wird Gleichung 5.10 noch normalisiert, um mit dimensionslosen Größen rechnen zu können. Dazu wird zunächst ein neuer Ausdruck für die Gewichte definiert:

\[w_{il} = \frac{\sqrt{\langle (b_k - t_k)^2 \rangle}}{\langle (b_l - t_l)^2 \rangle} \cdot W_{il} \] (5.11)

In Gleichung 5.10 eingesetzt und den Zähler auf die rechte Seite gebracht, folgt hieraus:

\[\sum_{l=1}^{K} \frac{1}{\sqrt{\langle (b_l - t_l)^2 \rangle}} \cdot W_{il} \cdot \left[\langle (o_k - t_k)(o_l - t_l) \rangle + \langle (b_k - t_k)(b_l - t_l) \rangle \right] = \frac{\langle (b_k - t_k)(b_l - t_l) \rangle}{\sqrt{\langle (b_l - t_l)^2 \rangle}} \]

bzw.

\[\sum_{l=1}^{K} W_{il} \cdot \left(\frac{\langle (o_k - t_k)(o_l - t_l) \rangle}{\sqrt{\langle (b_l - t_l)^2 \rangle}} + \frac{\langle (b_k - t_k)(b_l - t_l) \rangle}{\sqrt{\langle (b_l - t_l)^2 \rangle}} \right) = \frac{\langle (b_k - t_k)(b_l - t_l) \rangle}{\sqrt{\langle (b_l - t_l)^2 \rangle}} \] (5.12)

Nun wird Gleichung 5.12 durch \(\sqrt{\langle (b_k - t_k)^2 \rangle} \) dividiert, was zu

\[\sum_{l=1}^{K} W_{il} \cdot \left(\frac{\langle (b_k - t_k)(b_l - t_l) \rangle}{\sqrt{\langle (b_k - t_k)^2 \rangle} \langle (b_l - t_l)^2 \rangle} + \frac{\langle (o_k - t_k)(o_l - t_l) \rangle}{\sqrt{\langle (b_k - t_k)^2 \rangle} \langle (b_l - t_l)^2 \rangle} \right) = \frac{\langle (b_k - t_k)(b_l - t_l) \rangle}{\sqrt{\langle (b_k - t_k)^2 \rangle} \langle (b_l - t_l)^2 \rangle} \] (5.13)
führt. Dies ist gleichbedeutend mit

\[\sum_{l=1}^{K} W_{il} (\rho_{kl} + \epsilon_{kl}^2) = \rho_{ik} \quad 1 \leq k \leq K \quad (5.14) \]

wobei

\[\rho_{kl} = \text{Hintergrundfehler–Kreuzkorrelation an den Stationspunkten } k \text{ und } l \]
\[\rho_{ik} = \text{Hintergrundfehler–Kreuzkorrelation zwischen Gitterpunkt } i \text{ und Stationspunkt } k \]
\[W_{il} = \text{a posteriori Gewicht} \]
\[\epsilon_{kl}^2 = \text{normalisierter Beobachtungsfehler} \]

Da die Voraussetzung gilt, daß die Beobachtungsfehler unkorreliert sind (vgl. Annahme Nr. 3), folgt \(\epsilon_{kl}^2 = 0 \) für \(k \neq l \). Damit wird \((\epsilon_{kl}^2) \) zu einer Diagonalmatrix mit den Einträgen \(\epsilon_{kk}^2 = \langle (o_k - t_k)^2 \rangle / \langle (b_k - t_k)^2 \rangle \) bzw. \(\epsilon_{kk}^2 = E_{ok}^2 / E_{bk}^2 \) (mit der Beobachtungsfehlervarianz \(E_{ok}^2 \) und der Hintergrundfehlervarianz \(E_{bk}^2 \)).

Gleichung 5.14 ist dimensionslos und kann herangezogen werden, um die a posteriori–Gewichte zu bestimmen. Werden die auf diese Weise bestimmten Gewichte in die Analyse–Gleichung (5.1) eingesetzt, ergibt sich für \(P_a(x_i, y_i) \) eine Minimum–Varianzschätzung von \(P_l(x_i, y_i) \), dem wahren Niederschlagswert am Gitterpunkt \((x_i, y_i) \).

Dazu wird zuerst Gleichung 5.5 in eine normalisierte Form gebracht. Zunächst wird — wie in Gleichung 5.8 — der Ausdruck \(\langle (o_k - b_k)(b_l - t_l) \rangle \) umgeformt, so daß Gleichung 5.5 nun lautet:

\[
E_{ai}^2 = E_{bi}^2 + 2 \sum_{k=1}^{K} w_{ik} \langle (o_k - t_k)(b_l - t_l) \rangle - \langle (b_k - t_k)(b_l - t_l) \rangle + \sum_{k=1}^{K} \sum_{l=1}^{K} w_{ik} w_{il} \langle (o_k - b_k)(o_l - b_l) \rangle # (5.15)
\]
KAPITEL 5. STATISTISCHE OBJEKTIVE ANALYSE

Wegen Annahme Nr. 1 entfällt wiederum der Term \(\langle (o_k - t_k)(b_i - t_i) \rangle \). Damit ergibt sich

\[
E_{ai}^2 = E_{bi}^2 - 2 \sum_{k=1}^{K} w_{ik} \langle (b_k - t_k)(b_i - t_i) \rangle + \sum_{k=1}^{K} \sum_{l=1}^{K} w_{ik} w_{il} \langle (o_k - b_k)(o_l - b_l) \rangle \tag{5.16}
\]

Nach Anwendung von Gleichung 5.9 und Gleichung 5.10 ergibt sich:

\[
E_{ai}^2 = E_{bi}^2 - \sum_{k=1}^{K} w_{ik} \langle (b_k - t_k)(b_i - t_i) \rangle \tag{5.17}
\]

Werden beide Seiten von Gleichung 5.17 noch durch \(E_{bi}^2 \) dividiert, erhält man:

\[
\frac{\langle (a_i - t_i)^2 \rangle}{\langle (b_i - t_i)^2 \rangle} = 1 - \sum_{k=1}^{K} w_{ik} \frac{\langle (b_k - t_k)(b_i - t_i) \rangle}{\langle (b_i - t_i)^2 \rangle} \tag{5.18}
\]

Nun wird noch der in Gleichung 5.11 bereits eingeführte Ausdruck für die Gewichte \(w_{ik} \) eingesetzt und der linke Term durch \(\epsilon_{ai}^2 \) ersetzt, so daß Gleichung 5.18 lautet:

\[
\epsilon_{ai}^2 = 1 - \sum_{k=1}^{K} W_{ik} \cdot \frac{\langle (b_k - t_k)(b_i - t_i) \rangle}{\langle (b_i - t_i)^2 \rangle} \cdot \sqrt{\frac{\langle (b_i - t_i)^2 \rangle}{\langle (b_k - t_k)^2 \rangle}} \tag{5.19}
\]

beziehungsweise

\[
\epsilon_{ai}^2 = 1 - \sum_{k=1}^{K} W_{ik} \cdot \frac{\langle (b_k - t_k)(b_i - t_i) \rangle}{\sqrt{\langle (b_k - t_k)^2 \rangle} \langle (b_i - t_i)^2 \rangle} \tag{5.19}
\]

Gleichung 5.19 kann nun auch so formuliert werden:

\[
\epsilon_{ai}^2 = 1 - \sum_{l=1}^{K} \rho_{ik} W_{il} \tag{5.20}
\]
KAPITEL 5. STATISTISCHE OBJEKTE ANALYSE

wobei $\epsilon^2_{ai} = E^2_{ai}/E^2_{bi}$ die normalisierte erwartete Analysefehlervarianz (engl. Nexerva = „normalized expected analysis error variance“) darstellt. Die Analysefehlervarianz steht bereits vor Anwendung der Analysegleichung fest und eignet sich damit gut zur räumlichen Konfiguration eines optimalen Meßnetzes. Im allgemeinen ist die Analysefehlervarianz für ein betrachtetes Pixel umso kleiner, je näher der Analyse–Gitterpunkt an einem Beobachtungspunkt liegt.

5.2 Anwendung des SOA–Verfahrens

5.2.1 Bestimmung der Hintergrundfehlermatrix

Da der wahre Niederschlagswert unbekannt ist, muß der Hintergrundfehler geschätzt werden. Die Hintergrundfehlermatrix ist die wichtigste Komponente im ganzen SOA–Algorithmus, da sie die Genauigkeit der Analyse in erheblichem Maße beeinflußt.

niert als
\[
\rho_{kl} = \frac{\langle (P_r(x_k, y_k) - P_t(x_k, y_k))(P_r(x_l, y_l) - P_t(x_l, y_l)) \rangle}{\sqrt{\langle (P_r(x_k, y_k) - P_t(x_k, y_k))^2 \rangle \langle (P_r(x_l, y_l) - P_t(x_l, y_l))^2 \rangle}}
\]
(5.21)

Zur praktischen Berechnung wird die Kreuzkorrelation \(\rho_{kl} = \rho((x_k, y_k), (x_l, y_l)) \) durch ein eindimensionales Korrelogramm \(\rho(h) \), das nur noch von dem Abstand \(h \) zweier Pixelpunkte \((x_k, y_k) \) und \((x_l, y_l) \) abhängt, ersetzt. Dabei liegt die Annahme zugrunde, daß der räumliche Zusammenhang nicht vom Ort, sondern nur vom Abstand der Beobachtungspunkte abhängt (Stationaritätsannahme, siehe Kapitel 3.1.2). Eine möglicherweise vorhandene räumliche Anisotropie wird auf diese Weise allerdings nicht berücksichtigt (vgl. Annahme 4). Neben der Schätzung der Kreuzkorrelation kann das Korrelogramm auch zur Beschreibung der räumlichen Struktur des Niederschlagsfeldes verwendet werden, siehe Kapitel 4.2.2.

Das Korrelogramm wird nun durch ein räumliches Mittel, statt dem sonst üblichen zeitlichen Mittel, bestimmt. Somit ist das Korrelogramm \(\rho(h) \) für den Abstand \(h \) gegeben als die mittlere Kreuzkorrelation über alle (gleich großen) Teilgebiete mit Abstand \(h \). Statt jedoch alle möglichen Teilgebiete zu betrachten, wird aus Effizienzgründen jeweils ein Teilgebiet im zentralen Bildbereich festgehalten. Zu diesem Referenzgebiet wird die Kreuzkorrelation mit allen Teilgebieten mit Abstand \(h \) in horizontaler, vertikaler und diagonaler Richtung (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°) berechnet und daraus das Mittel gebildet (Abbildung 5.2). Der Abstand \(h \) wird mit einer Auflösung von \((1 + \sqrt{2})/2 \approx 1.21 \) km bis zu einem Maximum von circa 30 km diskretisiert.

Als günstiger Wert wurde für die Seitenlänge der Teilgebiete empirisch 40 × 40 Pixel ermittelt. Dazu wurden für den Monat September 1998 stufenweise die Seitenlängen der Teilgebiete variiert und anhand der Tagessummen der nicht in die SOA–Berechnung einbezogenen Stationen des Clusters II die RMS–Differenzen zwischen Stationswert und Radarwert berechnet (Abbildung 5.1). Hier zeigt sich, daß sich die RMS–Differenz ab 40 km nicht mehr wesentlich verringert. Da der maximal mögliche Abstand \(h \) jedoch mit steigender Seitenlänge kontinuierlich abnimmt, erscheint dieser Wert als ein guter Kompromiß.
Abbildung 5.1: RMS–Differenzen zwischen analysierten Radardaten und Stationsdaten (Stationscluster II auf Tagessummenbasis) für verschiedene Seitenlängen \(U \) der Teilgebiete im September 1998.

In der Regel ist das Korrelogramm eine monoton fallende Funktion. Mit wachsendem Abstand zwischen zwei Punkten nimmt die räumliche Korrelation zwischen zwei Punkten ab, bis sie schließlich gegen Null konvergiert. Die Monotonie des Korrelogramms ist eine notwendige Voraussetzung für die positive Definitheit der Hintergrundfehlermatrix und damit der Anwendbarkeit des SOA–Verfahrens (vgl. Weber & Talkner 1993 [95]). Daher werden die Werte des ermittelten (empirischen) Korrelogramms mittels der Methode der kleinsten Quadrate durch eine kontinuierliche Modellfunktion approximiert, welche den beiden Bedingungen \(\rho(h) \) ist positiv und monoton fallend und \(\rho(0) = 1 \) genügt. In der vorliegenden Arbeit wird eine Funktion der Form \(\rho(h) = e^{ch} \) verwendet. Der Steigungskoeffizient \(c \) wird dabei für jede stündliche Niederschlagsverteilung neu berechnet.

5.2.2 Bestimmung des Beobachtungsfehlers und Initialisierung der Korrelationsmatrizen

Im nächsten Schritt müssen die Werte für die normalisierten Beobachtungsfehler \(\epsilon_{kk}^2 = \frac{\text{im}^2}{\text{om}^2} \) bestimmt werden. Die Meßgenauigkeit wird bei den zeitlich hochaufgelösten Regenwippen mit 0.1 mm angegeben. Dieser Wert wird für alle Wippen als konstant angenommen.
Abbildung 5.2: Abgrenzung eines zentralen Referenzgebietes zur Erstellung der Hintergrundfehler–Kreuzkorrelation aus den Radardaten.

Desweiteren müssen die Matrix \((\rho_{kl} + \epsilon_{kl}^2)\) sowie der Spaltenvektor \(\rho_{ik}\) initialisiert werden. Zunächst werden hierzu die Distanzen aller Stationen untereinander sowie die Distanzen aller Radarpixel zu allen Stationen (in km) berechnet. Dieser Schritt muß nur wiederholt werden, wenn sich die Anzahl \(K\) der vorhandenen Stationen ändert. Damit ergeben sich eine \((K \times K)\) Matrix für die Distanzen der Stationen untereinander sowie eine \((K \times \text{Pixelanzahl})\) Matrix für die Distanzen der Stationen zu allen Radarpixeln. In diesem Fall beträgt die Pixelanzahl \(100 \times 100 (= 10000)\) Pixel (siehe Kapitel 3.2.1). Analog ergeben sich für die Kreuzkorrelationen, die mittels der approximierten Modellfunktionen aus den Distanzmatrizen sofort bestimmt werden können.

