Contents

1 Theoretical Background .. 6
 1.1 The Standard Model .. 6
 1.2 Deep Inelastic Scattering .. 7
 1.2.1 Kinematics .. 7
 1.2.2 Cross Section and Structure Functions 9
 1.3 Diffraction ... 11
 1.3.1 Short Interlude: Inelastic J/ψ Production 13
 1.4 Exclusive J/ψ Production and Kinematics 14
 1.5 Regge Theory ... 15
 1.6 Vector Dominance Model ... 16
 1.7 Colour-Dipole Models ... 17

2 HERA and ZEUS ... 20
 2.1 The HERA collider .. 20
 2.2 The ZEUS Detector .. 22
 2.3 The Central Tracking Detector ... 25
 2.4 The Uranium Calorimeter .. 25
 2.5 The Luminosity Measurement .. 26
 2.6 The Trigger System .. 27
 2.7 The Beam Pipe Calorimeter ... 29
 2.8 Particle Identification .. 31
 2.9 The Transition Radiation Detector 33
 2.9.1 Transition Radiation ... 34
 2.9.2 The TRD Radiator .. 34
 2.9.3 Energy Loss of Charged Particles in Matter 36
 2.9.4 Energy Loss of Photons in Matter 36
 2.9.5 The Drift Chamber ... 36
 2.9.6 The Signal Analysis and Storage 39
 2.9.7 The TRD Reconstruction Software (TRRECON) 40

3 Calibration of the Beam Pipe Calorimeter for 1998–2000 41
 3.1 Energy Calibration of the BPC .. 41
 3.1.1 Event Selection .. 41
 3.1.2 Comparison of Expected and Measured BPC Energy 41
 3.1.3 Energy Calibration of the BPC for 1998–2000 42
 3.2 Fiducial Area Cut of the BPC ... 44
Contents

4 **Electroproduction of \(J/\psi\) Mesons at Low \(Q^2\)**
4.1 Event Topology and Trigger
4.1.1 The Trigger
4.1.2 The Run Range
4.2 Reconstruction of the \(J/\psi\) Decay Electrons
4.3 Corrections
4.3.1 Correction of the Efficiency of FLT
4.3.2 CTD Momentum Scale
4.3.3 Vertex Reweighting
4.4 Selection Cuts: Separating Signal from Background
4.4.1 Cuts Common to Two-Track and One-Track Events
4.4.2 Cuts for Two-Track Events
4.4.3 Cuts for One-Track Events
4.5 The Signal
4.6 Monte Carlo Simulation
4.6.1 Signal Monte Carlo
4.6.2 Distributions and Resolutions of \(W\) and \(Q^2\)
4.6.3 Acceptance Corrections
4.6.4 Purity
4.6.5 Background Monte Carlo
4.7 The Cross Section
4.7.1 The Photon Flux
4.7.2 Contamination with Proton Dissociative Events
4.7.3 Evaluation of the Cross Section
4.7.4 Interpolation to \(W = 90\,\text{GeV}\)
4.8 Study of Systematic Errors
4.8.1 Stability with the Choice of the \(W\)-bins
4.8.2 Stability with the Choice of the Mass Window
4.8.3 Stability with Respect to the Elasticity Definition
4.9 Results

5 **Photoproduction of \(J/\psi\) Mesons**
5.1 Event Selection
5.1.1 Cuts Common to Two-, One- and Zero-Track Events
5.1.2 Cuts for Two-Track Events
5.1.3 Cuts for One-Track Events
5.1.4 Cuts for Zero-Track Events
5.2 Signal Extraction
5.3 Results
5.4 Combination of Photoproduction, low-\(Q^2\) and high-\(Q^2\) Data

6 **Pion Suppression in Photoproduction of \(J/\psi\) Mesons**
6.2 Running Conditions of the Transition Radiation Detector for 1999–2000
6.3 TRD Monte Carlo
6.4 Tuning the TRD Monte Carlo
6.4.1 Selection of exclusive \(\rho\) production
6.5 Combining the Values of Hit Wires of a TRD Module
6.6 Adjustment of Monte Carlo Distributions to the Data
6.7 Methods to Combine TRD Modules
6.8 Forming a Likelihood from TRD and CTD data ... 95
6.9 Cross Section with Improved Background Rejection 96
 6.9.1 Events with TRD information ... 97
 6.9.2 The Whole Photoproduction Sample .. 100
6.10 Electron Identification using TRD Cluster Timing Information 104

7 Summary .. 105

A Calibration of the TRD in 1999–2000 ... 108

B Runs with Bad Running Conditions for the TRD in 1999–2000 111
 B.1 All four TRD modules ... 111
 B.2 Anodes and Cathodes ... 111
 B.3 Anodes only ... 112
 B.4 Cathodes only .. 112