5.2.3 Lösung des Gleichungssystems

Zur Bestimmung der Gewichte ergibt sich aus Gleichung 5.14 folgendes \(K \times K\) Gleichungssystem:

\[
\begin{align*}
(r_{11} + \epsilon_{11}^2)W_{i1} + r_{12}W_{i2} + \cdots + r_{1K}W_{iK} &= r_{i1} \\
\rho_{21}W_{i1} + (r_{22} + \epsilon_{22}^2)W_{i2} + \cdots + r_{2K}W_{iK} &= r_{i2} \\
\vdots & \qquad \vdots \\
(\rho_{K1}W_{i1} + \rho_{K2}W_{i2} + \cdots + (\rho_{KK} + \epsilon_{KK}^2)W_{iK} &= r_{iK}
\end{align*}
\]
Mit der quadratischen Matrix $A = (\rho_{kl} + \epsilon_{kl}^2)$ folgt $A \cdot \tilde{W}_i = \tilde{\rho}_i$ und somit für die Gewichte $\tilde{W}_i = A^{-1} \cdot \tilde{\rho}_i$. Die Inversion der Matrix A erfolgt mittels LR-Zerlegung (vgl. Press et al. 1992 [72]) und muß nur einmal pro SOA–Lauf durchgeführt werden. Zur Berechnung der Gewichte \tilde{W}_i muß dann nur für jedes Radarpixel (x_i, y_i) eine Matrix–Vektor–Multiplikation durchgeführt werden. Aufgrund der Homogenitätsbedingung (vgl. Annahme 4) gilt, daß die Gewichte der normalisierten und nicht normalisierten Form gleich sind, also $w_{ik} = W_{ik}$ (vgl. Daley 1991 [20]). Mit diesen Gewichten kann die Analysegleichung des SOA–Verfahrens (Gleichung 5.1) auf jedes Radarpixel angewendet und eine neue Niederschlagsverteilung berechnet werden.

5.2.4 Fallbeispiele

Im folgenden werden die oben beschriebenen Arbeitsschritte exemplarisch an zwei ausgewählten Fallbeispielen verdeutlicht. Das SOA–Verfahren wird dabei jeweils auf mit Biaskorrektur und Advektionskorrektur vorbehandelte Radardaten angewandt.

Am 14. August 1999 überquerte ein Frontensystem Deutschland, das vielerorts für kräftige Schauer und Gewitter sorgte (Tabelle B.7). Dieses Regenerereignis wies von den verfügbaren Fällen des Jahres 1999 die höchsten Niederschlagswerte im Meßgebiet auf. Der mittlere Tagesniederschlag, bezogen auf insgesamt 37 Stationen beider Cluster, betrug rund 20 mm, der maximale an Station 10 (Cluster II) registrierte Tagesniederschlag rund 31 mm. Die Radarmessung zeigt an diesem Tag deutlich niedrigere Werte als die Stationsmessungen (Abbildung 5.3, unten). Zunächst wird die Strukturanalyse zur Ermittlung der Korrelogrammfunktion durchgeführt. Die sich ergebende approximierte Funktion lautet in diesem Fall $\rho(h) = e^{-0.0977 \cdot h}$ (Abbildung 5.4). Für die Distanzen zwischen den Stationen des Clusters I ergibt sich folgende (16×16) Matrix (Angaben in km, Stationsnummer fettgedruckt):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>10.0</td>
<td>48.8</td>
<td>26.6</td>
<td>26.8</td>
<td>29.0</td>
<td>33.4</td>
<td>39.1</td>
<td>50.1</td>
<td>45.3</td>
<td>40.8</td>
<td>38.6</td>
<td>47.0</td>
<td>45.2</td>
<td>49.8</td>
<td>50.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10.0</td>
<td>0.0</td>
<td>43.4</td>
<td>28.9</td>
<td>30.3</td>
<td>36.1</td>
<td>41.1</td>
<td>46.1</td>
<td>56.2</td>
<td>51.1</td>
<td>45.2</td>
<td>42.4</td>
<td>49.3</td>
<td>46.6</td>
<td>50.5</td>
<td>50.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>48.8</td>
<td>43.4</td>
<td>0.0</td>
<td>33.2</td>
<td>36.7</td>
<td>50.6</td>
<td>55.7</td>
<td>55.5</td>
<td>57.5</td>
<td>52.8</td>
<td>43.6</td>
<td>40.2</td>
<td>36.9</td>
<td>31.9</td>
<td>30.5</td>
<td>26.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>26.6</td>
<td>28.9</td>
<td>33.2</td>
<td>0.0</td>
<td>3.6</td>
<td>17.5</td>
<td>22.8</td>
<td>24.0</td>
<td>30.5</td>
<td>25.1</td>
<td>17.3</td>
<td>14.0</td>
<td>20.6</td>
<td>18.6</td>
<td>23.3</td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>26.8</td>
<td>30.3</td>
<td>36.7</td>
<td>3.6</td>
<td>0.0</td>
<td>13.9</td>
<td>19.2</td>
<td>20.5</td>
<td>27.5</td>
<td>22.1</td>
<td>15.0</td>
<td>12.2</td>
<td>20.2</td>
<td>19.1</td>
<td>24.1</td>
<td>26.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>29.0</td>
<td>36.1</td>
<td>50.6</td>
<td>17.5</td>
<td>13.9</td>
<td>0.0</td>
<td>5.7</td>
<td>10.0</td>
<td>21.4</td>
<td>17.1</td>
<td>16.4</td>
<td>16.6</td>
<td>26.8</td>
<td>28.2</td>
<td>33.5</td>
<td>36.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>33.4</td>
<td>41.1</td>
<td>55.7</td>
<td>22.8</td>
<td>19.2</td>
<td>5.7</td>
<td>0.0</td>
<td>6.7</td>
<td>18.8</td>
<td>15.6</td>
<td>18.0</td>
<td>19.2</td>
<td>29.1</td>
<td>31.3</td>
<td>36.5</td>
<td>40.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>39.1</td>
<td>46.1</td>
<td>55.5</td>
<td>24.0</td>
<td>20.5</td>
<td>10.0</td>
<td>6.7</td>
<td>0.0</td>
<td>12.1</td>
<td>9.2</td>
<td>14.0</td>
<td>16.3</td>
<td>25.1</td>
<td>28.1</td>
<td>33.0</td>
<td>37.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>50.1</td>
<td>56.2</td>
<td>57.5</td>
<td>30.5</td>
<td>27.5</td>
<td>21.4</td>
<td>24.8</td>
<td>12.1</td>
<td>0.0</td>
<td>5.4</td>
<td>14.2</td>
<td>17.8</td>
<td>21.9</td>
<td>26.4</td>
<td>30.1</td>
<td>34.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>45.3</td>
<td>51.1</td>
<td>52.8</td>
<td>25.1</td>
<td>22.1</td>
<td>17.1</td>
<td>15.6</td>
<td>9.2</td>
<td>5.4</td>
<td>0.0</td>
<td>9.2</td>
<td>12.7</td>
<td>18.4</td>
<td>22.5</td>
<td>26.7</td>
<td>31.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>40.8</td>
<td>45.2</td>
<td>45.6</td>
<td>17.3</td>
<td>15.0</td>
<td>16.4</td>
<td>18.0</td>
<td>14.0</td>
<td>14.2</td>
<td>9.2</td>
<td>0.0</td>
<td>3.6</td>
<td>11.2</td>
<td>14.1</td>
<td>19.0</td>
<td>23.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>38.6</td>
<td>42.4</td>
<td>40.2</td>
<td>14.0</td>
<td>12.2</td>
<td>16.6</td>
<td>19.2</td>
<td>16.3</td>
<td>17.8</td>
<td>12.7</td>
<td>3.6</td>
<td>0.0</td>
<td>10.3</td>
<td>12.0</td>
<td>17.3</td>
<td>21.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>47.0</td>
<td>49.3</td>
<td>36.9</td>
<td>20.6</td>
<td>20.2</td>
<td>26.8</td>
<td>29.1</td>
<td>25.1</td>
<td>21.9</td>
<td>18.4</td>
<td>11.2</td>
<td>10.3</td>
<td>0.0</td>
<td>5.0</td>
<td>8.2</td>
<td>12.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>45.2</td>
<td>46.6</td>
<td>31.9</td>
<td>18.6</td>
<td>19.1</td>
<td>28.2</td>
<td>31.3</td>
<td>28.1</td>
<td>26.4</td>
<td>22.5</td>
<td>14.1</td>
<td>12.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.4</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>49.8</td>
<td>50.5</td>
<td>30.5</td>
<td>23.3</td>
<td>24.2</td>
<td>33.5</td>
<td>36.5</td>
<td>33.0</td>
<td>30.1</td>
<td>26.7</td>
<td>19.0</td>
<td>17.3</td>
<td>8.2</td>
<td>5.4</td>
<td>0.0</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>50.9</td>
<td>50.8</td>
<td>26.8</td>
<td>25.0</td>
<td>26.4</td>
<td>36.9</td>
<td>40.2</td>
<td>37.1</td>
<td>34.5</td>
<td>31.0</td>
<td>23.1</td>
<td>21.0</td>
<td>12.6</td>
<td>9.0</td>
<td>4.5</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abbildung 5.4: Korrelogrammfunktion und empirisches Korrelogramm für die Niederschlagsverteilung der Stundensumme des Zeitintervalls von 18:00 Uhr bis 19:00 Uhr UTC am 14.8.99.

Aus der approxmierten Modellfunktion ergibt sich weiterhin für die Korrelationsmatrix:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.38</td>
<td>0.01</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>0.38</td>
<td>1.00</td>
<td>0.01</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>0.01</td>
<td>0.01</td>
<td>1.00</td>
<td>0.04</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.07</td>
<td>0.06</td>
<td>0.04</td>
<td>1.00</td>
<td>0.70</td>
<td>0.18</td>
<td>0.11</td>
<td>0.10</td>
<td>0.05</td>
<td>0.09</td>
<td>0.19</td>
<td>0.25</td>
<td>0.13</td>
<td>0.16</td>
<td>0.10</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.07</td>
<td>0.05</td>
<td>0.03</td>
<td>0.70</td>
<td>1.00</td>
<td>0.26</td>
<td>0.15</td>
<td>0.13</td>
<td>0.07</td>
<td>0.11</td>
<td>0.23</td>
<td>0.30</td>
<td>0.14</td>
<td>0.15</td>
<td>0.09</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.06</td>
<td>0.03</td>
<td>0.01</td>
<td>0.18</td>
<td>0.26</td>
<td>1.00</td>
<td>0.58</td>
<td>0.37</td>
<td>0.12</td>
<td>0.19</td>
<td>0.20</td>
<td>0.20</td>
<td>0.07</td>
<td>0.06</td>
<td>0.04</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.04</td>
<td>0.02</td>
<td>0.00</td>
<td>0.11</td>
<td>0.15</td>
<td>0.58</td>
<td>1.00</td>
<td>0.52</td>
<td>0.16</td>
<td>0.22</td>
<td>0.17</td>
<td>0.15</td>
<td>0.06</td>
<td>0.05</td>
<td>0.03</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.10</td>
<td>0.13</td>
<td>0.37</td>
<td>0.52</td>
<td>1.00</td>
<td>0.31</td>
<td>0.41</td>
<td>0.25</td>
<td>0.20</td>
<td>0.09</td>
<td>0.06</td>
<td>0.04</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>0.07</td>
<td>0.12</td>
<td>0.16</td>
<td>0.31</td>
<td>1.00</td>
<td>0.59</td>
<td>0.25</td>
<td>0.18</td>
<td>0.12</td>
<td>0.08</td>
<td>0.05</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.09</td>
<td>0.11</td>
<td>0.19</td>
<td>0.22</td>
<td>0.41</td>
<td>0.59</td>
<td>1.00</td>
<td>0.41</td>
<td>0.29</td>
<td>0.16</td>
<td>0.11</td>
<td>0.07</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.19</td>
<td>0.23</td>
<td>0.20</td>
<td>0.17</td>
<td>0.25</td>
<td>0.25</td>
<td>0.41</td>
<td>1.00</td>
<td>0.70</td>
<td>0.34</td>
<td>0.25</td>
<td>0.16</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.25</td>
<td>0.30</td>
<td>0.20</td>
<td>0.15</td>
<td>0.29</td>
<td>0.29</td>
<td>0.70</td>
<td>1.00</td>
<td>0.37</td>
<td>0.31</td>
<td>0.19</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.13</td>
<td>0.14</td>
<td>0.07</td>
<td>0.06</td>
<td>0.09</td>
<td>0.12</td>
<td>0.16</td>
<td>0.34</td>
<td>0.37</td>
<td>1.00</td>
<td>0.61</td>
<td>0.45</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.01</td>
<td>0.01</td>
<td>0.04</td>
<td>0.16</td>
<td>0.15</td>
<td>0.06</td>
<td>0.05</td>
<td>0.06</td>
<td>0.08</td>
<td>0.11</td>
<td>0.25</td>
<td>0.31</td>
<td>0.61</td>
<td>1.00</td>
<td>0.59</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.01</td>
<td>0.01</td>
<td>0.05</td>
<td>0.10</td>
<td>0.09</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.07</td>
<td>0.16</td>
<td>0.19</td>
<td>0.45</td>
<td>0.59</td>
<td>1.00</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.01</td>
<td>0.01</td>
<td>0.07</td>
<td>0.09</td>
<td>0.08</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>0.10</td>
<td>0.13</td>
<td>0.29</td>
<td>0.42</td>
<td>0.65</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Die Niederschlagsmessungen der Stationen des Clusters I sowie des Radars vor bzw. nach Anwendung des SOA-Verfahrens für die Stundensumme von 18:00 Uhr bis 19:00 Uhr UTC zeigt Tabelle 5.1. Es werden dabei im „Leave-one-out“-Verfahren abwechselnd jeweils eine der 16 Stationen bei der Anwendung des SOA-Verfahrens
KAPITEL 5. STATISTISCHE OBJEKTIVE ANALYSE

<table>
<thead>
<tr>
<th>Stationsnr.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_g (mm)</td>
<td>0.9</td>
<td>1.3</td>
<td>2.9</td>
<td>3.1</td>
<td>1.9</td>
<td>0.9</td>
<td>1.1</td>
<td>5.0</td>
</tr>
<tr>
<td>P_r vor SOA (mm)</td>
<td>0.8</td>
<td>1.1</td>
<td>1.4</td>
<td>1.6</td>
<td>1.5</td>
<td>0.8</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>P_r nach SOA (mm)</td>
<td>0.8</td>
<td>1.3</td>
<td>1.6</td>
<td>2.2</td>
<td>2.8</td>
<td>1.6</td>
<td>1.1</td>
<td>3.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stationsnr.</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_g (mm)</td>
<td>8.4</td>
<td>5.0</td>
<td>4.6</td>
<td>5.0</td>
<td>11.7</td>
<td>9.5</td>
<td>9.0</td>
<td>7.7</td>
</tr>
<tr>
<td>P_r vor SOA (mm)</td>
<td>2.0</td>
<td>1.9</td>
<td>2.3</td>
<td>2.4</td>
<td>3.7</td>
<td>4.0</td>
<td>4.9</td>
<td>4.2</td>
</tr>
<tr>
<td>P_r nach SOA (mm)</td>
<td>4.3</td>
<td>6.1</td>
<td>5.3</td>
<td>5.0</td>
<td>7.4</td>
<td>9.0</td>
<td>8.9</td>
<td>6.8</td>
</tr>
</tbody>
</table>

Tabelle 5.1: Radar (P_r)- und Stationsniederschlag (P_g) (Stationscluster I) vom 14.8.99, 18:00 Uhr bis 19:00 Uhr UTC vor bzw. nach Anwendung des SOA–Verfahrens.

Abbildung 5.5: Niederschlagsverteilungen für die Stundensummen von 18:00 Uhr bis 19:00 Uhr UTC am 14.8.99 vor (links) bzw. nach (rechts) Anwendung des SOA-Verfahrens, überlagert mit Stationscluster I.

Abbildung 5.6: Niederschlagsverteilungen für die Tagessummen am 14.8.99 vor (links) bzw. nach (rechts) Anwendung des SOA-Verfahrens, überlagert mit Stationscluster II. Für das SOA-Verfahren werden nur die Messungen des Stationsclusters I verwendet; den quantitativen Vergleich mit Stationscluster II zeigt Abbildung 5.3.
Betrachtet man die erwartete Analysefehlervarianz (Nexerva) (Abbildung 5.7) am Beispiel des 14.8.99 für die Stundensumme von 18:00 Uhr bis 19:00 Uhr UTC, so sieht man, daß die lokalen Minima der Varianz an den Regenwippen–Standorten liegen. Die Analysefehlervarianz wird dort jedoch nicht ganz Null, da die Regenwippen mit einem Beobachtungsfehler (0.1 mm) behaftet sind. Wäre der Beobachtungsfehler Null, so wäre die Fehlervarianz an den Regenwippen ebenfalls Null und somit das SOA–Verfahren wie das Kriging exakt interpolierend. Ab einem Abstand von circa 20 km liegt hier die normalisierte Analysefehlervarianz ϵ^2_{ai} nahe bei eins, was bedeutet, daß in diesen Bereichen nahezu keine Korrektur durch das SOA–Verfahren erfolgt und nur die Niederschlagsinformationen des Radars verwendet werden. Weil hier eine isotrope Korrelationsfunktion eingesetzt wird, sind die Isolinien der Analysefehlervarianz bei isolierten Stationen (wie zum Beispiel bei der rechtsrheinischen Station 3 des Clusters I) konzentrische Kreise. Bei Stationsclustern ist die Varianz jedoch nicht eine einfache Überlagerung von konzentrischen Kreisen, weil benachbarte Stationen einen gewissen Informationsbeitrag leisten, wodurch sich der Analysefehler bei Clustern stärker reduziert als bei isolierten Stationen.

Abbildung 5.7: Berechnete Analysefehlervarianz für die Stundensumme von 18:00 Uhr bis 19:00 Uhr UTC am 14.8.99.

Als weiteres Beispiel wird der 1. August 1998 betrachtet, an dem am späten Abend im Rheinland heftige Schauer und Gewitter auftraten (Tabelle B.3). An einzelnen Stationen wurde auch an diesem Tag bis zu 30 mm Niederschlag gemessen. Im Vergleich zum vorangegangenen Beispiel sind hier die Niederschlagszellen sehr viel
kleinräumiger und strukturierter. Die Niederschlagsmessungen der Stationen des Clusters I sowie des Radars vor bzw. nach Anwendung des SOA–Verfahrens für die Stundensumme von 20:00 Uhr bis 21:00 Uhr UTC zeigt Tabelle 5.2.

<table>
<thead>
<tr>
<th>Stationsnr.</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_g (mm)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.4</td>
<td>2.3</td>
<td>5.6</td>
<td>15.7</td>
<td>2.2</td>
</tr>
<tr>
<td>P_r vor SOA (mm)</td>
<td>0.0</td>
<td>0.1</td>
<td>1.2</td>
<td>1.2</td>
<td>5.4</td>
<td>8.1</td>
<td>6.9</td>
<td>2.6</td>
</tr>
<tr>
<td>P_r nach SOA (mm)</td>
<td>0.2</td>
<td>0.0</td>
<td>1.1</td>
<td>0.2</td>
<td>4.1</td>
<td>13.1</td>
<td>5.3</td>
<td>4.5</td>
</tr>
<tr>
<td>Stationsnr.</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>16</td>
<td>17</td>
<td>20</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>P_g (mm)</td>
<td>4.7</td>
<td>4.3</td>
<td>3.6</td>
<td>12.1</td>
<td>8.2</td>
<td>0.8</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>P_r vor SOA (mm)</td>
<td>4.3</td>
<td>4.3</td>
<td>4.1</td>
<td>8.8</td>
<td>6.8</td>
<td>1.7</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>P_r nach SOA (mm)</td>
<td>4.1</td>
<td>4.8</td>
<td>4.1</td>
<td>8.9</td>
<td>7.1</td>
<td>1.0</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5.2: Radar (P_r)- und Stationsniederschlag (P_g) (Stationscluster I) vom 1.8.98, 20:00 Uhr bis 21:00 Uhr UTC vor bzw. nach Anwendung des SOA–Verfahrens.

Abbildung 5.8: Niederschlagsverteilungen für die Stundensummen von 20:00 Uhr bis 21:00 Uhr UTC am 1.8.98, vor (links) bzw. nach (rechts) Anwendung des SOA–Verfahrens, überlagert mit Stationscluster I.

5.2.5 Sensitivitätsstudie

Abbildung 5.10: Kontrollnetz (Cluster II, rot) sowie abnehmende Stationsdichte (Cluster I, schwarz) für SOA-Läufe. Die Distanzen der Stationen zueinander betragen links oben ≥ 5 km, rechts oben ≥ 10 km, links unten ≥ 20 km sowie rechts unten ≥ 30 km.
Im August 1998 beträgt die über die 7 Stationen des Kontrollnetzes gemittelte RMS-Differenz ohne Anwendung des SOA-Verfahrens 6.0 mm. Nach Anwendung des SOA-Verfahrens verringert sich die RMS-Differenz selbst bei einem Einsatz von nur vier Stationen auf 5.1 mm. Mit allen 15 Stationen ergibt sich hier eine weitere 6%-ige Verbesserung auf 4.8 mm. Im September 1998 liegt die Radarmessung im Vergleich zu den Stationsmessungen generell recht hoch. Ohne angewandtes SOA-Verfahren beträgt die mittlere RMS-Differenz 21.1 mm, mit SOA-Verfahren auch bei Durchführung mit nur vier Stationen 8.6 mm. Dieses Ergebnis ist wiederum deutlich niedriger als ohne Verwendung des SOA-Verfahrens und entspricht ebenfalls einer nur etwa 6%-igen Verschlechterung gegenüber einer Verwendung aller Stationen.

Insgesamt reagiert das SOA-Verfahren recht stabil auf das Weglassen einzelner Stationen und ist auch bei geringer Stationsdichte noch sinnvoll einsetzbar. Die RMS-Differenz steigt allerdings mehr oder weniger kontinuierlich an, wenn sich die Stationsdichte verringert.

Im September 1998 waren die Korrelogramme wegen der großräumigen Struktur der Niederschlagsereignisse im Monatsvergleich relativ flach, was die geringe Sensitivität des SOA-Verfahrens erklären kann. Obige Aussagen gelten jedoch prinzipiell auch für die anderen Monate, wobei die Sensitivität des SOA-Verfahrens mit der Steilheit der Korrelogramme zunimmt. Aber auch für die anderen Monate stellt sich heraus, daß sich mit dem SOA-Verfahren auch bei geringeren Stationsdichten eine sichtbare Fehlerreduktion erzielen läßt.

Eine weitere Fehlerreduktion durch eine Erhöhung der Stationsdichte scheint nach unten durch andere Faktoren (zum Beispiel der fehlenden Korrespondenz einer Stationsmessung, die eine Punktmessung am Boden darstellt, zu der entsprechenden Radarmessung, die eine Volumenmessung in der Höhe repräsentiert) limitiert zu sein. Es ist also nicht zu erwarten, daß die RMS-Differenz gegen Null geht, wenn die Stationsdichte immer höher wird.
Kapitel 6
Quantitative Analyse der Verfahren

6.1 Fehlerquantifizierung

KAPITEL 6. QUANTITATIVE ANALYSE

\[\text{RMS} = \sqrt{\frac{1}{N} \sum_{j=1}^{N} (P_{g}^{j}(x_{i}, y_{i}) - P_{r}^{j}(x_{i}, y_{i}))^2} \]

(6.1)

in der Meteorologie international bevorzugt und von der WMO (World Meteorological Organization) empfohlen (vgl. Balzer 1998 et al. [5]). Hierbei sind \(P_{g}^{j} \) die Stationsmessungen zum Zeitpunkt \(j \) am Gitterpunkt \((x_{i}, y_{i}) \) und \(P_{r}^{j} \) die Radarmessungen zum Zeitpunkt \(j \) am Gitterpunkt \((x_{i}, y_{i}) \). \(N \) bezeichnet die Anzahl aller betrachteten Zeitpunkte. Durch die Fehlerquadrierung werden große Fehler weit mehr „bestraft“ als kleine, eine Eigenschaft, die einer Vielzahl praktischer Konsequenzen fehlerhafter Entscheidungen sehr viel ähnlicher ist als die „lineare“ Bewertung von Fehleinschätzungen. Dieses Maß wird auch in der vorliegenden Arbeit für die folgenden Auswertungen herangezogen.

Die Qualität der Verfahren wird im folgenden anhand von Punktvergleichen mit unabhängigen Stationsdaten überprüft. Dazu stehen grundsätzlich zur Verfügung:
KAPITEL 6. QUANTITATIVE ANALYSE

1. der Datensatz des Stationsclusters I (akkumuliert zu Stunden- und Tagessummen)

2. der Datensatz des Stationsclusters II (nur Tagessummen)

Da das SOA–Verfahren auf den zu Stundensummen akkumulierten Niederschlagsmessungen des Stationsclusters I basiert, wird zur Fehlerquantifizierung jeweils die Station ausgelassen, an der der Fehler gemessen wird (Leave–one–out–Verfahren) und die Analyse für jeden Monat jeweils so oft wiederholt, wie Stationen zu Verfügung stehen, also

\[\text{RMS} = \sqrt{\frac{1}{K \cdot N} \sum_{i=1}^{K} \sum_{j=1}^{N} (P^g_j(x_i, y_i) - P^a_j(x_i, y_i))^2} \] (6.2)

Hierbei sind \(N \) die Zahl der Zeitpunkte, \(K \) die Zahl der Stationen und \(P^g_j \) die Stationsmessung bzw. \(P^a_j \) der analysierte Niederschlag zum Zeitpunkt \(j \) am Gitterpunkt \((x_i, y_i) \). Bei der Berechnung von \(P^a_j(x_i, y_i) \) geht die Station am Gitterpunkt \((x_i, y_i) \) jeweils nicht in die Analyse mit ein. So kann auch für das SOA–Verfahren das Stationscluster I zum Vergleich herangezogen werden. Da die Tagesmessungen des Stationsclusters II nicht in das SOA–Verfahren mit eingehen, werden dort alle Stationen zur Fehlerquantifizierung genutzt.

6.2 Einzelanalyse

An dieser Stelle wird nun der quantitative Einfluß der wichtigsten Verfahrenskomponenten (der Advektionskorrektur, der Wahl der Z–R–Beziehung, der Biaskorrektur und des SOA–Verfahrens) auf die Fehlerreduktion bei der Niederschlagsquantifizierung hin untersucht.

6.2.1 Einfluß der Advektionskorrektur

Zunächst wird der Einfluß der Advektionskorrektur auf die Genauigkeit der Niederschlagsquantifizierung betrachtet. Dies geschieht in einem ersten Schritt durch eine rein quantitative Auszählung der Fälle, bei denen die RMS–Differenz nach Durchführung der Advektionskorrektur im Vergleich zu vorher kleiner bzw. größer ist. Die
quantitative Auszählung der auf Tagessummen basierenden 288 Fälle ergibt, daß in nur 57% der Fälle eine Verbesserung durch die Advektionskorrektur erzielt wird (Tabelle 6.1).

| RMS-Differenz nach Advektionskorrektur kleiner | 163 | 57% |
| RMS-Differenz nach Advektionskorrektur größer | 125 | 43% |

Tabelle 6.1: Fallstudie zur Advektionskorrektur, basierend auf den RMS-Differenzen auf Tagessummenbasis (Stationscluster I und II).

Die 288 Fälle ergeben sich durch die Betrachtung aller in den acht Monaten jeweils verfügbaren Stationen.

Die nach Monaten getrennten Auswertungsergebnisse sind in Tabelle 6.2 dargestellt. Die prozentuale Verbesserung bzw. Verschlechterung der Advektionskorrektur schwankt dabei nur zwischen circa -4% und 4%.

<table>
<thead>
<tr>
<th>Monat</th>
<th>RMS–Diff. ohne Advek. (mm)</th>
<th>RMS–Diff. mit Advek. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juni '98</td>
<td>7.33</td>
<td>3.1</td>
</tr>
<tr>
<td>Juli '98</td>
<td>3.16</td>
<td>3.02</td>
</tr>
<tr>
<td>Aug. '98</td>
<td>9.14</td>
<td>8.93</td>
</tr>
<tr>
<td>Sep. '98</td>
<td>24.08</td>
<td>24.14</td>
</tr>
<tr>
<td>Juni '99</td>
<td>4.16</td>
<td>4.13</td>
</tr>
<tr>
<td>Juli '99</td>
<td>2.70</td>
<td>2.81</td>
</tr>
<tr>
<td>Aug. '99</td>
<td>3.79</td>
<td>3.75</td>
</tr>
<tr>
<td>Sep. '99</td>
<td>3.00</td>
<td>2.95</td>
</tr>
</tbody>
</table>

Tabelle 6.2: RMS-Differenzen zwischen Stations- und Radarwerten (Stationscluster I und II), monatsweise berechnet auf Tagessummenbasis, jeweils mit und ohne Advektionskorrektur (Advek.).

Gemittelt über alle acht Monate und alle verwendeten Stationen ergibt sich ohne Advektionskorrektur eine RMS-Differenz von 11.6 mm, mit Advektionskorrektur eine RMS-Differenz von 11.5 mm, also eine sehr geringe Verbesserung um circa 1%.

erwähnt, schwächt sich der Einfluß der Advektionskorrektur bei längeren zeitlichen Mitteln ab. Zur Echtzeit-Niederschlagsvorhersage ist es dennoch sinnvoll, insbesondere bei sich schnell fortbewegenden Regenfronten, die Advektionskorrektur einzusetzen. Aufgrund ihres geringen Einflusses auf die Fehlerreduktion auf Tagessummenbasis wird in den folgenden Verfahrensanalysen die Advektionskorrektur jeweils mit durchgeführt.

6.2.2 Einfluß der Z–R–Beziehung

Nun wird untersucht, welchen Einfluß auf die Fehlerreduktion eine dynamische Verwendung von Z–R–Beziehungen durch die Unterscheidung von stratiformen und konvektiven Niederschlagsereignissen besitzt.

Ein Vergleich der RMS–Differenzen auf Tagessummenbasis ergibt, daß in 224 von 288 möglichen Fällen (circa 78%) die RMS–Differenz verringert wird (Tabelle 6.3).

<table>
<thead>
<tr>
<th>RMS–Differenz nach manueller Trennung kleiner</th>
<th>224</th>
<th>78%</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS–Differenz nach manueller Trennung größer</td>
<td>64</td>
<td>22%</td>
</tr>
</tbody>
</table>

Tabelle 6.3: Fallstudie zur manuellen Trennung, basierend auf den RMS–Differenzen auf Tagessummenbasis (Stationscluster I und II).

Gemittelt über alle acht Monate und alle verwendeten Stationen, beträgt die RMS–Differenz ohne die manuelle Trennung 11.5 mm, mit manuell durchgeführter Trennung hingegen nur noch 6.9 mm. Der Fehler wird also im Mittel um circa 40% verringert.

Die quantitative Auszählung der Fälle, bei denen die RMS–Differenz nach der automatischen Trennung im Vergleich zu vorher kleiner bzw. größer ist, kommt zu einem ähnlichen Ergebnis (Tabelle 6.4).

<table>
<thead>
<tr>
<th>RMS–Differenz nach automatischer Trennung kleiner</th>
<th>209</th>
<th>73%</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS–Differenz nach automatischer Trennung größer</td>
<td>79</td>
<td>27%</td>
</tr>
</tbody>
</table>

Tabelle 6.4: Fallstudie zur automatischen Trennung, basierend auf den RMS–Differenzen auf Tagessummenbasis (Stationscluster I und II).

Gemittelt über alle acht Monate und alle verwendeten Stationen ergibt sich mit dem automatischen Trennverfahren allerdings eine RMS–Differenz von 10.5 mm, im
Vergleich zur manuellen Trennung also im Mittel nur noch eine Verbesserung um circa 9%.

Die in Kapitel 4.2.2 angesprochene Schwierigkeit, großflächige konvektive Systeme allein aufgrund der räumlichen Ausdehnung zu erkennen, ist sicherlich ein bedeutender Grund dafür, daß die Rate von 40% nicht erreicht wird, da gerade diese Ereignisse häufig zu beträchtlichen Niederschlägen führen. Ebenso fallen Radardaten mit nur geringen Niederschlägen, wie sie zum Beispiel im Zerfallsstadium eines ehemals konvektiven Systems auftreten können und die in der manuellen Analyse den stratiformen Fällen zugeordnet werden, bei der automatischen Trennung wegen fehlender räumlicher Ausdehnung nicht in die stratiforme Kategorie. Trotz dieser Einschränkungen hinsichtlich des zu erwartenden Erfolgs bei der Erkennung großräumiger konvektiver Fälle erscheint es jedoch lohnend, die Trennung stets durchzuführen.

<table>
<thead>
<tr>
<th>manuelle Trennung</th>
<th>automatische Trennung</th>
</tr>
</thead>
<tbody>
<tr>
<td>stratiformes Ereignis</td>
<td>5972 Fälle</td>
</tr>
<tr>
<td>konvektives Ereignis</td>
<td>2725 Fälle</td>
</tr>
<tr>
<td>stratiformes Ereignis</td>
<td>3247 Fälle</td>
</tr>
<tr>
<td>konvektives Ereignis</td>
<td>1112 Fälle</td>
</tr>
<tr>
<td>stratiformes Ereignis</td>
<td>596 Fälle</td>
</tr>
</tbody>
</table>

Tabelle 6.5: Vergleich zwischen manueller und automatischer Trennung von konvektiven und stratiformen Niederschlagsereignissen.

Die nach Monaten getrennten Auswertungsergebnisse sind in Tabelle 6.6 dargestellt. Die prozentuale Verbesserung bei der manuellen Trennung schwankt zwischen circa 2% und 50% und führt im Monatsmittel in keinem Fall zu einer Verschlechterung. Auch bei der automatisierten Methode kann die Verbesserung der RMS-Differenz im günstigsten Fall noch fast 20% betragen, und im Mittel bewirkt sie auch hier in keinem Monat eine Verschlechterung.
KAPITEL 6. QUANTITATIVE ANALYSE

<table>
<thead>
<tr>
<th>Monat</th>
<th>RMS–Diff. ohne Tr. (mm)</th>
<th>RMS–Diff. mit manueller Tr. (mm)</th>
<th>Diff. (%)</th>
<th>RMS–Diff. mit automatischer Tr. (mm)</th>
<th>Diff. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juni '98</td>
<td>7.10</td>
<td>6.39</td>
<td>10.0</td>
<td>6.66</td>
<td>6.2</td>
</tr>
<tr>
<td>Juli '98</td>
<td>3.02</td>
<td>2.96</td>
<td>2.0</td>
<td>2.45</td>
<td>18.9</td>
</tr>
<tr>
<td>Aug. '98</td>
<td>8.93</td>
<td>6.28</td>
<td>29.7</td>
<td>7.40</td>
<td>17.1</td>
</tr>
<tr>
<td>Sep. '98</td>
<td>24.14</td>
<td>12.53</td>
<td>48.1</td>
<td>21.73</td>
<td>10.0</td>
</tr>
<tr>
<td>Juni '99</td>
<td>4.13</td>
<td>3.70</td>
<td>10.4</td>
<td>4.08</td>
<td>1.2</td>
</tr>
<tr>
<td>Juli '99</td>
<td>2.81</td>
<td>2.75</td>
<td>2.1</td>
<td>2.72</td>
<td>3.2</td>
</tr>
<tr>
<td>Aug. '99</td>
<td>3.75</td>
<td>3.49</td>
<td>6.9</td>
<td>3.61</td>
<td>3.7</td>
</tr>
<tr>
<td>Sep. '99</td>
<td>2.95</td>
<td>2.88</td>
<td>2.4</td>
<td>2.94</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Tabelle 6.6: RMS–Differenzen zwischen Stations- und Radarwerten (Stationscluster I und II), monatsweise berechnet auf Tagessummenbasis jeweils ohne, mit manueller sowie mit automatischer Trennung (Tr.) zwischen konvektiven und stratiformen Niederschlagsereignissen.

6.2.3 Einfluß der Biaskorrektur

Die quantitative Auszählung der 288 Fälle im Hinblick auf die RMS–Differenz nach Anwendung der Biaskorrektur ergibt, daß in 75% der Fälle eine Verbesserung erzielt wird (Tabelle 6.7).

| RMS–Differenz nach Biaskorrektur kleiner | 217 | 75% |
| RMS–Differenz nach Biaskorrektur größer | 71 | 25% |

Tabelle 6.7: Fallstudie zur Biaskorrektur, basierend auf den RMS–Differenzen auf Tagessummenbasis (Stationscluster I und II).

Die nach Monaten getrennten Auswertungsergebnisse sind in Tabelle 6.8 dargestellt. Die prozentuale Verbesserung bei der Biaskorrektur schwankt dabei zwischen circa -2% und 28%.

Gemittelt über alle acht Monate und alle verwendeten Stationen ergibt sich ohne Biaskorrektur eine RMS–Differenz von 11.5 mm, mit Biaskorrektur eine RMS–Differenz von 8.7 mm, also eine Verbesserung um circa 24%.

Diese doch sehr starke Reduktion der RMS–Differenz legt es nahe, die Biaskorrektur in jedem Fall anzuwenden. In dieser Statistik wird ein einheitlicher Biaskorrekturfaktor über alle acht Monate (77 Niederschlagstage) verwendet, was einer einmaligen Geräteaneichung entspricht. Natürlich ist auch eine Anreichung für kürzere Zeiträume möglich (was die RMS–Differenzen insbesondere im Jahr 1999 weiter
KAPITEL 6. QUANTITATIVE ANALYSE

Monat	RMS–Diff. ohne Biaskorr. (mm)	RMS–Diff. mit Biaskorr. (mm)	Diff. (%)
Juni '98	7.10	5.74	19.2
Juli '98	3.02	2.48	17.9
Aug. '98	8.93	6.47	27.6
Sep. '98	24.14	17.49	27.5
Juni '99	4.13	4.01	2.9
Juli '99	2.81	2.64	6.0
Aug. '99	3.75	3.39	9.6
Sep. '99	2.95	3.00	-1.7

Tabelle 6.8: RMS–Differenzen zwischen Stations- und Radarwerten (Stationscluster I und II), monatsweise berechnet auf Tagessummenbasis, jeweils mit und ohne Biaskorrektur.

6.2.4 Einfluß des SOA–Verfahrens

| RMS–Differenz nach SOA–Verfahren kleiner | 224 | 78% |
| RMS–Differenz nach SOA–Verfahren größer | 64 | 22% |

Tabelle 6.9: Fallstudie zum SOA–Verfahren, basierend auf den RMS–Differenzen auf Tagessummenbasis (Stationscluster I und II).

Gemittelt über alle acht Monate und alle verfügbaren Stationen auf Tagessummenbasis beträgt die RMS–Differenz vor Anwendung des SOA–Verfahrens 11.5 mm, danach 6.0 mm. Die RMS–Differenz pro Tag wird also durch das SOA–Verfahren im Mittel um circa 48% verbessert.
Auf Stundensummenbasis, wobei hier nur die Stationen des Clusters I eingehen, ergibt sich ebenfalls in circa 75% aller Fälle eine Verringerung der RMS–Differenz (Tabelle 6.10). Unterscheidet man in dieser Statistik nach konvektiven und nicht konvektiven Niederschlagsereignissen auf Stundensummenbasis, so zeigt sich, daß in den nicht konvektiven Fällen (welche die Mehrzahl der Ereignisse darstellen) das SOA–Verfahren den RMS–Fehler in 75% der Fälle verbessert, während sich für die rein konvektiven Fälle (welche für die größten Niederschlagsmengen verantwortlich sind) sogar eine Rate von 78% ergibt. Die Verbesserungsrate liegt für Stunden, in denen die Klassifikation von stratiform zu konvaktiv (oder umgekehrt) wechselt, mit 72% nur leicht darunter. Insgesamt läßt sich also sagen, daß das SOA–Verfahren den RMS–Fehler in etwa 3/4 der Fälle unabhängig vom Niederschlagsereignis verbessert.

<table>
<thead>
<tr>
<th></th>
<th>alle Fälle</th>
<th>nicht konv.</th>
<th>konv.</th>
<th>gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS–Differenz nach</td>
<td>25502 75%</td>
<td>16373 75%</td>
<td>5592 78%</td>
<td>3537 72%</td>
</tr>
<tr>
<td>SOA kleiner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS–Differenz nach</td>
<td>8562 25%</td>
<td>5558 25%</td>
<td>1604 22%</td>
<td>1400 28%</td>
</tr>
<tr>
<td>SOA größer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 6.10: Fallstudie zum SOA–Verfahren, basierend auf den RMS–Differenzen auf Stundensummenbasis (Stationscluster I).

starken Niederschlägen führten, beim Punkt–zu–Punkt–Vergleich mit dem Radar in
dieser Intensität aber nicht erfaßt wurden. So kam es, wie auch in dem bereits be-
schriebenen Fallbeispiel vom 1.8.98, zu großen Unterschieden in der Radarmessung
bei eng benachbarten Stationen, was beim Auslassen jeweils einer dieser Stationen
zu entgegengesetzten Interpolationsrichtungen des SOA–Verfahrens führt.

<table>
<thead>
<tr>
<th>Monat</th>
<th>RMS–Diff. ohne SOA (mm)</th>
<th>RMS–Diff. mit SOA (mm)</th>
<th>Diff. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juni '98</td>
<td>7.10</td>
<td>5.23</td>
<td>26.3</td>
</tr>
<tr>
<td>Juli '98</td>
<td>3.02</td>
<td>2.37</td>
<td>21.5</td>
</tr>
<tr>
<td>Aug. '98</td>
<td>8.93</td>
<td>4.99</td>
<td>44.1</td>
</tr>
<tr>
<td>Sep. '98</td>
<td>24.14</td>
<td>10.16</td>
<td>57.9</td>
</tr>
<tr>
<td>Juni '99</td>
<td>4.13</td>
<td>2.85</td>
<td>31.0</td>
</tr>
<tr>
<td>Juli '99</td>
<td>2.81</td>
<td>2.83</td>
<td>-0.7</td>
</tr>
<tr>
<td>Aug. '99</td>
<td>3.75</td>
<td>3.11</td>
<td>17.1</td>
</tr>
<tr>
<td>Sep. '99</td>
<td>2.95</td>
<td>2.76</td>
<td>6.4</td>
</tr>
</tbody>
</table>

Tabelle 6.11: RMS–Differenzen zwischen Stations- und Radarwerten (Stationsclu-
ster I und II), monatsweise berechnet auf Tagessummenbasis, jeweils mit und ohne
SOA–Verfahren.

6.3 Zusammenspiel der Verfahren

Nach der Untersuchung des Einflusses der einzelnen Verfahrenskomponenten soll
nun das Zusammenspiel der Komponenten analysiert werden. Dies geschieht zum
einen, wie im vorhergehenden Kapitel, anhand der RMS–Differenzen der beiden Sta-
tionscluster auf Tagessummenbasis, und zum anderen an Flächenmittelvergleichen
zweier ausgewählter Gebiete im Radargebiet.

Hierbei werden nicht alle möglichen Verfahrenskombinationen, bestehend aus oh-
ne/mit Advektionskorrektur, ohne/mit Biaskorrektur, ohne/mit SOA–Verfahren,
ohne Trennung sowie mit automatischer bzw. mit manueller Trennung (insgesamt 24
Kombinationen) betrachtet, sondern nur die wichtigsten Kombinationen ausgewählt.
6.3.1 Punktvergleiche

In Abbildung 6.1 werden die RMS–Differenzen auf Tagessummenbasis für 14 verschiedene Verfahrenskombinationen gegenübergestellt.

Abbildung 6.1: RMS–Differenzen zwischen Stations- und Radarwerten (Stationscluster I und II) für unterschiedliche Verfahrenskombinationen, jeweils berechnet auf Tagessummenbasis über alle acht Monate.

Hierbei lassen sich folgende Feststellungen treffen:

- der Einfluß der Advektionskorrektur ist, wie schon in der Einzelanalyse gesehen, auch in der Kombination mit den anderen Verfahren gering,

- die Trennung (insbesondere die manuelle) hat ohne Biaskorrektur einen recht großen Einfluß auf die Fehlerreduktion, mit der Biaskorrektur jedoch nur noch einen recht geringen,

- die manuelle Trennung bringt mit 41% Verbesserung auch ohne das SOA–Verfahren und die Biaskorrektur eine schon recht starke Fehlerreduktion; dies zeigt, wie wichtig die Wahl der richtigen Z–R–Beziehung ist,

- die automatische Trennung leistet ohne die Biaskorrektur nicht soviel wie die manuelle Trennung,
• die Biaskorrektur bringt alleine schon etwa 25% Verbesserung, der Fehler läßt sich ohne das SOA-Verfahren durch andere Verfahren jedoch kaum weiter verringern,

• das SOA-Verfahren erzielt mit und ohne Biaskorrektur mit etwa 55% Verbesserung die gleiche Leistung, mit Biaskorrektur ist der Einfluß der Trennung aber geringer.

Die optimale Kombination besteht in dieser Studie aus dem gleichzeitigen Einsatz von SOA-Verfahren und manueller Trennung. Für die Echtzeit-Niederschlagsbestimmung ist die Kombination aus SOA-Verfahren, Advektionskorrektur und Biaskorrektur (evtl. mit automatischer Trennung) empfehlenswert.

Betrachtet man die einzelnen Monate (Abbildung 6.2), so zeigt sich, daß vor allem der September 1998 für den Unterschied zwischen diesen beiden Kombinationen verantwortlich ist.

Abbildung 6.2: RMS-Differenzen zwischen Stations- und Radarwerten (Stations-cluster I und II), monatsweise berechnet auf Tagessummenbasis, jeweils für unterschiedliche Verfahrenskombinationen.

6.3.2 Flächenmittelvergleiche

Zur Beurteilung der Wasserstände von Flüssen ist die Kenntnis von exakten Gebietsniederschlagshöhen entscheidend. Im folgenden werden daher für zwei ausgewählte Gebiete die Monatssummen des Niederschlags, wie sie sich nach Anwendung der verschiedenen Verfahrenskombinationen ergeben, auch im Flächenmittel miteinander verglichen. Im Gegensatz zu Punktvergleichen ist ein Flächenmittelvergleich zudem, was positionelle Ungenauigkeiten von Stations- und Radarpixeln betrifft, weniger fehleranfällig.

Für das Gebietsniederschlagsmittel P_B eines betrachteten Gebietes B der Fläche $|B|$ gilt:

$$P_B = \frac{1}{|B|} \int \int_B P(x,y) \, dx \, dy$$

(6.3)

In der praktischen Berechnung wird dieses Flächenmittel durch eine Summe angenähert:

$$P_B \approx \frac{1}{N} \sum_{i=1}^{N} P(x_i, y_i)$$

(6.4)

N ist dabei die Anzahl aller zu diesem Gebiet gehörenden Pixel mit den Niederschlagshöhen $P(x_i, y_i)$.

Es wurden zwei Gebiete derart ausgewählt, daß jeweils eines der beiden Stationscluster in einem der Gebiete mit einer möglichst hohen Stationsdichte präsent ist. Im Bereich des Stationsclusters I wurde ein rechteckiges Gebiet (im folgenden als
G1 bezeichnet, mit einer Größe von 290 km²) definiert, das zum einen etwa das Einzugsgebiet der Ahr darstellt und zum anderen noch genügend Stationen enthält (Abbildung 6.3, links). Im Bereich des Stationsclusters II bietet sich hierzu das Einzugsgebiet der Wahn an (im folgenden als G2 bezeichnet, mit einer Größe von 70 km², Abbildung 6.3, rechts).

Abbildung 6.3: Links: ausgewähltes Gebiet im Einzugsbereich der Ahr (G1, weiße Fläche) mit Stationscluster I, rechts: Einzugsbereich der Wahn (G2, weiße Fläche) mit Stationscluster II.

Insgesamt läßt sich jedoch sagen, daß das SOA–Verfahren mit automatischer bzw. manueller Trennung auch über größere Gebiete hinweg zu einer sehr guten Übereinstimmung mit dem Stationsniederschlag führt.
Kapitel 7

Schlußbetrachtung und Ausblick

Zum Abschluß werden die Beiträge und Ergebnisse der vorliegenden Arbeit noch einmal zusammengefaßt und mit anderen Projekten mit ähnlicher Zielsetzung verglichen. Es werden einige Erweiterung- und Verbesserungsmöglichkeiten der verwendeten Verfahren aufgezeigt und ein Ausblick auf zukünftige Einsatzmöglichkeiten und Forschungsrichtungen gegeben.

7.1 Zusammenfassung der Ergebnisse

Die Advektionskorrektur dient der räumlichen Interpolation bei der zeitlichen Akkumulation der Radardaten. In verschiedenen Fallbeispielen hat sich bestätigt, daß die Advektionskorrektur eine realistischere Darstellung der Niederschlagsverteilung ermöglicht, insbesondere bei sich mit großer Geschwindigkeit fortbewegenden Nie-
KAPITEL 7. SCHLUSSBETRACHTUNG UND AUSBlick

In einer acht Monate umfassenden Auswertung der verschiedenen Verfahren, die alle verfügbaren Meßdaten (Radar und Stationen) umfaßt, wurde der Einfluß der einzelnen Verfahrenskomponenten und ihr Zusammenspiel im Rahmen einer RMS–Fehleranalyse mit jeweils unabhängigen Stationsdaten untersucht. Hierbei stellt sich heraus, daß die Kombination aus Advektionskorrektur, manueller Trennung und SOA–Verfahren zu den besten Ergebnissen mit einer durchschnittlich 59%-igen Fehlerreduktion führt. Auch in Flächenvergleichen schneidet diese Kombination am besten ab.

7.2 Verbesserungs- und Erweiterungsmöglichkeiten

Das Potential der in der vorliegenden Arbeit angewandten Verfahren zur genaueren Niederschlagsmessung mittels Radardaten ist sicherlich noch nicht ausgeschöpft. Im folgenden werden daher einige Verbesserungsmöglichkeiten diskutiert.

Weiterhin könnte die automatisierte Trennung konvektiver und stratiformer Niederschlagsereignisse mittels Strukturanalysen, wie sie in der vorliegenden Arbeit vorgenommen wird, mit anderen in der Literatur bekannten Trennverfahren kombiniert werden. Durch die Hinzuziehung eines maximalen Reflektivitätswertes als weiteren Schwellwert (neben dem Steigungskoeffizienten der Korrelogramme) für die Trennung sowie die Durchführung einer Gradientenanalyse der Reflektivitäten ließen sich vermutlich insbesondere die großräumigen konvektiven Niederschlagsereignisse besser erfassen, die ansonsten als stratiformer Niederschlag klassifiziert werden. Auch die Analyse der Struktur dreidimensionaler Radarscans kann zu einer verbesserten Klassifizierung führen.

Die Strukturanalyse an sich, die neben der Trennung zur Bestimmung der Gewichte im SOA-Verfahren eine zentrale Rolle spielt, könnte durch ein aufwendigeres Verfahren zur Erzeugung der Korrelogramme möglicherweise genauere Ergebnisse erzielen. In dem in der vorliegenden Arbeit angewandten Verfahren wird jeweils ein Teilgebiet im zentralen Bereich des Azimutscans festgehalten und zu diesem Refe-

Eine mögliche Verbesserung der Advektionskorrektur besteht darin, die Interpolation nicht nur für einen einheitlichen Windvektor durchzuführen, sondern einzeln für die in jedem Teilgebiet bestimmten Windvektoren. Somit würden auch kleinräumige Turbulenzen im Windfeld berücksichtigt. Eventuelle Ausreißer bei den ermittelten Windvektoren würden allerdings auch stärker betont, was ein geeignetes Erkennen der Ausreißer und deren Elimination oder eine entsprechende Glättung des Windvektorfeldes notwendig macht. Der Aufwand für ein derartiges rechen- und zeitintensives Verfahren erscheint jedoch im Vergleich mit den Verbesserungsquoten, die durch die anderen Verfahren erzielt werden, nicht gerechtfertigt. Darüber hinaus könnte das Advektionsverfahren mit Hilfe der bekannten Zugrichtungen zur Niederschlagsvorhersage auf sehr kurzer Zeitskala genutzt werden (vgl. Verworn 1998 [93]).

Auch das SOA–Verfahren kann in einigen Punkten sicherlich noch verbessert werden. Eine Möglichkeit besteht in der bereits angesprochenen Berücksichtigung von Anisotropien im Hintergrundfeld, was besonders bei Niederschlagsbändern vorteilhaft wäre. Weiterhin könnte die reine Distanzabhängigkeit der Hintergrundfehler–Kreuzkorrelation durch eine lokale, zum Beispiel von der Orographie abhängige, Funktion ersetzt werden. Beide Fälle würden zu einem erheblichen Mehraufwand bei der Berechnung führen, was möglicherweise die Echtzeitfähigkeit des Verfahrens gefährden würde.

7.3 Vergleich mit ähnlichen Untersuchungen

7.4 Ausblick

Die Verbesserung der Niederschlagsquantifizierung ist daher Gegenstand intensiver gegenwärtiger Forschungsbemühungen. Im April 2004 beispielsweise beginnt ein Schwerpunktprogramm der deutschen Forschungsgemeinschaft mit genau diesem Inhalt („Quantitative Niederschlagsvorhersage“). Internationale Anstrengungen in dieser Richtung sind neben dem MUSIC-Projekt beispielsweise das im Mai 2003 als
GARP- (Global Atmospheric Research Program) Nachfolger etablierte Vorhaben THORPEX („The Observing System Research and Predictability Experiment”), ein globales atmosphärisches Forschungsprogramm des WWRP („World Weather Research Program”).

In diesem Forschungsrahmen ist die vorliegende Arbeit als weiterer Baustein zu sehen, um die Quantifizierung des komplexen Phänomens Niederschlag für wasserwirtschaftliche Anwendungen voranzubringen.
Anhang A

Auflistung der Niederschlagsereignisse

In den Tabellen A.1 und A.2 sind alle Niederschlagsereignisse für den Zeitraum von Juni bis September 1998 und 1999 zusammengestellt, an denen mindestens eine von allen verfügbaren Regenwippen im Untersuchungsraum eine Niederschlagsmenge \(\geq 0.1 \text{ mm/Stunde} \) aufwies. Insgesamt wurden so 77 Tage erfaßt. Weiterhin angegeben sind die ungefähre Dauer der Niederschlagsereignisse, die in den Radardaten als konvektiv klassifiziert wurden, sowie die Zeiträume (nur Regentage) in denen aufgrund technischer Probleme keine Radardaten erfaßt wurden.

Tabelle A.3 gibt einen Überblick über die jeweiligen Ausfallzeiten der Regenwippen. Wenn eine Regenwippe nur an einigen Regentagen im Monat ausgefallen ist, so wurde sie für den gesamten Monat nicht verwendet. Längere Ausfälle bedeuten zum Teil, daß die entsprechende Wippe erst zu einem späteren Zeitpunkt in Betrieb genommen wurde.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Tag</th>
<th>Azimutscans mit konvektiven Niederschlagsereignissen (h in UTC)</th>
<th>Datenausfälle/techn. Probleme</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6.6.98</td>
<td>10:51–12:21</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7.6.98</td>
<td>9:38–11:21</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10.6.98</td>
<td>8:21–9:51, 11:08–18:51</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12.6.98</td>
<td>8:51–19:51</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14.6.98</td>
<td>10:08–13:08, 14:21–16:21</td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>9</td>
<td>15.6.98</td>
<td>11:08–16:51</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>16.6.98</td>
<td>11:08–15:21</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>17.6.98</td>
<td>10:21–14:51</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>25.6.98</td>
<td>22:21–23:38</td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>13</td>
<td>6.7.98</td>
<td>11:08–15:21</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8.7.98</td>
<td>18:08–23:08</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>12.7.98</td>
<td>10:21–14:51</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>13.7.98</td>
<td>17:51–20:21</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>15.7.98</td>
<td>18:21–23:21</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>16.7.98</td>
<td>17:51–20:21</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>23.7.98</td>
<td>18:21–23:21</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>8.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>11.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>14.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>15.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>18.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>21.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>24.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>27.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>30.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>33.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>36.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>39.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>42.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>45.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>48.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>51.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>54.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>57.8.98</td>
<td>18:21–22:08</td>
<td></td>
</tr>
</tbody>
</table>

15:38–16:51 UTC fehlt

00:08–7:43 UTC fehlt

13:51 UTC fehlt
A. NIEDERSCHLAGSEREIGNISSE

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Tag</th>
<th>Azimutscans mit konvektiven Niederschlagsereignissen (h in UTC)</th>
<th>Datenausfälle/ techn. Probleme</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>3.6.99</td>
<td></td>
<td>9:33–10:33 UTC fehlt</td>
</tr>
<tr>
<td>45</td>
<td>4.6.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>46</td>
<td>5.6.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>47</td>
<td>6.6.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>48</td>
<td>7.6.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>52</td>
<td>5.7.99</td>
<td>0:01–1:11, 5:11–6:11</td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>53</td>
<td>6.7.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>55</td>
<td>12.7.99</td>
<td>10:21–15:26</td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>56</td>
<td>13.7.99</td>
<td>9:26–20:11</td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>57</td>
<td>14.7.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>58</td>
<td>15.7.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>59</td>
<td>16.7.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>60</td>
<td>17.7.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>61</td>
<td>18.7.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>62</td>
<td>19.7.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>63</td>
<td>20.7.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>64</td>
<td>22.7.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>58</td>
<td>7.8.99</td>
<td>0:56–1:36</td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>63</td>
<td>17.8.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>65</td>
<td>19.8.99</td>
<td>20:49–21:36</td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>66</td>
<td>20.8.99</td>
<td>17:11–18:06</td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>68</td>
<td>25.8.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>69</td>
<td>26.8.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>69</td>
<td>15.9.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>70</td>
<td>17.9.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>71</td>
<td>20.9.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>72</td>
<td>21.9.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>73</td>
<td>22.9.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>74</td>
<td>23.9.99</td>
<td>00:01–00:46, 02:56–06:16, 23:11–23:26</td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>75</td>
<td>24.9.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>76</td>
<td>25.9.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>78</td>
<td>27.9.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>79</td>
<td>28.9.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
<tr>
<td>80</td>
<td>29.9.99</td>
<td></td>
<td>Tag fehlt</td>
</tr>
</tbody>
</table>

Tabelle A.2: Ausgewählte Niederschlagsereignisse von Juni bis September 1999.
<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Wippenausfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juni 1998</td>
<td>Zündorf, FGAN Wachtberg</td>
</tr>
<tr>
<td>Juni–August 1998</td>
<td>Kleinaltendorf</td>
</tr>
<tr>
<td>Juni–September 1998</td>
<td>Harzheim, Kirspenich, Todenfeld, Stein, Wahnbach2</td>
</tr>
<tr>
<td>Juli 1998</td>
<td>Odendorf</td>
</tr>
<tr>
<td>Juli–September 1998</td>
<td>Frankenforst</td>
</tr>
<tr>
<td>September 1998</td>
<td>FGAN Wachtberg, Bonn–Roleber</td>
</tr>
<tr>
<td>Juni–September 1999</td>
<td>Schwadorfer Hof, Odendorf, Wahnbach1</td>
</tr>
<tr>
<td>August–September 1999</td>
<td>Zündorf, Frankenforst</td>
</tr>
<tr>
<td>September 1999</td>
<td>Krawinkel</td>
</tr>
</tbody>
</table>

Anhang B

Kurzcharakteristik der
Wettersituationen

B. WETTERSITUATIONEN

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Tag</th>
<th>Kurzcharakteristik der Wettersituation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.6.98</td>
<td>Ein Vorstoß kühl er Meeresluft brachte vor allem im Westen und Süden Deutschlands gebietsweise Schauerniederschläge.</td>
</tr>
<tr>
<td>2</td>
<td>2.6.98</td>
<td>In der ersten Tageshälfte sorgte ein Vorstoß warmer Meeresluft zunächst für überwiegend mäßigen Niederschlag. In der zweiten Tageshälfte wurde die Warmluft von einer aus westlicher Richtung kommenden Kaltfront verdrängt, die bundesweit vielfach heftige Schauerniederschläge brachte.</td>
</tr>
<tr>
<td>3</td>
<td>6.6.98</td>
<td>Ein markantes Tiefdruckgebiet zog im Tagesverlauf von Nordfrankreich nach Jütland. Im Warmsektor der Kaltfront traten im Nordwesten und westlich des Rheins Gewitter mit starken Böen und Hagel auf, während der Südosten Deutschlands weitgehend niederschlagsarm blieb.</td>
</tr>
<tr>
<td>4</td>
<td>7.6.98</td>
<td>Im Tagesverlauf überquerte die Kaltfront eines Nordsee tiefs den größten Teil Deutschlands ostwärts. Die Frontpassage erfolgte im Rheinland gegen Mittag.</td>
</tr>
<tr>
<td>5</td>
<td>10.6.98</td>
<td>Ein Trog über der Deutschen Bucht zog an diesem Tag nach Nordosten. Im Nordwesten regnete es in der ersten Tageshälfte anfangs recht ergiebig, vereinzelt traten auch Schauer und Gewitter auf.</td>
</tr>
<tr>
<td>7</td>
<td>12.6.98</td>
<td>Zwischen der nach Osten abgezogenen Kaltfront griff im Tagesverlauf ein Zwischenhochkeil auf den Norden und Westen über. Im Rheinland traten nur vereinzelt Schauer auf, während es im Südosten Deutschlands zu andauernden Niederschlägen kam.</td>
</tr>
<tr>
<td>8</td>
<td>14.6.98</td>
<td>Ein Tiefdruckgebiet zog von Südostengland zu den Niederlanden, seine Okklusion überquerte Deutschland ostwärts. Gegen 13:00h UTC lag diese genau über der Kölner Bucht und brachte vereinzelt Schauer und Gewitter.</td>
</tr>
<tr>
<td>9</td>
<td>15.6.98</td>
<td>Eine über Deutschland liegende Okklusion eines Tiefdruckgebiets schob sich langsam nordostwärts; auf ihrer Rückseite bestimmten labil geschichtete Luftmassen das Wetter mit starker Bewölkung, Schauern und Gewittern.</td>
</tr>
<tr>
<td>11</td>
<td>27.6.98</td>
<td>Die Witterung war bestimmt durch ein Tiefdrucksystem mit seinem Bodenzentrum über Schottland. In einer bis nach Nordwestdeutschland reichenden Konvergenzlinie, die mit Warmluftzufuhr verbunden war, wurde konvektive Hebung gefördert. Vor allem im Norden, aber auch im übrigen Deutschland bildeten sich im Tagesverlauf zum Teil gewitterige Schauer aus.</td>
</tr>
<tr>
<td>12</td>
<td>30.6.98</td>
<td>Im Laufe des Tages griff auf den Nordwesten und Norden Deutschlands eine Warmfrontwelle über. Im Nordwesten kam es zu teils gewitterigen Regenfällen.</td>
</tr>
</tbody>
</table>

Tabelle B.1: Wettersituation Juni 1998
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Tag</th>
<th>Kurzcharakteristik der Wettersituation</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>6.7.98</td>
<td>Zwischen einem kräftigen Tiefdrucksystem mit seinem Zentrum über Südskandinavien und einem Hoch über dem Nordatlantik gelangte kühle Meeresluft arktischen Ursprungs in den Norden und die Mitte Deutschlands. Im nördlichen Deutschland war es wechselnd bewölk, Schauer traten nur vereinzelt auf.</td>
</tr>
<tr>
<td>14</td>
<td>7.7.98</td>
<td>Deutschland lag an diesem Tag am Rand eines Tiefdrucksystems über Südschweden in einer kühlen nordwestlichen Strömung arktischen Ursprungs. Von Nordwesten her näherte sich am Abend ein weiterer Tiefausläufer. Vor allem in Norddeutschland kam es zu Schauern, während es im mittleren Deutschland vielfach trocken blieb.</td>
</tr>
<tr>
<td>15</td>
<td>8.7.98</td>
<td>Zwischen einem Azorenhocho und einem ausgeprägten Tiefdruckwirbel über Südskandinavien strömte hochreichende kalte Luft arktischen Ursprungs nach Mitteleuropa, die in Deutschland zu reger Schauertätigkeit führte.</td>
</tr>
<tr>
<td>16</td>
<td>11.7.98</td>
<td>Im Tagesverlauf überquerte ein sich ostwärts verlagerndes Frontensystem Deutschland, welches im Westen Deutschlands zunächst zu Niederschlägen führte. In der zweiten Tageshälfte setzte sich dann schwacher Zwischenhocheinfluß durch und die Bewölkung lockerte auf. Am Abend näherte sich dem Westen wiederum eine Welle aus dem atlantischen Raum.</td>
</tr>
<tr>
<td>17</td>
<td>12.7.98</td>
<td>Wetterbestimmend waren ein Tiefdruckwirbel westlich der Britischen Inseln, der sich im Laufe des Tages weiter verstärkte, sowie ein zweites Tiefdrucksystem, das unter Abschwächung von Südeuropa ostwärts über Deutschland hinweg zog. An dessen Warmfront verstärkten sich die Hebungsvorgänge, die sich über die Mittelgebirge hinweg laufendes Regenband. In der zweiten Tageshälfte lockerte die Bewölkung von Südwesten her wieder auf.</td>
</tr>
<tr>
<td>18</td>
<td>13.7.98</td>
<td>Das Frontensystem eines quasiorientierten und für die Jahreszeit sehr kräftigen Tiefdruckgebiet über der Nordsee überquerte ganz Deutschland. Im Norden Deutschlands bestimmte subpolare Meeresluft mit Schauern das Wetter.</td>
</tr>
<tr>
<td>19</td>
<td>15.7.98</td>
<td>Das über der Nordsee liegende Tiefdrucksystem verlagerte sich nach Schweden, das zugleich Bodentief zog von der Nordsee unter Abschwächung nach Skandinavien. Labile Meereskaltluft war der Ursache, daß in vielen Orten Deutschlands im Tagesverlauf Schauer niedergingen.</td>
</tr>
<tr>
<td>21</td>
<td>28.7.98</td>
<td>Bestimmend für das Wetter in Mitteleuropa war ein großer Höhenberg, der mit seiner Achse über den Britischen Inseln und der Biskaya lag und im weiteren Tagesverlauf auch die Deutsche Bucht sowie Westdeutschland erreichte. Die auf der Rückseite des Wirbels nach Deutschland wehende Luft wies große Labilität auf, und verschiedentlich bildeten sich Gewitter.</td>
</tr>
<tr>
<td>22</td>
<td>29.7.98</td>
<td>Nach kurzem Zwischenhocheinfluß wurde Deutschland in der zweiten Tageshälfte von Tiefausläufern erreicht. Eine Okklusion überquerte das Rheinland mit einem ausgedehnten Regengebiet gegen Mittag.</td>
</tr>
</tbody>
</table>

Tabelle B.2: Wettersituation Juli 1998
Ganz Europa lag im Bereich eines umfangreichen Troges, dessen Achse sich von Skandinavien über die Britischen Inseln bis nach Portugal ausdehnte. Eine Front, die in ihrer vollen Ausdehnung von Ostspanien über die Alpen hin bis nach Polen reichte, führte im Rheinland am späten Abend zu heftigen Schauern und Gewittern.

Von Nordwesten her führten Tiefausläufer wolkenreiche Luft heran. Es traten verbreitet ergebige Regenfälle auf, die im Norden Deutschlands mit dem Durchzug einer Okklusion am Abend in Schauer und Gewitter übergingen.

Die über Süddeutschland liegende Kaltfront verlagerte sich zu den Alpen, so daß ganz Deutschland in den Zustrom kühler, aus Westen einfließender Meeresluft geriet. Es traten wiederholt Regenfälle auf, vor allem im Norden Deutschlands auch einzelne Gewitter.

Auf der Rückseite eines umfangreichen Tiefausläufers floß zunächst noch kühle (subpolare) Meeresluft in die Nordhälfte Deutschlands, während der Süden Deutschlands bereits unter Zwischenhocheinfluß stand. Im Norden kam es gelegentlich zu Schauern.

Ein gut ausgeprägter Tiefausläufer wanderte von Schottland her nach Osten, wobei sich durch Einbeziehung feuchtwärmer subtropischer Meeresluft ein eng begrenzter Sturmwirbel entwickelte. Auf ungewöhnlichem Wege überquerte er in der ersten Tageshälfte mit seinem Zentrum das Norddeutsche Tiefland und verursachte dort zum Teil heftige Regenfälle.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Tag</th>
<th>Kurzcharakteristik der Wetterlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>1.8.98</td>
<td>Ganz Europa lag im Bereich eines umfangreichen Troges, dessen Achse sich von Skandinavien über die Britischen Inseln bis nach Portugal ausdehnte. Eine Front, die in ihrer vollen Ausdehnung von Ostspanien über die Alpen hin bis nach Polen reichte, führte im Rheinland am späten Abend zu heftigen Schauern und Gewittern.</td>
</tr>
<tr>
<td>25</td>
<td>22.8.98</td>
<td>Die über Süddeutschland liegende Kaltfront verlagerte sich zu den Alpen, so daß ganz Deutschland in den Zustrom kühler, aus Westen einfließender Meeresluft geriet. Es traten wiederholt Regenfälle auf, vor allem im Norden Deutschlands auch einzelne Gewitter.</td>
</tr>
<tr>
<td>26</td>
<td>23.8.98</td>
<td>Auf der Rückseite eines umfangreichen Tiefausläufers floß zunächst noch kühle (subpolare) Meeresluft in die Nordhälfte Deutschlands, während der Süden Deutschlands bereits unter Zwischenhocheinfluß stand. Im Norden kam es gelegentlich zu Schauern.</td>
</tr>
<tr>
<td>27</td>
<td>24.8.98</td>
<td>Ein gut ausgeprägter Tiefausläufer wanderte von Schottland her nach Osten, wobei sich durch Einbeziehung feuchtwärmer subtropischer Meeresluft ein eng begrenzter Sturmwirbel entwickelte. Auf ungewöhnlichem Wege überquerte er in der ersten Tageshälfte mit seinem Zentrum das Norddeutsche Tiefland und verursachte dort zum Teil heftige Regenfälle.</td>
</tr>
</tbody>
</table>

Tabelle B.3: Wetterlage August 1998
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Tag</th>
<th>Kurzcharakteristik der Wettersituation</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>1.9.98</td>
<td>Ein Tief über der Biskaya zog mit seinem Regengebiet zur Deutschen Bucht und gestaltete das Wetter in Nordrhein-Westfalen in der zweiten Tageshälfte unbeständig.</td>
</tr>
<tr>
<td>29</td>
<td>2.9.98</td>
<td>Eine ostwärts wandernde Okklusionsfront sorgte an diesem Tag immer wieder zu schauerartigen Verstärkungen des Niederschlags und für einzelne Gewitter.</td>
</tr>
<tr>
<td>31</td>
<td>5.9.98</td>
<td>Eine sich von Westen nach Osten bewegende Warmfrontokklusion eines Nordseetiefausläufers sorgte in der ersten Tageshälfte für Niederschläge im Rheinland.</td>
</tr>
<tr>
<td>32</td>
<td>6.9.98</td>
<td>Ganz Mitteleuropa stand unter dem Einfluß zweier umfangreicher Atlantikwirbel, die mit einer südlichen bis südwestlichen Strömung für warme Luftmassen sorgten. Im Bereich der Warmluftschlieren von der nach Deutschland gezogenen Okklusion kam es vor allem im Nordosten Deutschlands zu Dahurniederschlag.</td>
</tr>
<tr>
<td>33</td>
<td>7.9.98</td>
<td>Deutschland war noch immer geprägt von zwei kräftigen Wirbeln tropischer Herkunft, die zu wechselhaftem Wetter mit Niederschlägen führten. Die westlich wandernde Okklusion brachte allerdings nur noch dem westlichen Deutschland nennenswerte Regenfälle.</td>
</tr>
<tr>
<td>34</td>
<td>8.9.98</td>
<td>Eine Okklusionsfront, die Norddeutschland überquerte, wurde nur von einem sehr schwach ausgeprägten Niederschlagsband begleitet. Im Rheinland kam es im Laufe des Tages zu vereinzelten schwachen Niederschlägen.</td>
</tr>
<tr>
<td>35</td>
<td>9.9.98</td>
<td>Auf der Ostseite eines Tiefdrucksystems über Nordwesteuropa gelangte vorübergehend sehr warme Luft subtropischen Ursprungs in den Osten Deutschlands. Die zugehörige Kaltfront brachte örtlich geringfügige Niederschläge.</td>
</tr>
<tr>
<td>36</td>
<td>12.9.98</td>
<td>Infolge weiträumiger Hebungsprozesse der über Mitteleuropa vorhandenen sehr warmen und feuchten Luftmassen subtropischen Ursprungs entstanden ausgedehnte Niederschlagsfelder, die in weiten Teilen Deutschlands zu Dauerregen führten.</td>
</tr>
<tr>
<td>37</td>
<td>13.9.98</td>
<td>Zwischen zwei Tiefdruckwirbeln entstanden an einer gut ausgeprägten Okklusion immer wieder Wellen, die sich nordwärts bewegten. An dieser Okklusion und auch an der aufgrund der Temperatur recht scharfen Kaltfront, die bis zum zentralen Mittelmeerraum reichte, kam es in Deutschland zu ergiebigen Niederschlägen.</td>
</tr>
<tr>
<td>39</td>
<td>15.9.98</td>
<td>Im Randbereich des weiter nach Osten gewanderten Tiefdruckwirbels erstreckte sich eine Zone starken und ergiebigen Niederschlags von den Niederlanden bis nach Südwestdeutschland. Die maximalen Niederschläge fielen in den frühen Morgenstunden.</td>
</tr>
<tr>
<td>40</td>
<td>16.9.98</td>
<td>Das niederschlagsreiche Wetter setzte sich auch an diesem Tag im größten Teil Deutschlands noch fort. Der über der Nordsee gelegene Tiefdruckausläufer zog zwar unter erheblicher Abschwächung nach Südosten, brachte aber bis mittags vor allem im Westen und Nordwesten Deutschlands gebietsweise ergiebige Niederschläge.</td>
</tr>
<tr>
<td>42</td>
<td>30.9.98</td>
<td>Ein sich nordostwärts verlagerner Tiefdruckwirbel verstärkte sich unter Einbeziehung frischer Kaltluft an seiner Rückseite erheblich. Seine Okklusion überquerte bis zum Vormittag Frankreich und griff mittags mit starken Niederschlägen auf den Westen Deutschlands über.</td>
</tr>
</tbody>
</table>

Tabelle B.4: Wettersituation September 1998
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Tag</th>
<th>Kurzcharakteristik der Wettersituation</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>2.6.99</td>
<td>Auf der Vorderseite eines Tiefdruckwirbels setzte sich von Süden her vorübergehend subtropische Warmluft auch in Bodennähe durch. Mit heftigen Gewittern zog dann in der zweiten Tageshälfte die Kaltfront des Wirbels über Deutschland hinweg.</td>
</tr>
<tr>
<td>45</td>
<td>4.6.99</td>
<td>Die Passage einer ostwärts wandernden Okklusion brachte dem Rheinland nachmittags und gegen Abend verbreitet Gewitter in der erwärmten subpolaren Meeresluft.</td>
</tr>
<tr>
<td>46</td>
<td>5.6.99</td>
<td>Die Okklusionsfront vom Vortag verlagerte sich nur langsam nach Osten, wobei es zu Wellenbildung kam. Dadurch entstand ein größeres Regengebiet, das sich entsprechend der troposphärischen Strömung von Südwesten nach Nordosten ausbreitete und das nordwestliche Deutschland erfaßte.</td>
</tr>
<tr>
<td>49</td>
<td>13.6.99</td>
<td>Deutschland lag weiterhin im Einfluß eines sich abschwäckenden Höhentiefs. In Bereich dieses flachen Tiefdruckwirbels kam es mittags im Westen und Süden Deutschlands örtlich zu Schauern und Gewittern, die aber nur von geringer Intensität waren.</td>
</tr>
<tr>
<td>50</td>
<td>27.6.99</td>
<td>Ein Randtief, das vom Ärmelkanal nach Südschweden zog, beeinflußte an diesem Tag das Wetter in Deutschland. Die dazugehörige Kaltfront überquerte Deutschland im Tagesverlauf und löste örtlich Schauer und Gewitter aus.</td>
</tr>
</tbody>
</table>

Tabelle B.5: Wettersituation Juni 1999
B. WETTERSITUATIONEN

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Tag</th>
<th>Kurzcharakteristik der Wettersituation</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>5.7.99</td>
<td>Auf der Vorderseite eines westeuropäischen Höhentrots lag Deutschland im Zustrom schwülwarmer und labil geschichteter Luftmassen. Die Kaltfront auf der Trogrückseite drang von Nordwesten her bis nach Mitteldeutschland. Im Vorfeld der Front bildeten sich immer wieder Gewitterzellen und auch großräumige Gewittercluster aus.</td>
</tr>
<tr>
<td>53</td>
<td>6.7.99</td>
<td>Eine Luftmassengrenze quer über Deutschland trennte sehr warme Luftmassen im Osten von kühlener, wolkenreicher Luft im Westen. In der feuchtlabil geschichteten Warmluft bildeten sich teilweise Gewitter mit verbreiteten Niederschlägen, die im Rheinland aber nur gering ausfielen.</td>
</tr>
<tr>
<td>55</td>
<td>12.7.99</td>
<td>Tiefer Luftdruck über Mitteleuropa sog schwülwarme Luftmassen nach Deutschland. Um die Mittagszeit entwickelten sich erste Gewitter, die vor allem in Süddeutschland besonders kräftig ausfielen.</td>
</tr>
<tr>
<td>56</td>
<td>13.7.99</td>
<td>Über Deutschland blieb die nahezu überall labil geschichtete und feuchtwarme Luft erhalten. Hebungsvorgänge sorgten für konvektive Umlagerungen mit heftigen Gewittern und Starkregen.</td>
</tr>
</tbody>
</table>

Tabelle B.6: Wettersituation Juli 1999
Die Wettersituation in Deutschland wurde von dem Frontensystem eines Tiefdruckwirbels westlich von Irland bestimmt. Eine rasch nordostwärts wandernde Kaltrückung sorgte für schauerartige und teilweise gewitterdurchsetzte Niederschlagsgebiete in großen Teilen Deutschlands.

Deutschland lag auf der Südseite eines Tiefdruckwirbels mit seinem Kern bei Schottland. Sein weitgehend okkludiertes Frontensystem überquerte ganz Deutschland und bestimmte den Wetterverlauf mit kräftigen Schauern und Gewittern.

Tabelle B.7: Wettersituation August 1999
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Tag</th>
<th>Kurzcharakteristik der Wettersituation</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>17.9.99</td>
<td>Atlantische Fronten überquerten Deutschland im Laufe des Tages von West nach Ost und führten mäßig warme Meeresluft heran. Schauer und Gewitter waren in ganz Deutschland zu verzeichnen.</td>
</tr>
<tr>
<td>70</td>
<td>20.9.99</td>
<td>Die Kaltfront eines Tiefruckwirbels mit Zentrum über den Britischen Inseln überquerte Deutschland von Südwesten her und führte zu Schauer- und Gewittertätigkeit in vielen Teilen Deutschlands.</td>
</tr>
<tr>
<td>72</td>
<td>22.9.99</td>
<td>In einer südwestlichen Strömung überquerte ein atlantischer Tiefruckausläufer die Mitte und den Norden Deutschlands. In den frühen Morgenstunden überquerte ein Frontensystem das Rheinland, den Rest des Tages blieb es trocken.</td>
</tr>
<tr>
<td>73</td>
<td>23.9.99</td>
<td>Mit der Annäherung eines kurzwelligen Troges wurden warme Luftmassen gehoben und es entstanden an der Kaltfront zahlreiche Gewitter, die in den Morgenstunden auf den Westen Deutschlands übergriffen und vielerorts zu starken Niederschlägen führten (bis zu 24 mm Regen pro Quadratmeter innerhalb kurzer Zeit am Flughafen Köln–Bonn).</td>
</tr>
<tr>
<td>75</td>
<td>28.9.99</td>
<td>Aufgrund einer West–Wetterlage verlagerten sich in rascher Folge atlantische Tiefruckausläufer über Deutschland hinweg. Vor allem im Norden Deutschlands wurden hohe Niederschlagsintensitäten verzeichnet.</td>
</tr>
<tr>
<td>77</td>
<td>30.9.99</td>
<td>Die Wellen ausbildende Kaltfront eines nach Skandinavien ziehenden Tiefruckwirbels zog langsam südostwärts. Im Tagesverlauf gingen die Niederschläge von Nordwesten her in Schauer und Gewitter über.</td>
</tr>
</tbody>
</table>

Tabelle B.8: Wettersituation September 1999
Anhang C

Detaillierte Ergebnistabellen der Fehleranalyse

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Radar allein</td>
<td>7.33</td>
<td>3.16</td>
<td>9.14</td>
<td>24.08</td>
<td>4.16</td>
<td>2.70</td>
<td>3.79</td>
<td>3.00</td>
<td>11.6</td>
</tr>
<tr>
<td>+ Advek</td>
<td>7.10</td>
<td>3.02</td>
<td>8.93</td>
<td>24.14</td>
<td>4.13</td>
<td>2.81</td>
<td>3.75</td>
<td>2.95</td>
<td>11.5 (ca. 1%)</td>
</tr>
<tr>
<td>+ Advek + automat. Tr.</td>
<td>6.66</td>
<td>2.45</td>
<td>7.40</td>
<td>21.73</td>
<td>4.08</td>
<td>2.72</td>
<td>3.61</td>
<td>2.94</td>
<td>10.5 (ca. 9%)</td>
</tr>
<tr>
<td>Adv + manuelle Tr.</td>
<td>6.39</td>
<td>2.96</td>
<td>6.28</td>
<td>12.53</td>
<td>3.70</td>
<td>2.75</td>
<td>3.49</td>
<td>2.88</td>
<td>6.9 (ca. 41%)</td>
</tr>
<tr>
<td>+ Advek + SOA</td>
<td>5.23</td>
<td>2.37</td>
<td>4.99</td>
<td>10.16</td>
<td>2.85</td>
<td>2.83</td>
<td>3.11</td>
<td>2.76</td>
<td>6.0 (ca. 48%)</td>
</tr>
<tr>
<td>+ Advek + automat. Tr. + SOA</td>
<td>5.12</td>
<td>2.34</td>
<td>4.47</td>
<td>9.17</td>
<td>2.92</td>
<td>2.72</td>
<td>3.01</td>
<td>2.76</td>
<td>5.7 (ca. 51%)</td>
</tr>
<tr>
<td>+ Advek + manuelle Tr. + SOA</td>
<td>4.99</td>
<td>2.38</td>
<td>4.43</td>
<td>7.17</td>
<td>2.89</td>
<td>2.69</td>
<td>2.98</td>
<td>2.66</td>
<td>4.8 (ca. 59%)</td>
</tr>
<tr>
<td>+ Biask.</td>
<td>5.75</td>
<td>2.59</td>
<td>6.56</td>
<td>17.52</td>
<td>4.04</td>
<td>2.57</td>
<td>3.40</td>
<td>2.99</td>
<td>8.7 (ca. 25%)</td>
</tr>
<tr>
<td>+ Advek + Biask.</td>
<td>5.74</td>
<td>2.48</td>
<td>6.47</td>
<td>17.49</td>
<td>4.01</td>
<td>2.64</td>
<td>3.39</td>
<td>2.95</td>
<td>8.7 (ca. 25%)</td>
</tr>
<tr>
<td>+ Advek + automat. Tr. + Biask.</td>
<td>5.80</td>
<td>2.43</td>
<td>6.47</td>
<td>17.37</td>
<td>4.05</td>
<td>2.74</td>
<td>3.39</td>
<td>2.85</td>
<td>8.6 (ca. 26%)</td>
</tr>
<tr>
<td>+ Advek + manuelle Tr. + Biask.</td>
<td>5.88</td>
<td>2.49</td>
<td>6.47</td>
<td>16.5</td>
<td>4.04</td>
<td>2.72</td>
<td>3.57</td>
<td>2.97</td>
<td>8.2 (ca. 29%)</td>
</tr>
<tr>
<td>+ Advek + Biask. + SOA</td>
<td>4.84</td>
<td>2.33</td>
<td>4.45</td>
<td>8.42</td>
<td>2.92</td>
<td>2.67</td>
<td>2.94</td>
<td>2.73</td>
<td>5.3 (ca. 54%)</td>
</tr>
<tr>
<td>+ Advek + automat. Tr. + Biask. + SOA</td>
<td>4.87</td>
<td>2.32</td>
<td>4.39</td>
<td>8.48</td>
<td>2.95</td>
<td>2.74</td>
<td>3.01</td>
<td>2.66</td>
<td>5.2 (ca. 55%)</td>
</tr>
<tr>
<td>+ Advek + manuelle Tr. + Biask. + SOA</td>
<td>4.92</td>
<td>2.34</td>
<td>4.47</td>
<td>8.16</td>
<td>2.94</td>
<td>2.78</td>
<td>3.06</td>
<td>2.76</td>
<td>5.1 (ca. 56%)</td>
</tr>
</tbody>
</table>

Tabelle C.2: Flächenmittel des Radar- und Stationsniederschlags (in mm) auf Monatssummenbasis in Gebiet G1. Die Radardaten wurden dabei jeweils mit unterschiedlichen Verfahrenskombinationen bearbeitet.
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVHRR</td>
<td>Advanced very high resolution radiometer an Bord von NOAA-Satelliten</td>
</tr>
<tr>
<td>DFG</td>
<td>Deutsche Forschungsgemeinschaft</td>
</tr>
<tr>
<td>DVWK</td>
<td>Deutscher Verband für Wasserwirtschaft und Kulturbau</td>
</tr>
<tr>
<td>DWD</td>
<td>Deutscher Wetterdienst</td>
</tr>
<tr>
<td>ESOC</td>
<td>European Space Operations Centre</td>
</tr>
<tr>
<td>EU</td>
<td>Europäische Union</td>
</tr>
<tr>
<td>EUMETSAT</td>
<td>Europäische Behörde für den operationellen Betrieb meteorologischer Beobachtungssatelliten, Sitz Darmstadt</td>
</tr>
<tr>
<td>FGAN</td>
<td>Forschungsgesellschaft für Angewandte Naturwissenschaften</td>
</tr>
<tr>
<td>GARP</td>
<td>Global Atmospheric Research Program</td>
</tr>
<tr>
<td>GME</td>
<td>Globales Modell des Deutschen Wetterdienstes, Gitterabstand etwa 50 km</td>
</tr>
<tr>
<td>IR</td>
<td>Infrarot–Kanal von Meteosat</td>
</tr>
<tr>
<td>LAWA</td>
<td>Länderarbeitsgemeinschaft Wasser</td>
</tr>
<tr>
<td>LM</td>
<td>Regionales und lokales Wettervorhersagemodell des DWD, Gitterabstand etwa 7 km</td>
</tr>
<tr>
<td>LWC</td>
<td>Liquid water content</td>
</tr>
<tr>
<td>METEOSAT</td>
<td>geostationärer Wetterbeobachtungssatellit, Betrieb durch EUMETSAT</td>
</tr>
<tr>
<td>MESZ</td>
<td>Mitteleuropäische Sommerzeit</td>
</tr>
<tr>
<td>MIUB</td>
<td>Meteorologisches Institut der Universität Bonn</td>
</tr>
<tr>
<td>MSG</td>
<td>Meteosat Second Generation, geostationärer Wetterbeobachtungssatellit, gestartet 2002</td>
</tr>
<tr>
<td>MUSIC</td>
<td>Multiple Sensor Precipitation Measurements, Projekt der EU–Kommission im 5. Rahmenprogramm</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>NEXERVA</td>
<td>Normalized expected analysis error variance</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration, USA, betreiben die polarumlaufenden Wettersatelliten NOAA 14/15/16</td>
</tr>
<tr>
<td>PPI</td>
<td>Plan parallel indicator (Azimutscan)</td>
</tr>
<tr>
<td>RADAR</td>
<td>Radio detection and ranging</td>
</tr>
<tr>
<td>RADOLAN</td>
<td>Radar–Online–Aneichung, Projekt des DWD</td>
</tr>
<tr>
<td>RHI</td>
<td>Range–height indicator (Elevationsscan)</td>
</tr>
<tr>
<td>RMS</td>
<td>Root mean square</td>
</tr>
<tr>
<td>SEVIRI</td>
<td>Spinning enhanced visible and infrared imager, abbildendes Radiometer an Bord von MSG</td>
</tr>
<tr>
<td>SFB</td>
<td>Sonderforschungsbereich</td>
</tr>
<tr>
<td>SOA</td>
<td>Statistische objektive Analyse</td>
</tr>
<tr>
<td>THORPEX</td>
<td>The observing system research and predictability experiment, Programm des WWRP zur Erforschung der Defizite meteorologischer Beobachtungssysteme</td>
</tr>
<tr>
<td>UTC</td>
<td>Universal time coordinated</td>
</tr>
<tr>
<td>VIS</td>
<td>Visueller Kanal von Meteosat</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organization</td>
</tr>
<tr>
<td>WPM</td>
<td>Window probability matching</td>
</tr>
<tr>
<td>WWRP</td>
<td>World Weather Research Program</td>
</tr>
<tr>
<td>Z–R</td>
<td>Beziehung zwischen Radarreflektivität Z und Niederschlagsintensität R</td>
</tr>
</tbody>
</table>
Symbolverzeichnis

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bezeichnung</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Vorfaktor der Z–R–Beziehung</td>
<td>-</td>
</tr>
<tr>
<td>a'</td>
<td>angeeichter Vorfaktor der Z–R–Beziehung</td>
<td>-</td>
</tr>
<tr>
<td>a_i</td>
<td>analytisierter Niederschlag am Gitterpunkt $\ (x_i, y_i) \ $</td>
<td>mm</td>
</tr>
<tr>
<td>b</td>
<td>Exponent der Z–R–Beziehung</td>
<td>-</td>
</tr>
<tr>
<td>b_i</td>
<td>Radarmessung des Niederschlags am Gitterpunkt $\ (x_i, y_i) \ $</td>
<td>mm</td>
</tr>
<tr>
<td>b_k</td>
<td>Radarmessung des Niederschlags am Gitterpunkt $\ (x_k, y_k) \ $</td>
<td>mm</td>
</tr>
<tr>
<td>c</td>
<td>Steigungskoeffizient</td>
<td>-</td>
</tr>
<tr>
<td>c_v</td>
<td>Gewicht zum Verschiebungseinfluß</td>
<td>-</td>
</tr>
<tr>
<td>cov</td>
<td>Kovarianz</td>
<td>mm²</td>
</tr>
<tr>
<td>d</td>
<td>Entfernung zum Volumenziel</td>
<td>m</td>
</tr>
<tr>
<td>e</td>
<td>Klassenbreite</td>
<td>km</td>
</tr>
<tr>
<td>f</td>
<td>Korrekturfaktor der Biaskorrektur</td>
<td>-</td>
</tr>
<tr>
<td>g</td>
<td>Kriging–Gewicht</td>
<td>-</td>
</tr>
<tr>
<td>h</td>
<td>Distanzklasse (Abstand)</td>
<td>km</td>
</tr>
<tr>
<td>h_f</td>
<td>Flughöhe von Meteosat</td>
<td>km</td>
</tr>
<tr>
<td>h_w</td>
<td>Wolkenhöhe</td>
<td>km</td>
</tr>
<tr>
<td>h_p</td>
<td>Pulslänge</td>
<td>m</td>
</tr>
<tr>
<td>i, j, k, l</td>
<td>Numerierungsindex</td>
<td>-</td>
</tr>
<tr>
<td>m</td>
<td>Radarniederschlags–Mittelwert</td>
<td>mm</td>
</tr>
<tr>
<td>o</td>
<td>Regenwippenmessung des Niederschlags</td>
<td>mm</td>
</tr>
<tr>
<td>Symbol</td>
<td>Bedeutung</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>(q)</td>
<td>maximaler betrachteter Abstand bei der Variogramm-Bestimmung</td>
<td>(\text{km})</td>
</tr>
<tr>
<td>(r)</td>
<td>Tropfenradius</td>
<td>(\text{mm})</td>
</tr>
<tr>
<td>(r_e)</td>
<td>Erdradius</td>
<td>(\text{km})</td>
</tr>
<tr>
<td>(s)</td>
<td>Standardabweichung des Niederschlags</td>
<td>(\text{mm})</td>
</tr>
<tr>
<td>(t)</td>
<td>wahrer Niederschlag</td>
<td>(\text{mm})</td>
</tr>
<tr>
<td>(\vec{u})</td>
<td>Position ((x, y))</td>
<td>(\text{km})</td>
</tr>
<tr>
<td>(v_t)</td>
<td>Endfallgeschwindigkeit der Regentropfen</td>
<td>(\text{m/s})</td>
</tr>
<tr>
<td>(\vec{v})</td>
<td>Verschiebungsvektor</td>
<td>(\text{km/h})</td>
</tr>
<tr>
<td>(\vec{v}_a)</td>
<td>vorhergehender Verschiebungsvektor</td>
<td>(\text{km/h})</td>
</tr>
<tr>
<td>(</td>
<td>\vec{v}_{max}</td>
<td>)</td>
</tr>
<tr>
<td>(w)</td>
<td>SOA–Gewicht</td>
<td>-</td>
</tr>
<tr>
<td>(A)</td>
<td>Matrix</td>
<td>-</td>
</tr>
<tr>
<td>(B)</td>
<td>Gebiet</td>
<td>(\text{km}^2)</td>
</tr>
<tr>
<td>(C)</td>
<td>gemessener Grauwert</td>
<td>count</td>
</tr>
<tr>
<td>(C_0)</td>
<td>Space Count</td>
<td>count</td>
</tr>
<tr>
<td>(C_p)</td>
<td>Konstante der integralen Regenkenngröße (J)</td>
<td>verschiedene</td>
</tr>
<tr>
<td>(D)</td>
<td>Tropfendurchmesser</td>
<td>(\text{mm})</td>
</tr>
<tr>
<td>(E)</td>
<td>solare Bestrahlungsstärke</td>
<td>(\text{W/m}^2)</td>
</tr>
<tr>
<td>(E_a)</td>
<td>erwartete Analysefehlervarianz</td>
<td>(\text{mm}^2)</td>
</tr>
<tr>
<td>(E_b)</td>
<td>erwartete Hintergrundfehlervarianz</td>
<td>(\text{mm}^2)</td>
</tr>
<tr>
<td>(E_o)</td>
<td>Beobachtungsfehlervarianz</td>
<td>(\text{mm}^2)</td>
</tr>
<tr>
<td>(F_r)</td>
<td>Reflektionsfaktor</td>
<td>(\text{sr}^{-1})</td>
</tr>
<tr>
<td>(G)</td>
<td>Antennengewinn</td>
<td>1 oder (\text{dB})</td>
</tr>
<tr>
<td>(J)</td>
<td>integrale Regenkenngröße (allgemein)</td>
<td>verschiedene</td>
</tr>
<tr>
<td>(K)</td>
<td>Anzahl der Regenwippen</td>
<td>-</td>
</tr>
<tr>
<td>(</td>
<td>K_h</td>
<td>^2)</td>
</tr>
<tr>
<td>(K_d)</td>
<td>Dämpfungskeffizient</td>
<td>(\text{dB/km})</td>
</tr>
<tr>
<td>(L)</td>
<td>Radianz</td>
<td>(\text{W/(m}^2\text{sr}))</td>
</tr>
<tr>
<td>(N)</td>
<td>Anzahl (allgemein)</td>
<td>-</td>
</tr>
<tr>
<td>(N_T(D))</td>
<td>Verteilungsfunktion der Tropfengrößen</td>
<td>(m^{-3} \text{mm}^{-1}) (Tropfenspektrum)</td>
</tr>
<tr>
<td>(N_T(0))</td>
<td>Vorfaktor der Verteilungsfunktion</td>
<td>(m^{-3} \text{mm}^{-1})</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Niederschlagshöhe (allgemein) mm</td>
<td></td>
</tr>
<tr>
<td>P_a</td>
<td>analysierter Niederschlag mm</td>
<td></td>
</tr>
<tr>
<td>P_r</td>
<td>Radarmessung des Niederschlags mm</td>
<td></td>
</tr>
<tr>
<td>P_g</td>
<td>Regenwippenmessung des Niederschlags mm</td>
<td></td>
</tr>
<tr>
<td>P_B</td>
<td>Gebietsniederschlagsmittel mm</td>
<td></td>
</tr>
<tr>
<td>P_t</td>
<td>Senderleistung W</td>
<td></td>
</tr>
<tr>
<td>\tilde{P}_r</td>
<td>Empfangsleistung W</td>
<td></td>
</tr>
<tr>
<td>\mathcal{P}</td>
<td>Wahrscheinlichkeit -</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Niederschlagsintensität (Regenrate) mm/h</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Zeitintervall min</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Suchumgebung km</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Pulsvolumen m³</td>
<td></td>
</tr>
<tr>
<td>\mathcal{V}</td>
<td>kumulative Verteilungsfunktion -</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>dimensionsloses SOA–Gewicht -</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Reflektivitätsfaktor mm⁶/m³</td>
<td></td>
</tr>
<tr>
<td>Z_0</td>
<td>Normierungsfaktor für dbZ mm⁶/m³</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>Kalibrierungsfaktor W/(m²sr count)</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>Vorfaktor der Dämpfungskorrektur -</td>
<td></td>
</tr>
<tr>
<td>δ</td>
<td>Variogrammwert mm²</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>Exponent der Dämpfungskorrektur -</td>
<td></td>
</tr>
<tr>
<td>Γ</td>
<td>Gammafunktion -</td>
<td></td>
</tr>
<tr>
<td>ϵ</td>
<td>normalisierter Beobachtungsfehler -</td>
<td></td>
</tr>
<tr>
<td>ϵ_a</td>
<td>normalisierte erwartete Analysefehlervarianz -</td>
<td></td>
</tr>
<tr>
<td>ζ</td>
<td>horizontaler Skalierungsfaktor -</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>Radarreflektivität m²/m³</td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>horizontaler Öffnungswinkel °</td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>Wellenlänge des Radars cm</td>
<td></td>
</tr>
<tr>
<td>Λ</td>
<td>Formparameter der Tropfengrößenverteilung mm⁻¹</td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>Exponent der Gammaverteilung -</td>
<td></td>
</tr>
<tr>
<td>ν</td>
<td>Kosinus des Sonnenzenitwinkels -</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>Korrelationskoeffizient -</td>
<td></td>
</tr>
<tr>
<td>$\rho(h)$</td>
<td>Korrelogrammfunktion -</td>
<td></td>
</tr>
<tr>
<td>$\bar{\rho}$</td>
<td>gewichteter Korrelationskoeffizient -</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
<td>Einheit</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>$\vec{\rho}$</td>
<td>Spaltenvektor zur Bestimmung der SOA-Gewichte</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>Rückstreuquerschnitt</td>
<td>m^2</td>
</tr>
<tr>
<td>τ</td>
<td>Lagrangemultiplikator</td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>Breitengrad</td>
<td>$^\circ$</td>
</tr>
<tr>
<td>ψ</td>
<td>Längengrad</td>
<td>$^\circ$</td>
</tr>
</tbody>
</table>
Literaturverzeichnis

[21] DWD (Deutscher Wetterdienst) (Hrsg.) (1996): Europäischer Wetterbericht. ISSN 0341–2970, Jg. 21, Offenbach/Main.

160

Danksagung

Leider ist in der Anfangsphase der vorliegenden Arbeit mein Betreuer Herr Prof. Dr. Heinz-Dieter Schilling, dem ich dieses sehr interessante Thema verdanke, unerwartet verstorben. Die Betreuung wurde freundlicherweise von Herrn Prof. Dr. Günther Heinemann übernommen, dem ich für seine kontinuierliche Unterstützung und vielfältigen Hilfestellungen besonders danken will. Weiterhin möchte ich Herrn Prof. Dr. Clemens Simmer, Prof. Dr. Matthias Winiger und Frau Prof. Dr. Susanne Crewell für ihr reges Interesse und ihre Hilfe danken. Dank gesagt sei weiterhin meinen Kollegen am Geographischen und Meteorologischen Institut der Universität Bonn, insbesondere Dirk Meetschen, Tobias Grimbacher und Dr. Christoph Reudenbach.

Für die Bereitstellung der Radardaten sowie die Benutzung der Software zur Clutter- und Dämpfungskorrektur und zur Interpolation danke ich der Gruppe Fernerkundung am Meteorologischen Institut. Weiterhin sei dem Wetteramt Essen sowie dem Erftkreisverband für die freundliche Überlassung der Niederschlagsdaten gedankt.

Ganz besonderer Dank schließlich geht an Hana, Pia, Johannes und Thomi für das sorgfältige Korrekturesen der Arbeit sowie an alle meine weiteren Freunde und Bekannten für ihre andauernde moralische Unterstützung.